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Abstract
Face recognition with variable illumination and pose is an important and challenging task in computer vision. In order to

solve the problem that the accuracy of face recognition reduces with illumination and pose changes, this paper proposes a

method via AMVP (AWULBP_MHOG_VGG_PCA) features and WSRC. In the proposed method, we need to extract

AWULBP_MHOG and VGG_PCA features, respectively. As for AWULBP_MHOG features, firstly, variable illumination

is normalized for face images. And uniform local binary pattern (ULBP) and multiple histogram of oriented gradient

(MHOG) features are extracted from each block, which are called ULBP_MHOG features. Then, we use information

entropy to obtain adaptively weighted ULBP_MHOG (AWULBP_MHOG) features. As for VGG_PCA features, we use

the pre-trained VGG-Face model to extract VGG features from original face images. And PCA is used to reduce the

dimension of VGG features to obtain VGG_PCA features. Then, AWULBP_MHOG and VGG_PCA features are combined

to form AMVP (AWULBP_MHOG_VGG_PCA) features. Finally, test face images can be classified using weighted sparse

represent (WSRC). The comparison experiments with different blocks, classifiers and features have been conducted on the

ORL, Yale, Yale B and CMU-PIE databases. Experimental results prove that our method can improve the accuracy

effectively for illumination and pose variable face recognition.
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1 Introduction

Since the early 1990s, face recognition [1] has gained

widespread attention in pattern recognition and machine

learning. Besides, face recognition continues to mature,

which can be widely applied in security system, authenti-

cation, digital surveillance, human–computer interaction

and other public places. Although great results have been

achieved under constrained face images [2, 3], there are

many difficulties in variable illumination, pose, expression,

occlusion, etc., for face images in the real world. As a face

image is taken, it is easy to be affected by the illumination

and pose, especially in the outdoor environment. Face

appearance can alter drastically due to illumination and

pose changes. And illumination and pose changes for the

same face identity have a bigger impact than changes from

variation of face identity [4]. Therefore, illumination and

pose variable face recognition is a challenging task.

1.1 Review of works

Variable illumination and pose are the bottleneck of face

recognition. Up to now, many works considering them

separately have appeared. In terms of the only illumination

variable face recognition, approaches can be approximately

divided into three types, which are illumination pretreat-

ment techniques, illumination model techniques and
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invariant feature extraction techniques. As for illumination

pretreatment techniques, histogram equalization (HE) [5] is

commonly used. In addition, Tan et al. [6] proposed an

illumination pretreatment technique via three steps under

local ternary patterns (LTP) operator. But these methods do

not fully yield satisfactory results. As for illumination

model techniques, Basri et al. [7] used a 9-D linear sub-

space to approximate varying illumination conditions. The

disadvantage of illumination model techniques is that they

need multiple face images under different illumination

conditions. As for invariant feature extraction techniques,

Gudur et al. [8] put forward a technique using Gabor

wavelet and PCA, where Gabor wavelet was used to extract

local features, which can effectively improve face recog-

nition with illumination changes. But the dimension of

Gabor features is large because of many Gabor wavelet

kernels used in feature extraction, and thus, the elapsed

time is much more. Roy et al. [9] proposed the local gravity

face (LG face) for illumination invariant and heteroge-

neous face recognition. Ramaiah et al. [10] put forward

using deep convolutional neural networks (CNN) for face

recognition under non-uniform illumination. But they need

to tune many parameters.

In terms of the only pose variable face recognition, some

methods include multi-view-based approaches [11], pose

invariant feature-based approaches [12, 13] and morphable

model-based approaches [14–16]. For example, Carlos

et al. [17] proposed a method via stereo matching to

compute the similarity between two face images. Li et al.

[18] used the linear combination of training images to

represent test faces, and linear regression coefficients can

be obtained as extracted features for face recognition. But

the capacity of the linear models is limited, and the non-

linear models have lower efficiency in model training or

testing. Chen et al. [19] extracted multi-scale local binary

pattern (LBP) features from patches about 27 landmarks

detected by a face alignment algorithm. Although LBP

features from all patches are concatenated to high-dimen-

sional feature vectors as the pose robust features, this

method heavily depends on the precision of face alignment.

In addition, it is hard to detect dense landmarks in

unconstrained face images. Li et al. [20] put forward using

a set of 3D displacement fields to generate virtual views of

test faces and matching synthesized faces with training

faces. Asthana et al. [21] presented the view-based active

appearance model to match 3D models with 2D images.

Despite their effectiveness, they require complicated

computer graphics operations. They are at the cost of

expensive computation.

Many papers have considered both illumination and

pose changes, which are grouped into 3D-based methods

[22] and 2D-based methods. Although 3D methods can

achieve better performances, they are complex in

computation because they need to compute additional 3D

information or select landmarks manually. As for 2D

methods, uLBP [23], HOG [24, 25], etc., robust features

are used. Bhele et al. [26] put forward extracting discrim-

inating LBP-HOG vectors for face recognition. In addition,

when the deep learning appears, face recognition makes

progress. For instance, Parkhi et al. [27] used the deep

structure that is the VGG-Face model for face recognition.

These methods can improve the accuracy of face recogni-

tion with illumination and pose changes due to discrimi-

native features. But the dimension of extracted features is

huge, and the elapsed time is large.

