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Abstract
The integrated power system (IPS) uses various autonomous generation and energy storage systems like aqua electrolyzer,

battery, diesel engine, flywheel, fuel cell, solar photovoltaic, ultracapacitor, wind turbine, etc. These may be switched on/

off and may run at higher/lower power outputs, at different times. Additionally, IPS is also subjected to parameter

variations of its components and the load. As a result, the frequency of an IPS fluctuates from the nominal desired value

and therefore it requires a robust controller to accomplish the above-mentioned task. In this work, a self-tuned fractional-

order fuzzy PID (STFOFPID) controller, tuned using cuckoo search algorithm, is investigated for efficient control of IPS.

STFOFPID is essentially a Takagi–Sugeno model-based fuzzy adaptive controller comprising of non-integer-order differ-

integral operators. To assess the relative performance of STFOFPID controller, it is compared with its integer-order

counterpart on the basis of their respective objective function value defined as the sum of integral of squared error and

integral of squared deviation of controller output. Intensive LabVIEW-based simulation studies have indicated the

robustness and hence superiority of STFOFPID controller over its integral counterpart.

Keywords Self-tuned fractional-order fuzzy PID controller � Integrated power system � Renewable energy generation �
Efficient control � Robust control � Cuckoo search algorithm

1 Introduction

Diminishing conventional sources of energy such as fossil

fuel has made people interested in renewable alternatives.

There are many types of renewable sources, and each of

them has their own merits and demerits. Using only one for

a specific application may not be sufficient as these are

nature dependent and are prone to oscillations. To cater to

the needs of constant and continuous quality power supply,

the concept of hybrid micro-grids has evolved, which has

become indispensible for all future needs. Hvelplund has

emphasized the need for established local markets in order

to secure the technical integration of a large proportion of

wind power and other renewable energy sources into the

hybrid micro-grids [1]. Integrated power system (IPS) [2]

uses various autonomous power generation systems, like

aqua electrolyzer (AE), battery energy storage system

(BESS), diesel engine generator (DEG), flywheel energy

storage system (FESS), fuel cell (FC), solar photovoltaic

(PV), ultracapacitor (UC), etc. Apart from reducing carbon

emission, these micro-grids are also credited with the
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unique features such as decentralization, autonomous,

higher grid resilience while helping in mitigating grid

disturbances [3, 4]. Further, to compensate the failure of

any component in the micro-grid, alternative energy stor-

age devices like battery, ultracapacitor and flywheel [5]

have also been employed. To effectively manage the

micro-grid, a control scheme is usually employed whose

task is to effectively balance the demand and supply by

minimizing the fluctuations in load frequency [6, 7].

2 Literature survey

To minimize the deviation in frequency, integration of

different energy resources like offshore wind, PV, FC and

DEG along with the energy storage elements like FESS and

BESS has been reported by [8]. This work uses UC as an

alternative energy storage element, and proportional–inte-

gral (PI) controller is employed to achieve further

improvements in the deviation of frequency profiles.

Simplicity, ease in designing, robustness, wide range of

applicability and near-optimal performance are some of the

key reasons that have made PID controller popular in the

academic and industry sectors [9–13]. However, with the

application of PID controller, it is generally difficult to

achieve the desired control performance in the presence of

unknown nonlinearities, time delays and model uncertain-

ties. To overcome these limitations, intelligent control

schemes such as fuzzy logic have been employed for

effective control of complex plants [14, 15].

The basic idea behind fuzzy logic technique has been to

incorporate a model that could emulate the experience of a

human process operator in design of controller. Fuzzy

logic, on the concept of fuzzy sets, was first proposed by

Prof. Zadeh [16]. This work was further expanded by the

introduction of linguistic variables, which equate to a

variable defined as a fuzzy set [17–19]. One of the most

famous applications of fuzzy logic is control engineering,

and it has attracted scientists as well as industrial

researchers. Mamdani and Assilian presented the first

successful attempt of fuzzy logic to efficiently control a

laboratory scale plant [20–23]. Further, Holmblad and

Ostergaard [24] presented the first industrial application of

fuzzy controllers to control cement kilns. Fuzzy logic has

also been applied to linguistic controller rules, which

reduces the controller to a conventional nonlinear con-

troller, allowing the usage of nonlinear control theory

techniques [25]. Various types of fuzzy logic controllers

were presented in numerous works, such as [26-28], self-

tuning fuzzy controller [29], stable adaptive fuzzy con-

troller [30], single-input fuzzy logic controller [31],

amongst many others. Also, some of the interesting

applications of soft computing techniques are reported in

[32–37]. To summarize, a detailed survey of fuzzy control

was presented in [15, 38].