In order to improve the accuracy of face recognition

with variable illumination and pose, we put forward one

method based on AMVP (AWULBP_MHOG_VGG_PCA)

features and WSRC. Illumination is normalized firstly,

which can greatly reduce the lighting effects. Because of

the insensitiveness of the local binary pattern (LBP) and

histogram of oriented gradient (HOG) to light and posture,

we extract uniform LBP (ULBP) and multiple HOG

(MHOG) features from each block to form ULBP_MHOG

features. Since different face areas have different infor-

mation, the idea of weighting is proposed. We use infor-

mation entropy to calculate weights and form adaptively

weighted ULBP_MHOG (AWULBP_MHOG) features,

which highlight more face details. In addition, because

deep models can extract more discriminative features, we

use the pre-trained VGG-Face model that is a deep model

to extract features called VGG features from original face

images. PCA is used to reduce the dimension of VGG

features to obtain VGG_PCA features. Then,

AWULBP_MHOG and VGG_PCA features are combined

to form AMVP features. Finally, weighted sparse repre-

sentation classification (WSRC) is utilized to improve

performance of face recognition.

1.2 Contributions and the structure of the work

The contributions in this paper are shown as follows:

1. The fused features are put forward, which are

AWULBP _MHOG_VGG_PCA features. And a dis-

criminative classifier WSRC is used, which fuses the

location and sparse information.

2. As for AWULBP_MHOG features, MHOG features

have lower dimension than original HOG features and

information entropy is used to calculate weights that

are adaptive. As for VGG_PCA features, they have

less dimension than VGG features.

3. The accuracy has been improved effectively. Experi-

mental results have been compared with different

blocks, features and classifiers.
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The paper is organized as follows. In Sect. 2, the pro-

posed method is presented. Experimental results are shown

and analyzed in Sect. 3. Finally, Sect. 4 presents

conclusions.

2 The proposed method

To improve the accuracy of face recognition with variable

illumination and pose, the method based on AWULBP_

MHOG_VGG_PCA features and WSRC is proposed. The

fused and discriminative AMVP features are put forward,

which are combined with the discriminative classifier

WSRC to improve the accuracy. As LBP and HOG features

are not sensitive to illumination and poses, we propose to

extract the adaptively weighted ULBP_MHOG features

(AWULBP_MHOG) from image blocks, where adaptive

weights are obtained by information entropy and

ULBP_MHOG features include ULBP and MHOG fea-

tures. AWULBP_MHOG features of all patches are con-

catenated to feature vectors, which are robust to pose and

illumination. In addition, deep networks have good results

in face recognition in recent years due to their deep

structures. But the training process of deep networks is

complex. Thus, we use the pre-trained VGG-Face model to

extract VGG features from original face images. But the

extracted VGG features have higher dimension, so PCA is

used to reduce the dimension of VGG features to form

VGG_PCA features. Then, AWULBP_MHOG and

VGG_PCA features are concatenated with AMVP features,

which are robust to pose and illumination. Meanwhile,

WSRC has better performance. The effective combination

of AWULBP_ MHOG_VGG_PCA features and WSRC is

used to minimize pose and illumination variation. The

specific process of our method is presented in Fig. 1.

2.1 Illumination normalization

Illumination is an issue for face recognition. Tan et al. [6]

proposed three steps to preprocess illumination, which

outperformed histogram equalization (HE) [5] and self-

quotient image (SQI) [28], etc., under local ternary patterns

(LTP) operator. Thus, this paper uses this illumination

normalization method. The specific steps are as follows.

1. Gamma Correction. It is a nonlinear gray-level trans-

formation that replaces image I with Ic, where c 2
½0; 1� is a user-defined parameter. Here, we choose c ¼
0:2 as the default setting. The local dynamic range of

the image is reduced in bright regions and enhanced in

shadowed or dark regions.

2. Difference of Gaussian (DOG) Filtering. Gamma

correction cannot eliminate the shading effects. DOG

filtering can suppress the illumination change in low

frequency and the noise in high frequency. Its transfer

function is the difference between two Gaussian

functions with different width shown as Eq. (1), where

A1�A2 [ 0, r1 [ r2 are user-defined parameters.

Here, we set A1 ¼ A2 ¼ 1, r1 ¼ 2 and r2 ¼ 1 as the

default setting. Then, explicit convolution is used for

filtering as Eq. (2).

Gðx; yÞ ¼ A1e
�ðx;yÞ

2

2r2
1 � A2e

�ðx;yÞ
2

2r2
2 ð1Þ

Iðx; yÞ ¼ Iðx; yÞ � Gðx; yÞ: ð2Þ

3. Contrast Equalization. The final step globally rescales

the image contrast. We have a simple approximation

via two stage processes as Eqs. (3) and (4), where a is

a compressive factor that reduces the influence of large

values and s is a threshold to remove large values.

Here, we use a ¼ 0:1 and s ¼ 10 as default. Finally, to

reduce a series of influences, we apply a nonlinear

function to compress over-large values as Eq. (5),

which limits I to ð�s; sÞ.

Iðx; yÞ  Iðx; yÞ
mean Iðx;; y;Þj jð Það Þ1=a

ð3Þ

Scale normalization

Extract ULBP and MHOG 
features from each block

Calculate local 
information entropy

Local feature 
weights

Adaptive 
weight

Use WSRC 
to classify

Illumination normalization Extract features from the 
VGGFace model

PCA

Form VGG_PCA features

Form AWULBP_MHOG 
features

Form AWULBP_MHOG_VGG_PCA features

...

...

Fig. 1 Process of our method
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Iðx; yÞ  Iðx; yÞ
mean min s; Iðx;; y;Þj jð Það Þð Þ1=a

ð4Þ

Iðx; yÞ  s tanh
Iðx; yÞ

s

� �
: ð5Þ

Figure 2 shows the results of illumination normaliza-

tion. It can be seen that most influences of light are elim-

inated and more facial details are kept by illumination

normalization.

2.2 Image blocks

Pentland et al. [29] firstly applied image blocks to face

recognition. To extract more accurate features of face

images, we divide the image into blocks. Then, local fea-

tures of each block are extracted. At last, all local features

are integrated into global features of the whole image for

classification. Those extracted features are more robust to

illumination, pose and expression changes.

This paper adopts non-overlapping manner to segment

images and chooses 100 9 100-sized face images as input.

Each image is divided into 2N 9 2N blocks, where N is 1,

2, 3, etc. We assume the block template is p 9 p sizes, then

p = 100/2N. Because of the indivisible phenomenon in

image block process, we can segment images from the

(mod (100/2N)/2 ? 1)th pixel, where the function mod () is

as remainder. Figure 3 presents face images with different

blocks.

2.3 Uniform pattern LBP (ULBP)

As for the original LBP operator, a 3 9 3 neighborhood of

each pixel is considered and the difference between every

neighbor and the center pixel that is a threshold value is

performed. The neighbor pixel which is less than the

threshold value is set to 0, otherwise set to 1. Then, a

binary number is formed and the value of LBP code for the

center pixel is given as Eq. (6).

LBPpc ¼
X8
i¼1

sðpi � pcÞ2i�1; sðxÞ ¼ 1 x� 0

0 x\0

�
; ð6Þ

where Pc is the center pixel which is considered as the

threshold value, and neighbors are P1. . .; . . .P8ð Þ.
Figure 4 shows the computation of the LBP code for a

given pixel using a 3 9 3 neighborhood [30]. Ojala et al.

[31] proposed some improved LBP operators, such as cir-

cular LBP operator, rotation-invariant operator, uniform

pattern and rotation-invariant uniform pattern. As for uni-

form pattern LBP (ULBP), the binary code contains at most

two bitwise transitions from 0 to 1 or from 1 to 0. For

example, 11111111 (0 transitions) and 10001111 (2 tran-

sitions) are uniform patterns, while 11001001 (4 transi-

tions) and 01010010 (6 transitions) are non-uniform

patterns called mixed patterns. In terms of ULBP labels,

each uniform pattern is as a separate label and mixed

pattern is considered as one label. Then, the labels are

reduced from 2P to P(P - 1) ? 3 for the ULBP operator.

When we use the 8-neighborhood, there are a total of 256

patterns, 58 of which are uniform patterns. Thus, there are

59 different labels in total. Here, we use the ULBP operator

that is computed on a circle of one radius and 8 neighbors.

Original Face Images

Gamma Correction

DoG  Filtering

Results

Contrast Equalization

Fig. 2 Results of illumination normalization

...

Image Blocks

Fig. 3 Face images with different blocks

11 786

34 10 3

9 16 100

1 10

1 0

0 1 1

The threshold value

(10101101)2=173

Fig. 4 Original LBP code illustration
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2.4 Multiple histogram of oriented gradient
(MHOG)

The HOG features were first introduced by Dalal and

Triggs [32] for detecting humans in static images. HOG

features are obtained by calculating and counting the local

image gradient histogram. In this paper, we put forward a

modified operator called multiple histogram of oriented

gradient (MHOG). When original HOG features are

extracted, one block of face images is divided into 4 cells

and each cell is represented by 9 gradient orientations.

When MHOG features are extracted, one block of face

images is not divided into cells and each block is repre-

sented by three kinds of gradient orientations that are 3, 6

and 9 gradient orientations. Compared with HOG features,

MHOG features are reduced by half in dimension. The

generated MHOG operator is described as shown in Fig. 5.

2.5 Adaptively weighted approach

As for one face image, different areas of the image contain

different texture information. In order to distinguish the

information of different regions, this paper divides images

into blocks and weights each block. Here, we use infor-

mation entropy to calculate adaptive weights. The Shannon

theorem [33] indicates that the information entropy repre-

sents how much information the image contains. When the

information contained in one image is more, the informa-

tion entropy of which is higher. On the contrary, if infor-

mation contained in one image is less, the corresponding

information entropy is lower. In this paper, ULBP_MHOG

features are used, which include texture information. When

the higher information entropy as the weight is combined

with ULBP_MHOG features in the block of one image, the

texture information is highlighted in the block of one

image. Instead, texture details in the block of one image are

reduced. Then, the weighted features are more

discriminative. If one image is divided into m subblocks,

the information entropy of the ith subblock can be

expressed as Eq. (7).

Ei ¼ �
Xn
k¼1

pki lg p
k
i ; ð7Þ

where n is pixel series which is 256 in this paper and pki is

probability of the kth series pixel. If one subblock has the

higher information entropy, it can obtain the higher weight.

The weight coefficient of the ith subblock can be deter-

mined by Eq. (8).

Wi ¼ Ei

, Xm
i¼1

Ei

 !
: ð8Þ

2.6 AWULBP_MHOG and VGG_PCA features
(AMVP)

After scale normalization, AWULBP_MHOG and

VGG_PCA features are extracted from face images,

respectively. As for AWULBP_MHOG features, we first

normalize illumination and divide images into different

blocks. Then, ULBP and MHOG features are extracted

from each block, which are concatenated with new features

called ULBP_MHOG features. Meanwhile, we normalize

the information entropy of each block, which is as a weight

of each block. The adaptively weighted ULBP_MHOG

(AWULBP_MHOG) features are formed by multiplying

ULBP_MHOG features by the weight in each block.

Finally, the whole AWULBP_MHOG features are obtained

by concatenating AWULBP_MHOG features of each

block. As for VGG_PCA features, our implementation is

based on the MATLAB toolbox MatConvNet (http://www.

vlfeat. org/matcon vnet/). In this paper, we use the VGG-

Face model (http://www.robots.ox.ac.uk/*vgg/software/

vgg_face/) that was provided by O. M. Parkhi et al. [27] to

extract face features. The VGG-Face model contains 39

layers that can be seen from Fig. 6. We consider the output

of 36th layer as the final VGG features that are 4096-di-

mension descriptor vectors. In order to reduce the feature

dimension, 4096-dimension VGG features are reduced by

PCA. Then, the VGG_PCA features can be obtained.