Recently, fractional calculus-based control systems have

been claimed to be more robust over their integer-order

counterparts. Therefore, these have gained popularity,

particularly in the fields of control engineering such as

process control, nuclear reactor control, robotics, chaos

synchronization. Fractional calculus when incorporated

with fuzzy logic has shown superior results. Recent

developments in this field are more amenable to the use of

controllers that are intelligent, adaptive, nonlinear, or a

combination of these such as fuzzy logic control, nonlinear

model predictive control, etc. A fractional-order fuzzy PID

(FOFPID) controller has been successfully applied to two-

link robotic manipulator, and it has demonstrated superior

results over its integer counterpart [39]. Further, a robust

fractional-order fuzzy P ? fuzzy I ? fuzzy D has also

been used for the control of a two-link planar rigid

manipulator and it has been compared with its integer-

order counterpart, and results demonstrated that fractional-

order controller was more robust as it provides additional

degrees of freedom [40]. More recently, fractional-order

fuzzy PD (FOFPD) and fractional-order fuzzy PI (FOFPI)

nonlinear controllers were used as primary and secondary

controllers, for the speed control of hybrid electric vehicle

[41]. The work concluded that the combination of FOFPD

and FOFPI controllers outperformed rest of the controllers

under study and thus is more robust. Several works have

been reported in the literature, which successfully

demonstrate the robustness feature of the FOPID controller

[42, 43].

The existence of stochastic renewable energy generation

systems in the IPS, like solar power and wind, leads to

continuous variations in grid frequency, which affects the

quality of power. Nominally, the fluctuations in the grid

frequency should be kept within the prescribed limit in

order to safely operate all the electrical loads connected to

it. For this purpose, a control mechanism is required which

sends a control signal to the energy-storing devices, i.e. to

absorb excess power from the grid and to release deficit

power back into the grid, according to the supply and

demand requirements. Also, it is expected from the control

scheme that DEG should discharge high bursts of power

back into the grid in order to meet short-term demands of

the load. To accomplish this control objective, researchers

have traditionally used an independent controller for each

of the attached components and hence, several controllers

were required to effectively control the IPS as reported in

[8, 44]. Each of these controllers has multiple parameters,

and therefore, their tuning and implementation becomes a

tedious task. In the light of above-mentioned facts, an
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efficient, centralized, adaptive and a stand-alone control

scheme becomes pivotal in the working of an IPS.

To cater to the above-mentioned requirements, in this

paper, a robust, adaptive, centralized, stand-alone con-

troller, namely self-tuned fractional-order fuzzy PID

(STFOFPID) controller has been proposed. It is essentially

a Takagi–Sugeno (TS)-based adaptive fuzzy controller

having non-integer-order differ-integral operators. Its per-

formance has been compared with self-tuned integer-order

fuzzy PID (STIOFPID) controller, on the basis of an

objective function defined as the sum of integral of squared

error (ISE) and integral of squared deviation of controller

output (ISDCO). The parameters of both the controllers

were optimized with the help of the cuckoo search algo-

rithm (CSA). The controllers were then tested for robust-

ness by varying the parameters of UC, disconnecting

certain generation and storage blocks, and adding a rate

constraint-type nonlinearity in the feedback path. All the

above-mentioned tests helped in comparing the two con-

trollers and established their relative usefulness in con-

trolling the IPS. The main contributions of this paper are as

follows:

(1) A centralized and adaptive control scheme, namely

STFOFPID has been presented for the efficient

control of the IPS.

(2) STFOFPID adjusted its parameters at runtime,

depending upon the error and rate of change of error.

(3) STFOFPID controller, being self-tuned, is found to

be robust as it could withstand fluctuations with

relative ease and produced a constant output.

Further, rest of the paper has been organized as follows.

Following a brief introduction in Sects. 1 and 2 provides a

literature survey of the established techniques for IPS

control and application of fractional-order calculus in

control applications. All the mathematical details including

the equations, transfer functions, parameter values of the

various energy-storing/generating components have been

described in this Sect. 3. Section 4 presents the details of

the used controllers, i.e. STIOFPID and STFOFPID. This is

followed by a brief introduction to the optimizing tech-

nique, CSA used to optimize the parameters of the fuzzy

controllers. Section 5 presents simulation results and

analysis of the conducted tests such as disconnecting var-

ious components from IPS, variation in the system

parameters to test controllers’ robustness. Statistical anal-

ysis of the performance of considered controllers is also

presented in this section. Section 6 summarizes and con-

cludes the paper.

3 Plant description and problem
formulation

The schematic of IPS that has been used in this work is

shown in Fig. 1 along with the corresponding block dia-

gram representation as depicted in Fig. 2. As seen in

Figs. 1 and 2, the used IPS includes various modes of

energy generation as well as storage. Each of the used

components is described with the help of a transfer func-

tion. Components AE, DEG, FC, STPG and WTG are

modelled by first-order dynamics with the help of their

gains and time constants, given in Table 1 [45]. Section 3.1

presents the mathematical equations of the generation

components of the IPS. Section 3.2 presents the same for

the storage components followed by the model of the

power system in Sect. 3.3. Section 3.4 presents the

stochastic model of renewable energy blocks and the

demand load. Section 3.5 formulates the problem that has

been addressed in this paper.

3.1 Mathematical models of generation systems
used

This subsection describes the mathematical models of

various components used in the IPS. The control action

implemented by the employed controller in the following

models is represented by Du.
Diesel Engine Generator A DEG consists of a diesel

engine, a generator and various ancillary devices (control

systems, circuit breakers, starters). Equation (1) represents

the DEG model

GDEG sð Þ ¼ KDEG

1þ sTDEG
¼ DPDEG

Du
; ð1Þ

where, KDEG: gain of DEG, TDEG: time constant of

DEG.DPDEG: power output from DEG.