Finally, AWULBP_MHOG and VGG_PCA features are

concatenated to form AWULBP_MHOG_VGG_ PCA

features. The specific process of extracting AWULBP_

MHOG and VGG_PCA features is shown in Fig. 6.

2.7 Weighted sparse representation
classification (WSRC)

Sparse representation for classification (SRC) has attracted

much attention and achieved better classification result

A block of one image

Calculate the gradient of each pixel

Set the orientation range to [0,π]

Compute a histogram of nine 
different gradient orientations

Compute a histogram of six 
different gradient orientations

Compute a histogram of three 
different gradient orientations

Concatenate above 
three descriptors

A 18-dimension 
HOG feature vector

Fig. 5 MHOG operator illustration
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than other typical classification methods. Fan et al. [34]

pointed out that training samples that are more similar or

closer to the test sample generally play more important role

in representing the test sample in SRC. And Yu et al. [35]

pointed out that SRC lacks locality information and locality

information is more important than sparsity information

under some conditions. To overcome above drawbacks, Lu

et al. [36] and Fan et al. [34] put forward the weighted

sparse representation for classification (WSRC). WSRC

pays more attention to those training samples that are more

similar to the test sample in representing the test sample.

The goal of WSRC is to measure the significance of each

training sample in representing test samples, and the sig-

nificance can be evaluated by computing the distance

between the training sample and the test sample. Because

WSRC exploits the distance information in representing

test samples, whereas SRC does not exploit it, WSRC

enhances the classification effectiveness of SRC. The

WSRC includes two steps. The first step is to calculate

distances between training samples and a given test sample

as weights of training samples. Here, for convenience, we

just use the Euclidean distance to compute their distances.

The second step is to perform SRC by using weighted

training samples.

As for typical SRC, we set training sample vector as vij,

which represents the feature vector of the jth sample in the

ith class. Then, all samples of the ith class make up a

matrix denoted as Ai ¼ ½vi1; vi2; . . .; vini �. The test sample yi
of the ith class is linearly represented by Ai as Eq. (9).

yi ¼ xi1vi1 þ xi2vi2 þ � � � þ xinivini ; ð9Þ

where xij is the reconstruction coefficient of the jth sample.

Considering all training samples, yi can be represented by

all training samples as Eq. (10).

yi ¼ 0 � v11 þ � � � þ 0 � v1n1 þ � � � þ xi1 � vi1 þ � � � þ xini
� vini þ 0 � vm1 þ � � � þ 0 � vmnm ;

ð10Þ

where xi ¼ ½0; . . .; 0; xi1; . . .; xini ; 0; . . .; 0� is a coefficient

vector, and corresponding elements of the ith class are the

only nonzero terms. In order to calculate sparse coefficient

vector x, the minimum ‘0 norm problems need to be solved

according to Eq. (11).

x̂0 ¼ argmin xk k0 s:t: y ¼ Ax; ð11Þ

where �k k0 denotes the ‘0� norm, which counts the number

of nonzero terms in a vector. But it is a NP-hard problem to

find the sparsest solution of Eq. (11), which is difficult to

appropriate [36]. If the solution x is sparse enough, the

solution of ‘0� minimization problem is equal to the ‘1�
minimization problem as Eq. (12).
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x̂1 ¼ argmin xk k1 s:t: y ¼ Ax; ð12Þ

where x̂1 is the sparse coefficient vector. After that, we use

diðx̂iÞ function to choose coefficients which are related to

ith class and set other coefficients which are not related to

ith class to 0. Then, the test sample can be represented as

Eq. (13). And the residual is expressed as Eq. (14).

ŷ ¼ Adiðx̂iÞ; ð13Þ
riðyÞ ¼ y� ŷk k2: ð14Þ

The test sample y is classified according to the residual

as Eq. (15).

y 2 argmin
i

riðyÞ; ð15Þ

where riðyÞ is the residual. When the residual is the mini-

mum, its corresponding category is the class of test

samples.

As for WSRC, we just treat all weighted training sam-

ples as dictionary on the ‘1 regularization. The weighted

‘1� minimization is solved by Eq. (16).

x̂1 ¼ argmin Wxk k1 s:t: y ¼ Ax; ð16Þ

where W is a weighted matrix, which is comprised of the

distance between y and each training sample. Here,

Euclidean distance can be used to compute their distances.

3 Experimental results and analyses

To verify the effectiveness of proposed method, many

experiments are compared on the ORL database [37], the

Yale database [38], the Yale B database [39] and the CMU-

PIE database [40]. The ORL and the CMU-PIE databases

include different poses about horizontal and vertical rota-

tion and some variants in illumination. The Yale and the

Yale B databases include various illumination changes.

The illumination angle is the angle between the direction of

light source and the camera axis on the Yale B database. As

to pose various face recognition, the ORL and the CMU-

PIE databases are used to verify. The databases mentioned

above are employed to verify face recognition with dif-

ferent illumination conditions.

3.1 Experiments on the ORL database

AT & T Cambridge Laboratory captured a face image set

called the ORL database. It includes 400 face images of 40

different persons, where each person has 10 face images.

Face images of each person are shot at different time,

which causes some differences about light changes, the

facial expression, poses and whether to wear glasses, etc.

The original images are 112 9 92 pixels. Here, we crop all

images to 100 9 100 pixels by scale normalization.