Fuel Cell FC is a device that generates electricity by a

chemical reaction. It has two electrodes, positive and

negative, known as the anode and cathode, respectively.

Multiple FCs are used in a stack so as to supply a con-

siderable amount of electricity. FC model is described by

Eq. (2).

GFCk
sð Þ ¼ KFC

1þ sTFC
¼ DPFCk

DPAE

; k ¼ 1; 2; ð2Þ

where, KFC: gain of FC, TFC: time constant of FC, DPFCk

Power output from FC, DPAE Power output from AE.

Solar Thermal Power Generator STPG is a generation

scheme where the sun’s rays are used in the heating of the

fluid to high temperatures. The steam thus created is used

to power the generator to produce electricity
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Fig. 1 Schematic diagram of

the integrated power system.

Here, a–h are switches that

correspond to the disconnection

of components due to various

reasons

Fig. 2 Block diagram of the plant (integrated power system) with all major components
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GSTPG sð Þ ¼ Ks

1þ sTs
:

KT

1þ sTT
¼ DPSTPG

DPsol

; ð3Þ

where, KS gain of solar part of STPG, TS time constant of

solar part of STPG, KT gain of thermal part of STPG, TT
time constant of thermal part of STPG, DPSTPG Power

output from STPG, DPsol Power input to STPG.

Wind Turbine Generator WTG uses the power of the

wind to turn the blades, which in turn spins the shaft

connected to a generator, thus producing electricity.

Equation (4) presents its model

GWTG sð Þ ¼ KWTG

1þ sTWTG

¼ DPWTG

DPW

; ð4Þ

where, KWTG gain of WTG, TWTG time constant of WTG,

DPWTG power output from WTG, DPW power input to

WTG.

Aqua Electrolyzer AE is used to convert a part of gen-

erated power from renewable energy sources into hydro-

gen, for the fuel cell. For small signal analysis, the transfer

function of AE uses (1-Kn) of the power of STPG and

WTG in order to produce H2, to be used by FCs to produce

power and feed it back to the grid.

GAE sð Þ ¼ KAE

1þ sTAE
¼ DPAE

DPWTG þ DPSTPGð Þ: 1� Knð Þ ; ð5Þ

where, KAE gain of AE, TAE time constant of AE, DPAE

power output from AE, DPWTG power output from WTG,

DPSTPG power output from STPG.

Kn ¼ Pt= PWTG þ PSTPGð Þ ð6Þ
Kn ¼ 0:6

3.2 Mathematical models of energy storage
systems

In IPS of Fig. 2, FESS, BESS and UC are connected and

are driven by the output signal from the controller. These

components are connected in the feedback loop, and they

absorb or release energy from or to the grid. Their transfer

functions are given as follows. The control action imple-

mented by the employed controller in the following models

is represented by Du.
Flywheel Flywheel store kinetic energy by continuously

spinning a compact rotor in a low-friction environment.

The kinetic energy stored is directly proportional to the

mass of the rotor, the square of the radius and the square of

the rotational speed.

GFESS sð Þ ¼ KFESS

1þ sTFESS
¼ DPFESS

Du
; ð7Þ

where, KFESS: gain of FESS, TFESS: time constant of FESS,

DPFESS: Power output from FESS.

Battery Batteries convert electricity into chemical

potential energy for storage and back into electrical energy

as needed. BESS comprises of batteries, control and power

conditioning system (C-PCS) and rest of the plant, which

provides good protection for batteries and C-PCS.

GBESS sð Þ ¼ KBESS

1þ sTBESS
¼ DPBESS

Du
; ð8Þ

where, KBESS: gain of BESS, TBESS: time constant of

BESS, DPBESS: Power output from BESS.

Ultracapacitor UC stores energy by physically sepa-

rating negative and positive charges. The charges are stored

on two parallel plates, which are divided by an insulating

material. UCs have a fairly long cycle life as there are no

chemical variations on the electrodes of the UC.

GUC sð Þ ¼ KUC

1þ sTUC
¼ DPUC

Du
; ð9Þ

where, KUC gain of UC, TUC time constant of UC, DPUC

Power output by UC.

3.3 Mathematical model of power system using
deviation in grid frequency

The power system in the IPS is modelled using the DEG.

The transfer function of the power system is given by

Gsys sð Þ ¼ Df
DPe

¼ 1

DþMs

; ð10Þ

where, Ms: equivalent inertia constant (taken as 0.4 for this

study), D equivalent damping constant (taken as 0.03 for

this study)

3.4 Stochastic model of the renewable energy
components and load

The solar, wind generation and load demand are modelled

taking into account all nonlinearities including determin-

istic drift and stochastic variations (Fig. 3). The models

Table 1 Gain and time constants of various components

Component Gain (K) Time constant (T)

Aqua electrolyzer 0.002 0.5

Battery energy storage system - 0.003 0.1

Diesel engine generator 0.003 2

Flywheel energy storage system - 0.01 0.1

Fuel cell 0.01 4

Solar thermal power generator 1.8, 1 1.8, 0.3

Ultracapacitor - 0.7 0.9

Wind turbine generator 1 1.5
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engender an average value and stochastic variation about

the average generated/demand power at each time instant

[44]. A greater variation in the parameters is reflected by a

sudden shift in the average value at a particular time

instant. The template used for this model is as follows:

P ¼ Ug
p
b 1� G sð Þð Þ þ bð Þd=bð ÞC ¼ n � C; ð11Þ

where, P output power of the wind, solar and the load

model, U Power’s stochastic component, b contributor to

average power value, G(s) low pass transfer function, n
generated or demand power g; d : normalizing constants,

used in normalizing generated/demand powers to match the

(p.u.) level C: time-dependent switching signal; directs the

sudden variation in average value for the output

The parameters used for generation of wind power

(PWTG) are:

U�Uð�1; 1Þ; g ¼ 0:8; b ¼ 10

GðsÞ ¼ 1=ð104sþ 1Þ; d ¼ 1

C ¼ 0:5HðtÞ � 0:1Hðt � 40Þ
ð12Þ

The parameters used for generation of solar power

(PSTPG) are:

U�Uð�1; 1Þ; g ¼ 0:7; b ¼ 2

GðsÞ ¼ 1=ð104sþ 1Þ; d ¼ 0:1

C ¼ 1:1111HðtÞ � 0:5555Hðt � 40Þ

9
>=

>;
ð13Þ

The parameters used of the demand load (PL) are:

U�Uð�1; 1Þ; g ¼ 0:8; b ¼ 100;

GðsÞ ¼ 300=ð300sþ 1Þð Þ � ð1=ð1800sþ 1ÞÞ; d ¼ 1

C ¼ HðtÞ þ ð0:8=nÞHðt � 80Þ

9
>=

>;

ð14Þ

where, H (t) is the Heaviside step function.

Figure 3 shows a single realization of the stochastic

blocks, generated powers (PW, Psol), demand (PL) and the

net generated power (Pt). From Fig. 3, it can be seen that

for all the cases, there is a random component superim-

posed over a nominal value and there are jumps from the

nominal value at random instants of time, which shows a

sudden change in the level of the power at different times.

Here, the change occurs at about 40 s for PWTG, PSTPG and

Pt and 80 s for PL. Also, all the powers are considered in

watt.

3.5 Problem formulation

The controllers used in the past faced the challenge of

providing stable power. Added to this, the controllers were

also not immune enough to variations in parameters of

various power generating and storage elements. This led to

their poor robustness and reliability as continuous changes

in grid frequency affects the power quality [46, 47]. To

overcome this, the fluctuation in the grid frequency should

be kept in specified bounds. To achieve this complex task,

an efficient control mechanism is required, which transmits

a control signal to the energy-storing devices, i.e. to absorb

the additional power from the grid and to release the deficit

power back into the grid accordingly. Further, the control

scheme must also be able to accommodate the diesel

engine’s high burst discharge of power into the grid in

order to meet short-term demands of the load. Furthermore,

a controller must be able to handle the uncertainty of the

renewable sources, both the variations and the complete

disconnection of the source itself, from the system. It is

worth mentioning that, in the past, a separate controller was

used in each loop. This strategy of using a separate con-

troller in each loop in the IPS leads to complexity and

difficulty in the tuning of the controllers. This very fact has

evolved the concept of a centralized controller. This

Fig. 3 Renewable power

generation and load (single

iteration) plots a WTG,

b STPG, c load, d total
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centralized controller is expected to be a stand-alone

solution having all the above-mentioned features. Fur-

thermore, the adaptive centralized controller would be an

added advantage for the IPS as it will be able to offer

efficient run time corrections while being a stand-alone

solution. This paper is motivated to explore the application

of STFOFPID as an adaptive stand-alone solution for IPS.

Later, it will be shown that STFOFPID is a robust, varia-

tion resistant and centralized controller to effectively

control the IPS.

4 Structure of fuzzy controllers

The two investigated controllers in this work are STIOF-

PID and STFOFPID. The basic architecture of these con-

trollers consists of the combination of self-tuned fuzzy PI

and fuzzy PD controllers, i.e. FPI ? FPD controller. Brief

designs of both the controllers have been described in the

following subsections.

4.1 STIOFPID controller

The STIOFPID controller [48], shown in Fig. 4, is essen-

tially a formula-based fuzzy controller (FBFC) [49]. This

controller is a variable gain TS fuzzy controller, which was

developed in 1985 and is a ubiquitous controller. Error

(e) and rate of change of error (r) are the two linguistic

variables in this controller, which are expressed using two

membership functions, namely positive (P) and negative

(N). For added precision, scaling factors have been added

to the ‘e’ and ‘r’ signals. Ke and Kp are the scaling factors

added to the ‘e’ and ‘r’ signals, respectively.

The two membership functions, shown in Fig. 5, are

characterized by ‘L’, which is a real number. These func-

tions are symmetrical in the universe of discourse.

The rule base of the FBFC has rules of the form,

e0 ¼ Ke:e and r0 ¼ Kr:r

Ri : IF ‘e0’ is Pj and ‘r0’ is Pk then qi ¼ aie
0 þ bir

0

where i ¼ 1; 2; 3; 4; j ¼ 1; 2 and k ¼ 1; 2

9
>=

>;

ð15Þ

Ri = ith rule of the FBFC controller, Pj = membership

function defined for e0, Pk = membership function defined

for r0, qi = next part of the ith rule, ai, bi = real constants.