On the ORL database, AWULBP_MHOG features and

WSRC method is firstly tested. Table 1 presents the

accuracy of different blocks under AWULBP_MHOG

features and WSRC. It indicates that the best result appears

on 4 9 4 blocks. Particularly, when the number of training

examples per class is 6, the highest accuracy (99.38%) is

achieved. In Fig. 7, we present WSRC, random forests

(RF), nearest neighbor (NN) and support vector machine

(SVM) accuracy curves under different numbers of training

samples for each class with 4 9 4 image blocks. As can be

seen, WSRC outperforms all other methods in all cases.

The RF method has the poorest performance when the

number of training samples per class is 1, 2 and 3. As the

number of training samples per class is 4, 5 and 6, the SVM

has the lowest accuracy. Then, we test AWULBP_MHOG

features, ULBP_MHOG features, AWULBP features and

AWMHOG features under WSRC. The experimental

results are shown in Fig. 8. We find that AWULBP_M-

HOG features are the best in all cases. In particular, when

the number of training samples for each class is 6, the best

accuracy (99.38%) is achieved based on AWULBP_M-

HOG features and WSRC.

In order to verify our proposed method, many contrast

experiments of different methods are carried out. Table 2

shows the accuracy of different methods on the ORL

database. We set cumulative contribution degree as 91, 93,

95, 97 and 99% in PCA. It indicates that our proposed

method via AMVP features and WSRC has the highest

accuracy (100%) when the number of training samples per

class is 6. Our method is superior to the methods only using

AWULBP_MHOG features. The fused AWULBP_

MHOG_VGG_PCA features become more discriminative

to variable illumination and pose.

3.2 Experiments on the Yale database

The Yale face database is conducted by the Center for

Computational Vision and Control. There are 165

Table 1 Accuracy of different blocks on the ORL database (%)

Blocks The number of training samples for each class

1 2 3 4 5 6

1 9 1 32.50 57.81 68.21 74.17 82.00 86.25

2 9 2 70.00 79.06 77.50 87.08 86.00 77.50

4 9 4 79.17 90.31 93.57 96.67 97.00 99.38

6 9 6 75.56 86.25 93.57 93.57 93.57 93.57

8 9 8 75.00 84.69 88.57 95.83 95.50 98.75

The bold number represents the highest accuracy under different

training samples
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grayscale images of 15 subjects, and each individual has 11

different images. These images include variations about

illumination, facial expression, and whether to wear glas-

ses. All images are cropped into 100 9 100 pixels.

The first experiment is to find the optimal image blocks

on the Yale database under AWULBP_MHOG features.

Face images are divided into 2N 9 2N blocks, where N is

set to 0, 1, 2, 3, 4, 5 and 6, respectively. The relationship

among the accuracy, image blocks and the number of

training samples for each class is presented in Table 3. The

results show that the highest accuracy has been achieved on

10 9 10 blocks except ‘‘2 Train.’’ Particularly, when the

number of training samples per class is 3, 4 and 5, the

accuracy can achieve the best (100%). Meanwhile, we can

observe that block manner is better than non-block manner

regardless of the number of training samples. Compared to

10 9 10 blocks, the accuracy reduces a little when the

block is 12 9 12. Figure 9 shows performance of different

classifiers under AWULBP_MHOG features with 10 9 10

image blocks. We can observe that WSRC outperforms all

other methods except ‘‘5 Train.’’ When the number of

training samples for each class is 5, the accuracy of all

classifiers is 100%. When there is only one training sample

in each class, the accuracy of WSRC (87.33%) is much

higher than that of RF (53.33%). As the training samples

are too less, the accuracy of RF is lower. In addition, some

Fig. 7 Comparison of different classifiers on the ORL database

Fig. 8 Comparison of different features on the ORL database

Table 2 Accuracy of different methods on the ORL database (%)

Methods Accuracy

AWULBP_MHOG ? WSRC 99.38

AWULBP_MHOG ? SVM 88.13

AWULBP_MHOG ? KNN 94.38

AWULBP_MHOG ? RF 95.63

VGG_PCA(91%) ? WSRC 100

VGG_PCA(93%) ? WSRC 100

VGG_PCA(95%) ? WSRC 100

VGG_PCA(97%) ? WSRC 100

VGG_PCA(99%) ? WSRC 100

VGG_PCA(91%) ? SVM 100

VGG_PCA(93%) ? SVM 100

VGG_PCA(95%) ? SVM 100

VGG_PCA(97%) ? SVM 100

VGG_PCA(99%) ? SVM 100

VGG_PCA(91%) ? KNN 100

VGG_PCA(93%) ? KNN 100

VGG_PCA(95%) ? KNN 100

VGG_PCA(97%) ? KNN 99.38

VGG_PCA(99%) ? KNN 98.13

VGG_PCA (91%) ? RF 100

VGG_PCA(93%) ? RF 99.38

VGG_PCA(95%) ? RF 99.38

VGG_PCA(97%) ? RF 99.38

VGG_PCA(99%) ? RF 95.00

AMVP(91%) ? SVM 98.13

AMVP (93%) ? SVM 98.75

AMVP (95%) ? SVM 98.13

AMVP (97%) ? SVM 98.75

AMVP (99%) ? SVM 98.13

AMVP (91%) ? KNN 98.13

AMVP (93%) ? KNN 98.13

AMVP (95%) ? KNN 98.13

AMVP (97%) ? KNN 98.13

AMVP (99%) ? KNN 97.50

AMVP (91%) ? RF 99.38

AMVP (93%) ? RF 98.75

AMVP (95%) ? RF 98.75

AMVP (97%) ? RF 98.75

AMVP (99%) ? RF 98.13

Ours (AMVP (91%) ? WSRC) 100

Ours (AMVP (93%) ? WSRC) 100

Ours (AMVP (95%) ? WSRC) 100

Ours (AMVP (97%) ? WSRC) 100

Ours (AMVP (99%) ? WSRC) 100

The bold number represents the highest accuracy under different

methods
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comparison experiments about different features using

WSRC are shown in Fig. 10, from which we can see that

AWULBP_MHOG features perform the best. Particularly,

when the number of training samples per class is 1, 3 and 4,

AWULBP_MHOG features are obviously superior to oth-

ers. AWULBP_MHOG features and WSRC method can

achieve 100% in ‘‘3 Train,’’ ‘‘4 Train’’ and ‘‘5 Train.’’