The output of FBFC is computed through the instanta-

neous value of the error, ‘e0(t)’ and the rate of change of

error, ‘r0(t)’. Here, the entire two-dimensional space cre-

ated by inputs to the controller (e0(t) and r0(t)) is distributed
into 20 input combination (IC) regions. These IC regions

are based upon the membership functions. Thus, any point

in the e0(t) r0(t) plane would lie in any one of the 20 IC

regions, and each IC region has a formula assigned to it.

These formulae essentially determine the output of the

controller as described in [49]. This output of the controller

is further used to get the final outputs for both the

controllers.

The STIOFPID controller consists of two components,

i.e. fuzzy PI (velocity form) and fuzzy PD (position form)

controllers. Conventionally, the velocity form of a PI

controller in linear form is given by:

DuPIðnTÞ ¼ Kie
0ðnTÞ þ Kpr

0ðnTÞ ð16Þ

And the linear form of PD controller in position form is

given by:

uPDðnTÞ ¼ Kie
0ðnTÞ þ Kpr

0ðnTÞ ð17Þ

Further, the output of the controller is evaluated as,

DuFPIðor uFPDÞ ¼
P4

i¼1 DuilRi
P4

i¼1 lRi

DuFPIðor uFPDÞ ¼
X4

i¼1

lRi
P4

i¼1 lRi

aie
0 nTð Þ þ bir

0 nTð Þð Þ

9
>>>>=

>>>>;

ð18Þ

DuFPIðor uFPDÞ ¼
X4

i¼1

Ki
1 e0; r0ð Þe0 nTð Þ þ Ki

2 e0; r0ð Þr0 nTð Þ
� �

DuFPIðor uFPDÞ ¼ K1e
0 nTð Þ þ K2r

0 nTð Þ
ð19Þ

Ki
1 ¼

lRi
ai

P4
i¼1 lRi

and ð20Þ

Ki
2 ¼

lRi
bi

P4
i¼1 lRi

; i ¼ 1; 2; 3; 4: ð21Þ

The adaptability of the FBFC gains comes from the fact

that these gains vary in run time according to the rule base of

FBFC. The values of the nonlinear gains, K1 and K2 can be

written as

K1 e0 nTð Þ; r0 nTð Þð Þ ¼
X4

i¼1

Ki
1 e0 nTð Þ; r0 nTð Þð Þ ð22Þ

and

K2 e0 nTð Þ; r0 nTð Þð Þ ¼
X4

i¼1

Ki
2 e0 nTð Þ; r0 nTð Þð Þ ð23Þ

The output of the FPID controller is the summation of

two components, i.e. fuzzy PI and PD. This can be written

as

uSTIOFPID ¼ KPI

Z

ðDuSTIOFPIÞdt þ KPDuSTIOFPD; ð24Þ
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Fig. 4 a Structure of STIOFPID controller, b division of input space for deriving structure of the fuzzy PI and fuzzy PD components of

STIOFPID controller

Fig. 5 Variation of ‘e’ and ‘r’
in the membership function
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where, uSTIOFPID output of STIOFPID controller, uSTIOFPI
fuzzy PI component generated by FBFC, uSTIOFPD fuzzy

PD component generated by FBFC, KPI,KPD scaling factor

of fuzzy PI and fuzzy PD components, for an additional

degree of flexibility.

From Eq. 24, it may be observed that the FBFC output is

taken in two forms, i.e. one in velocity form (which is to be

integrated to find the final instantaneous output), and other

in position form (which can be directly taken to find the

final instantaneous output). This implementation of getting

a fuzzy PID action is mostly used in various research

studies. The reason for the same is the very complex

implementation and behaviour of fuzzy PID controller

having three inputs, viz. error, integration of error and

derivative of error. For a fuzzy rule base having three

inputs and seven membership functions for each input,

there will be a total of 343 rules in the rule base of the

controller, which is very complex to be implemented.

However, the method used in this paper only uses a single

block, i.e. FBFC, whose output taken in two different

forms, viz. position and velocity form, as shown in Fig. 4a,

can directly generate a self-tuning fuzzy PID or rather,

PI ? PD action. Also, this method of generating a fuzzy

PID action creates no additional change in the rule base of

FBFC controller, and the structure remains very simple in

contrast to a fuzzy controller with three linguistic inputs.

4.2 STFOFPID controller description

The STFOFPID controller is similar to a STIOFPID con-

troller, with one major difference to generate the rate of

change of error (r0(t)), the latter uses a fractional-order

differentiator, and to generate the fuzzy PI action, a frac-

tional-order integrator is used to integrate the output of

FBFC. Further, the STIOFPID controller uses the same

FBFC structure, but with different values of the parameters

for its implementation. Due to this reason, the variations of

K1 and K2 gains of FBFC (for STFOFPID controller) will

have different nature of variations in the error and rate of

change of error space. The schematic of the controller is

shown in Fig. 6.