Experiments prove that if we use more galleries, we will

get higher accuracies.

For our proposed method, we set cumulative contribu-

tion degree in PCA as 91, 93, 95, 97 and 99%. Table 4

shows the accuracy of different methods on the Yale

database. It can be shown that as the number of training

Table 3 Accuracy of different blocks on the Yale database (%)

Blocks The number of training samples for each class

1 2 3 4 5

1 9 1 26.00 55.56 55.00 74.29 81.11

2 9 2 55.33 85.19 87.50 96.19 94.44

4 9 4 82.67 91.85 95.83 98.10 100

6 9 6 87.33 97.78 97.50 99.05 100

8 9 8 85.33 98.52 96.67 99.05 100

10 9 10 87.33 96.30 100 100 100

12 9 12 81.33 93.33 99.17 99.05 98.89

The bold number represents the highest accuracy under different

training samples

Fig. 9 Comparison of different classifiers on the Yale database

Fig. 10 Comparison of different features on the Yale database

Table 4 Accuracy of different methods on the Yale database (%)

Methods Accuracy

AWULBP_MHOG ? WSRC 100

AWULBP_MHOG ? SVM 100

AWULBP_MHOG ? KNN 100

AWULBP_MHOG ? RF 100

VGG_PCA(91%) ? WSRC 100

VGG_PCA(93%) ? WSRC 98.89

VGG_PCA(95%) ? WSRC 100

VGG_PCA(97%) ? WSRC 100

VGG_PCA(99%) ? WSRC 100

VGG_PCA(91%) ? SVM 100

VGG_PCA(93%) ? SVM 100

VGG_PCA(95%) ? SVM 100

VGG_PCA(97%) ? SVM 100

VGG_PCA(99%) ? SVM 100

VGG_PCA(91%) ? KNN 100

VGG_PCA(93%) ? KNN 98.89

VGG_PCA(95%) ? KNN 98.89

VGG_PCA(97%) ? KNN 97.78

VGG_PCA(99%) ? KNN 93.33

VGG_PCA(91%) ? RF 97.78

VGG_PCA(93%) ? RF 100

VGG_PCA(95%) ? RF 100

VGG_PCA(97%) ? RF 100

VGG_PCA(99%) ? RF 100

AMVP (91%) ? SVM 100

AMVP (93%) ? SVM 100

AMVP (95%) ? SVM 100

AMVP (97%) ? SVM 100

AMVP (99%) ? SVM 100

AMVP (91%) ? KNN 100

AMVP (93%) ? KNN 100

AMVP (95%) ? KNN 100

AMVP (97%) ? KNN 100

AMVP (99%) ? KNN 100

AMVP (91%) ? RF 100

AMVP (93%) ? RF 100

AMVP (95%) ? RF 100

AMVP (97%) ? RF 98.89

AMVP (99%) ? RF 100

Ours (AMVP (91%) ? WSRC) 100

Ours (AMVP (93%) ? WSRC) 100

Ours (AMVP (95%) ? WSRC) 100

Ours (AMVP (97%) ? WSRC) 100

Ours (AMVP (99%) ? WSRC) 100

The bold number represents the highest accuracy under different

methods
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samples per class is 5, our proposed method via

AWULBP_MHOG_ VGG_PCA features and WSRC has

the highest accuracy (100%).

3.3 Experiments on the Yale B database

There are 640 images of 10 people for the Yale B database,

where each person has 64 different illumination conditions.

All images are cropped and resized to 100 9 100 pixels.

Table 5 presents the results of searching for optimal

image blocks on the Yale B database under

AWULBP_MHOG features. Experiments are conducted on

2N 9 2N blocks. Here, the value of N is from 0 to 8. It can

be seen that results on 14 9 14 and 16 9 16 blocks are

almost similar, but the accuracy of 16 9 16 blocks is

slightly better. The accuracy is higher with more image

blocks, due to more useful details can be extracted from the

Yale B images. When the image is divided into 16 9 16

blocks, accuracies are 99.52, 99.68, 99.67, 99.64, 99.58 and

100%, respectively, in AWULBP_MHOG and WSRC

method. We compare WSRC with other classical algo-

rithms which include RF, NN and SVM. In Fig. 11, the

corresponding curves between accuracy and the number of

training samples per class are shown, where the number of

training samples per class is set to 2N (N = 0, 1, 2, 3, 4, 5).

Figure 11 indicates that the accuracies are almost similar

among RF, SVM and WSRC except ‘‘1 Train’’ and ‘‘2

Train,’’ where the accuracies of WSRC are 99.67, 99.64,

99.58 and 100%, respectively, from ‘‘4 Train’’ to ‘‘32

Train.’’ And when the number of training samples is 1 and

2, WSRC method is superior to others. In order to prove the

effectiveness of AWULBP_MHOG features, we conduct

some comparison experiments which are shown in Fig. 12.

When we use 16 9 16 blocks on the Yale B database, the

accuracy of AWULBP_MHOG features is almost similar

to the accuracy of ULBP_MHOG features under WSRC.

Excepting that the accuracy is the lowest (75.87%) based

on AWMHOG and WSRC in ‘‘1 Train,’’ the accuracies are

pretty high in other cases, which are nearly to 100%.

As for our proposed method, the cumulative contribu-

tion degree of 91, 93, 95, 97 and 99% is set in PCA.

Table 6 shows the accuracy of different methods on the

Yale B database. We can see that as the number of training

samples per class is 32, our proposed method via

AWULBP_MHOG_ VGG_PCA features and WSRC has

the highest accuracy (100%). The fused AMVP features

have better performance than other features.

3.4 Experiments on the CMU-PIE database

A total of 41368 images of 68 different subjects are con-

tained in the CMU-PIE database. In our experiments, we

choose five pose subsets of the CMU-PIE database, which

has pose yawing and the pitching variations in depth. They

are pose set 05 and 29 (yawing about ± 22.5�), 07 and 09

(pitching about ± 20�) and 27 (near frontal), respectively.

Each pose set includes 1632 images in total, where there

are 68 subjects and each subset has 24 different lighting

conditions. The pose class and face examples are given in

Table 7. Here, we choose the pose 27 as the training set,

Table 5 Accuracy of different blocks on the Yale B database (%)

Blocks The number of training samples for each class

1 2 4 8 16 32

1 9 1 45.08 48.06 38.67 53.57 52.29 55.63

2 9 2 62.86 68.06 69.00 74.82 71.88 77.81

4 9 4 85.71 88.87 94.50 95.00 96.46 99.06

6 9 6 85.71 95.97 98.83 98.93 99.38 99.69

8 9 8 90.63 99.03 99.50 99.29 99.38 99.69

10 9 10 90.63 98.23 99.50 99.64 99.58 100

12 9 12 99.05 98.55 99.67 99.46 99.58 100

14 9 14 99.52 99.19 99.67 99.64 99.58 100

16 9 16 99.52 99.68 99.67 99.64 99.58 100

The bold number represents the highest accuracy under different

training samples

Fig. 11 Comparison of different classifiers on the Yale B database

Fig. 12 Comparison of different features on the Yale B database
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and other pose sets are used as test sets, respectively. As for

the AWULBP_MHOG features, Table 7 shows the

accuracy of different blocks on the CMU-PIE database. As

it is shown, when the block is 8 9 8, the higher accuracy

(79.53, 93.49, 93.93 and 76.04%) is achieved in each pose

set. However, when we increase blocks to 10 9 10, the

accuracy declines instead. Besides, yawing variations may

have a greater influence on accuracy in face recognition

compared with pitching variations.

To evaluate the performance of our proposed method on

the CMU-PIE database, we compare our method with other

methods. Table 8 shows comparison results with different

features and the combination with different classifiers.

When the cumulative contribution degree in PCA is 99%,

our method has the highest accuracy except Pose29 set. But

the accuracy of our method is just 0.67% less than that of

VGG_PCA (97%) ?SVM in Pose29. And our method has

the highest accuracy (90.67%) in average. Thus, our

method has the better performance in the whole.

4 Conclusions

An illumination and pose variable face recognition method

based on AMVP features and WSRC is presented. The

main contribution of our work is that AMVP features are

put forward, which include AWULBP_MHOG and

VGG_PCA features. As for AWULBP_MHOG features,

MHOG features are the variant of HOG features and have

lower dimension, and adaptive weights are introduced to

extract more effective detail information. As for

VGG_PCA features, we use the pre-trained VGG-Face

model to extract features, which are reduced by PCA

according to different cumulative contribution degree. The

fused features contain multi-source information and

become more discriminative for classification. Another

contribution is the combination with WSRC, which inte-

grates locality and sparse information in classification.

Besides, experiments have been conducted with different

image blocks, classifiers, features on the different face

databases. Extensive experiments show that the proposed

method improves the recognition performance

significantly.

Table 6 Accuracy of different methods on the Yale B database (%)

Methods Accuracy

AWULBP_MHOG ? WSRC 100

AWULBP_MHOG ? SVM 100

AWULBP_MHOG ? KNN 97.20

AWULBP_MHOG ? RF 100

VGG_PCA(91%) ? WSRC 79.06

VGG_PCA(93%) ? WSRC 78.44

VGG_PCA(95%) ? WSRC 80.63

VGG_PCA(97%) ? WSRC 82.81

VGG_PCA(99%) ? WSRC 84.06

VGG_PCA(91%) ? SVM 79.06

VGG_PCA(93%) ? SVM 76.88

VGG_PCA(95%) ? SVM 83.13

VGG_PCA(97%) ? SVM 85.31

VGG_PCA(99%) ? SVM 84.06

VGG_PCA(91%) ? KNN 71.88

VGG_PCA(93%) ? KNN 69.06

VGG_PCA(95%) ? KNN 69.38

VGG_PCA(97%) ? KNN 66.88

VGG_PCA(99%) ? KNN 57.50

VGG_PCA(91%) ? RF 80.00

VGG_PCA(93%) ? RF 70.00

VGG_PCA(95%) ? RF 84.06

VGG_PCA(97%) ? RF 82.81

VGG_PCA(99%) ? RF 77.50

AMVP (91%) ? SVM 100

AMVP (93%) ? SVM 100

AMVP (95%) ? SVM 100

AMVP (97%) ? SVM 100

AMVP (99%) ? SVM 100

AMVP (91%) ? KNN 97.81

AMVP (93%) ? KNN 98.13

AMVP (95%) ? KNN 98.44

AMVP (97%) ? KNN 97.81

AMVP (99%) ? KNN 98.44

AMVP (91%) ? RF 100

AMVP (93%) ? RF 100

AMVP (95%) ? RF 100

AMVP (97%) ? RF 100

AMVP (99%) ? RF 100

Ours (AMVP (91%) ? WSRC) 100

Ours (AMVP (93%) ? WSRC) 100

Ours (AMVP (95%) ? WSRC) 100

Ours (AMVP (97%) ? WSRC) 100

Ours (AMVP (99%) ? WSRC) 100

The bold number represents the highest accuracy under different

methods

Table 7 Accuracy of different blocks on the CMU-PIE database (%)