The controller output is stated as:

uSTFOFPID ¼ KPI

d�k

dt�k
ðDuSTFOFPIÞ

� �

þ KPDuSTFOFPD ð25Þ

4.2.1 Implementation of fractional calculus

In this work, ‘Oustaloup approximation’ is used for the

implementation of fractional-order calculus for continuous

time domain. This approximation uses a higher order filter

(2 N ? 1) and fits the approximation within a given fre-

quency range (xL, xH). The approximation of sl can be

given as [3]

sl � K 0
Yk¼N

k¼�N

sþ xZk

sþ xPk

ð26Þ

K 0 gain constant of the analog filter, xZk zeroes of the

analog filter given by

xZk ¼ xL

xPk
poles of the analog filter given by

xPk
¼ xL

xH=xL

� �kþNþ 1
2ð Þ 1þlð Þ

2Nþ1 ð27Þ

N: order of the Oustaloup approximation.

There is a trade-off between ripple reduction and hard-

ware implementation complexity. Higher the value of ‘N’,

lesser will be the ripples in phase response and magnitude

of the filter, but will make the hardware implementation

more complex. On the other hand, lower the value of ‘N’,

more will be the ripples, however, easier will be the

hardware implementation. Thus, a balance has to be

maintained between the two parameters and accordingly

the value of ‘N’ is to be decided. In this work, N = 5, and

xL;xH

� 	
¼ 10�2; 102½ � rad/s.

Fig. 6 Structure of STFOFPID controller
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4.3 Controller tuning

The parameters of the controllers are tuned with CSA

[50–52]. CSA is a relatively new optimization algorithm,

developed by [53], and the same has been found to be

efficient in solving global optimization problems. It is

powerful, nature-inspired metaheuristic algorithm for

optimization and computational intelligence. Recent stud-

ies show [54, 55] that CSA is potentially far more efficient

than its counterparts. This algorithm has the following

three idealized rules:

• Each cuckoo lays one egg at a time and dumps it in a

randomly chosen nest.

• The best nests with high-quality eggs will be carried

over to the next generations.

• The number of available host nests is fixed, and the egg

laid by a cuckoo is discovered by the host bird with a

probability qa 2 (0, 1). In this case, the host bird can

either get rid of the egg, or simply abandon the nest and

build a completely new nest.

This algorithm uses a balanced combination of a local

random walk and the global explorative random walk,

controlled by a switching parameter qa.
The local random walk can be written as:

xtþ1
i ¼ xti þ as� H qa � eð Þ � xtj � xtk

� �
; ð28Þ

where, xtj, x
t
k two different, randomly selected solutions

with the aid of random permutation, H(u) Heaviside

function, e random number selected from a uniform dis-

tribution, s step size.

On the contrary, global random walk can be given as (as

carried out using Lévy flights)

xtþ1
i ¼ xti þ aLðs; kÞfa[ 0g ð29Þ

Here, a is the step scaling factor. In most cases,

a ¼ O L=10ð Þ
L = characteristic scale of the problem of interestand

Lðs; kÞ ¼
kC kð Þ sin pk

2

� �

p
1

s1þk
; ðs � s0 [ 0Þ ð30Þ

The above equation is essentially the stochastic equation

for a random walk. In the present work, the values of

various parameters such as number of nests and rate of

discovery of alien eggs have been kept as 20 and 0.25,

respectively.

4.4 Optimization of STIOFPID and STFOFPID
controller parameters

The objective function (J) for optimization is taken as the

weighted sum of squared of frequency deviation and the

squared of deviation of control signal u from its nominal

steady state values uss: The objective function J can be

defined as:

J ¼
ZTmax

0

ðw1 Dfð Þ2þw2 u� ussð Þ2Þdt ð31Þ

The first term in the objective function is the ISE of

deviation of grid frequency. The second term of the objective

function is the ISDCO. The weights w1 and w2 indicate the

relative importance of each of the two terms in J. Here, w1,

w2 = 1, to give equal importance to both. The reason for

taking this objective function is to take two terms into con-

sideration, one is related to the control performance, i.e.

whether the frequency deviation is minimized to zero for

overall period of experiment or not. The second term is

related to the variation in the controller output. Since larger

variation in the controller output may lead to increased rate

of wear and tear in the final control elements in the control

loop, one should avoid it. The steady state control signal is

taken as a reference from where the deviation has to be

measured. Evaluating squared deviation from this steady

state value ensures that the controller output is not very

fluctuating nature and provides a smooth variation in it. Also

taking a combined performance index (J = ISE ? ISDCO),

it has been ensured that mere reducing large fluctuations in

the controller output would not interfere with the control

performance. Taking ISE into account in calculation of J, it

was made sure that controller be tuned in such a way so that

there will very less deviation in frequency. It is worth men-

tioning here that the steady state control signal uss is taken as,

Table 2 Tuned values of various gains

Gains STIOFPID STFOFPID

a1 5.078 5.270

a2 3.130 8.710

a3 6.068 11.703

a4 21.999 32.130

b1 6.424 6.249

b2 0 4.015

b3 0.456 0

b4 0.713 1.403

L 1.246 0.073

Ke 0.721 0.437

Kr 0.999 0.975

KPI 0.114 0.193

KPD 0.294 0.248

l 1 0.822

k 1 1.009
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uss ¼ 0:81H tð Þ þ 0:17H t � 40ð Þ þ 1:12H t � 80ð Þ ð32Þ

The tuned gains, obtained by minimizing the fitness

function for nominal values of plant parameters as shown

in Table 1, are listed in Table 2, for both the controllers.

The presented IPS was modelled in LabVIEWTM envi-

ronment, and all the simulation results in this work were

obtained for a time of 120 s with a fixed step size of 0.01 s

using Bogacki–Shampine method of order 3. Figure 7 plots

the objective function value versus iterations for both the

controllers. Table 2 presents the values of 15 correspond-

ing gains. The gains a1 � a4, b1 � b4, L represent the

various variables used in the division of input space for

analytically deriving structure of the TS fuzzy PI con-

troller.Ke;Kr are the scaling factors for the e (t) and r (t)

signals that are input to the controller. KPI and KPD are the

scaling factors used to provide an additional degree of

freedom in the STFOFPID controller. l and k are the

derivative and integral fractional orders. Figures 4 and 6

depict the use of these gains.

5 Observations and inferences

The controllers have been tested in multiple conditions so

as to prove their respective worth in the IPS. All the tests

employed in the following sections simulate real-life con-

ditions. In the following subsections, both the STIOFPID

and STFOFPID have been subjected to various tests and

conditions in order to evaluate their relative robustness.

Results have been organized as follows. Section 5.1 pre-

sents the performances of both the controllers under

nominal conditions. Section 5.2 presents the performances

of the controllers when a nonlinear rate constraint is added

to the feedback path in the IPS. Section 5.3 showcases the

robustness of the controllers with the variation in UC

parameters. Section 5.4 tests the performances of the

controllers upon the removal of different energy storage

components, whereas Section 5.5 provides a statistical

analysis of both the controllers under nominal conditions.

5.1 Controller performance under nominal
conditions

For this study, all components are considered to be in linear

operation region. As was observed in Fig. 3, both the wind

and solar power had variations that are superimposed about

the steady state value. Both of these have a sudden drop in

the value at 40 s, i.e. both the powers drop to varied levels

after 40 s. This simulates the actual real-life scenario

where there is vacillation in the power generated,

depending on factors such as weather conditions, etc. The

power of load also peaks at 80 s, which shows its variations

about the steady state values. The objective function values

for STIOFPID and STFOFPID controllers under nominal

conditions comes out as 3.7756 and 3.69985, respectively.

The Fig. 8 depicts the frequency deviations as well as

the control signal curves for both the STIOFPID and the

STFOFPID controllers. From the frequency curve, it can be

clearly noted that the STFOFPID offered lesser deviation

in frequency as compared to its integral counterpart. In

Fig. 9, the individual powers of the different components,

dependent on the controller output, for both the controllers

have been plotted. A very simple thing to note here is that

the energy-producing components like FC, DEG have a

positive plot while the energy-storing elements like FESS,

BESS and UC have a negative plot. It is also noted that UC

contributes to the maximum power amongst all the other

elements. Figure 9(f) presents the variation in PS which is

the summation of all the powers from all the energy-stor-

ing/generating components of the IPS.

Fig. 7 Convergence curves for

CSA
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Fig. 8 Frequency deviation and control signal variation for both STIOFPID and STFOFPID controllers

Fig. 9 Power generated by different components of integrated power system: a FC, b FESS, c BESS, d DEG, e UC and f S
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5.2 Performance analysis for nonlinear energy
storage/production elements
in the feedback path

In order to verify the robustness of the controllers used in

this paper, the first thing tested is the ability of controllers,

viz. STIOFPID and STFOFPID against significant nonlin-

earities in devices like FESS, BESS, UC and DEG. All

these mentioned components are considered to have a rate

constraint-type nonlinearity, i.e. saturation. This type of

nonlinearity restricts the component by putting limits, to

store or release power swiftly, which is an accurate rep-

resentative of a real-life scenario. This constraint is

implemented on different types of first-order energy gen-

eration and storage systems with the help of saturation

block, having a specified upper and lower cut-off restric-

tion. This nonlinearity is implemented as shown in Fig. 10,

just before the integrator in the same path. The various

constraints used to implement this nonlinearity are: _PFESS











\0:02; _PDEG









\0:001; _PFESS









\1:2; _PBESS









\0:005. To

assess the performances of the controllers under these con-

straints, the same tuned gains as mentioned in Table 2 were

used. Figure 11 shows the deviation of the rate of change of

power, for both linear operation and nonlinear rate-con-

strained operation with optimized controllers wherein it can

be seen that the fluctuations are reduced for the case of

nonlinearity specially at the transient points at 40 s and 80 s,

respectively. Figure 12 shows the effect of nonlinearity on

energy-storing/generating components. The objective func-

tion values for STIOFPID and STFOFPID controllers are

obtained as 4.323 and 4.222, respectively. This clearly

shows the superiority in the performance of STFOFPID

against its integer-order counterpart, when a saturation-type

nonlinearity is introduced in FESS, BESS, UC and DEG.