Blocks Pose05 Pose07 Pose09 Pose29

1 9 1 12.13 44.14 43.32 16.97

2 9 2 38.42 81.22 80.21 35.72

4 9 4 60.23 85.45 85.21 51.53

8 9 8 79.53 93.49 93.93 76.04

10 9 10 77.70 87.72 93.08 73.96

The bold number represents the highest accuracy under different

poses
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Table 8 Accuracy of different

methods on the CMU-PIE

database (%)

Methods Pose No. Avg

05 07 09 29

AWULBP ? WSRC 67.65 88.77 90.13 64.83 77.85

AWULBP ? SVM 77.51 83.61 89.71 72.49 80.83

AWULBP ? RF 45.28 64.40 63.66 48.71 55.51

AWULBP ? NN 78.80 88.83 92.16 74.33 83.53

AWMHOG ? WSRC 58.15 83.00 83.15 54.29 69.65

AWMHOG ? SVM 36.95 54.51 68.87 41.12 50.36

AWMHOG ? NN 49.75 77.35 86.15 54.72 66.99

AWMHOG ? RF 42.28 52.30 54.17 38.66 46.85

ULBP_MHOG ? SVM 67.46 89.87 91.97 63.73 78.26

ULBP_MHOG ? RF 45.22 63.23 59.38 44.06 52.97

ULBP_MHOG ? NN 79.35 90.55 93.81 76.29 85.00

ULBP_MHOG ? WSRC 77.08 93.43 93.93 74.57 84.75

AWULBP_MHOG ? SVM 77.02 83.30 90.44 68.38 79.79

AWULBP_MHOG ? RF 49.26 63.90 59.31 43.14 53.90

AWULBP_MHOG ? NN 82.11 90.42 93.75 77.63 85.98

AWULBP_MHOG ? WSRC 79.53 93.49 93.93 76.04 85.75

VGG_PCA(91%) ? SVM 81.43 86.07 87.56 79.66 83.68

VGG_PCA(93%) ? SVM 83.15 86.80 89.83 82.60 85.60

VGG_PCA(95%) ? SVM 78.25 79.68 91.91 83.03 83.22

VGG_PCA(97%) ? SVM 79.29 84.78 90.87 83.88 84.71

VGG_PCA(99%) ? SVM 82.11 82.57 88.97 82.11 83.94

VGG_PCA(91%) ? KNN 78.37 81.65 82.72 73.84 79.15

VGG_PCA(93%) ? KNN 73.59 79.80 82.05 70.89 76.58

VGG_PCA(95%) ? KNN 63.76 60.16 75.61 62.68 65.55

VGG_PCA(97%) ? KNN 51.04 65.13 66.91 56.25 59.83

VGG_PCA(99%) ? KNN 46.69 55.99 53.98 48.28 51.24

VGG_PCA(91%) ? RF 82.17 85.14 83.88 80.58 82.94

VGG_PCA(93%) ? RF 82.54 84.47 88.66 80.58 84.06

VGG_PCA(95%) ? RF 75.74 79.25 87.81 79.78 80.65

VGG_PCA(97%) ? RF 73.90 84.65 86.46 80.45 81.37

VGG_PCA(99%) ? RF 76.84 83.24 76.04 77.94 78.52

VGG_PCA(91%) ? WSRC 80.51 84.78 87.38 78.31 82.75

VGG_PCA(93%) ? WSRC 81.56 85.45 87.25 80.51 83.69

VGG_PCA(95%) ? WSRC 81.25 83.79 87.68 79.35 83.02

VGG_PCA(97%) ? WSRC 82.05 84.04 87.68 80.21 83.50

VGG_PCA(99%) ? WSRC 82.84 84.71 88.24 80.88 84.17

AMVP (91%) ? SVM 71.75 90.06 92.40 66.73 80.23

AMVP (93%) ? SVM 71.69 90.06 92.34 66.48 80.14

AMVP (95%) ? SVM 71.81 89.87 92.59 66.91 80.30

AMVP (97%) ? SVM 72.49 90.18 92.46 67.10 80.56

AMVP (99%) ? SVM 72.98 90.61 92.71 67.59 80.97

AMVP (91%) ? KNN 82.90 90.79 94.24 78.43 86.59

AMVP (93%) ? KNN 82.84 90.73 94.30 78.43 86.58

AMVP (95%) ? KNN 83.15 90.85 94.36 78.62 86.75

AMVP (97%) ? KNN 82.97 90.98 94.42 79.11 86.87

AMVP (99%) ? KNN 83.76 91.28 94.61 79.47 87.28

AMVP (91%) ? RF 53.68 68.45 65.32 50.37 59.46

AMVP (93%) ? RF 54.11 67.53 65.63 50.06 59.33
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In the future, we will extend our work to solve face

recognition with larger angles of illumination and pose

changes: for instance, (1) to combine with other more

effective illumination pretreatment techniques; (2) to

combine with pose correction methods or frontal face

synthesis; (3) to extract more robust illumination and pose

invariant features; (4) to use more discriminated and faster

classifiers; (5) to use other hybrid methods.
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Ours (AMVP (95%) ? WSRC) 84.74 94.54 95.10 79.23 88.40

Ours (AMVP (97%) ? WSRC) 85.36 95.27 95.89 80.64 89.29

Ours (AMVP (99%) ? WSRC) 87.38 96.01 96.08 83.21 90.67

The bold number represents the highest accuracy under different methods
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