5.3 Ultracapacitor parameter variation

In this case, controllers’ robustness is verified by testing them

for the worst case scenario. For the same, UC gain and time

constant have been subjected to 30% and 50% increase and

decrease, from its nominal values. The reason behind choos-

ing UC for this test is because of the fact that UC has the

highest share of power (as observed from Fig. 9e) as

compared to other components connected to the feedback

path. Therefore, changes in the UC parameters will signifi-

cantly reflect on the IPS.Table 3 presents ISE, ISDCOand the

objective function values for all these four conditions to

investigate the robustness. As can be seen from Table 3, the

values of ISE and ISDCO, and thus the objective function, J is

lower in the case of STFOFPID than in STIOFPID. Therefore,

it can be concluded that the fractional-order controller was

able to handle parameter variation better and therefore ismore

robust. By focusing on the improvements in error-based cri-

teria (being the primary objective under controller output

limits) and evaluating the relative improvements in main-

taining Df close to zero, a significant difference may be seen

between the performances of the STFOFPID and STIO-

FOFPID, as shown in Table 4 for the case where value of

ultracapacitor is changed. Itmay be inferred from these results

that an improvement in the value of ISE and IAE of at least

6.64 and 16.32% and a maximum improvement of 18.47%

were achieved. The performance improvement for IAE seems

to be larger than ISE value since the variable of interest to be

controlled isDfwhich is close to zero and hence squaring error
value to calculate ISE decreases the value of performance

measure, and also the percentage improvement. The same has

been demonstrated in Fig. 13, which demonstrates the error

and control signal plot for both the controllers. Figure 14

shows the variations in objective functions, with a continuous

variation in the UC parameters. Figure 15 presents a column

chart comparing thevalues of J for all the above cases.TheUC

gain and the time constants were varied from-50 to?50%of

the nominal value.

To test the robustness, additional parameter known as

the integral of absolute error (IAE) has also been com-

puted. It may be noted that it does not add weight to any of

the errors in a system’s response and it tends to produce

slower response than ISE optimal systems, but usually with

less sustained oscillation. The IAE during various tests that

have been listed above gives a fair comparison between the

two controllers. Under best tuned conditions, IAE of

STIOFPID and STFOFPID was recorded as 4.6706 and

3.7752, respectively. As can be observed, STFOFPID

performs better in terms of IAE as compared to its integral

counterpart.

Fig. 10 Typical saturation nonlinearity for a first-order transfer function (rate constraint type)
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Fig. 11 Effect of nonlinearity on the rates of different components a, c, e, f power values of BESS, DEG, FESS and UC, for STIOFPID b, d, f,
h power values of BESS, DEG, FESS and UC, for STFOFPID

Fig. 12 Effect of nonlinearity on performance of the storage components a, c, e, f power values of BESS, DEG, FESS and UC, for STIOFPID b,
d, f, h power values of BESS, DEG, FESS and UC, for STFOFPID
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5.4 Removal of different energy storage
components

This test is analogous to a real-life scenario. It is always

possible that one or more components of the IPS may break

down due to the weather, wear and tear, human error or any

other reason. Therefore, a controller should also be robust

enough to handle the removal of certain energy storage

elements. To test the performance of the proposed con-

troller in this case, studies are done by disconnecting/

removing different components one at a time and studying

the percentage change in performance measures, i.e. ISE/

ISDCO from their nominal values. In this study, three cases

are considered, viz. separately disconnecting the DEG,

FESS and BESS.

To calculate the performance improvement, the fol-

lowing formula has been used. For a particular component

x, the performance improvement was computed using (33).

Improvement% ¼ ISTIOFPID � ISTFOFPIDð Þ
ISTIOFPID

	 100%; ð33Þ

Table 5 presents a performance comparison between the

considered controllers for the nominal case and also the

cases when an energy storage/generating component was

disconnected from the system. Further, Table 6 presents the

performance improvement achieved by STFOFPID over

STIOPID in terms of ISE for the considered cases. From

Table 5, it can be clearly seen that the removal of FESS

hugely impacts the whole system and has a higher dis-

ruption level on the performance of the controller, followed

by BESS and then DEG. Flywheels potentially last for a

very long time unlike batteries, which need regular and

very expensive replacement perhaps every three or four

years. They are extremely efficient and take up less space

than batteries so they form a very integral part of the IPS.

From Table 5, it can be noted that both the controllers

employed here do a decent job of maintaining the severity

of the performance deterioration to a minimum. The per-

centage improvement for this test is shown in Table 6, and

it may be inferred that a minimum of 16.41% and maxi-

mum of 16.46% improvement is achieved by STFOFPID

controller, in case of failure of the considered power

source. Figure 16 shows the variation in J, under all four

conditions. This proves that the controllers employed will

handle the sudden disconnection of different energy stor-

age components without much trouble.

5.5 Performance analysis under varying random
noise

Due to the highly stochastic nature of IPS, it becomes

necessary to evaluate the performances of the controllers

under varying random noise. For this analysis, 100 inde-

pendent performances in terms of objective function value

were recorded for further statistical analysis. A simple

statistical analysis tells us about the comparative perfor-

mance of the controllers employed in IPS. Table 7 presents

the statistical analysis of both the controllers. It can be

clearly seen that both the average and the standard devia-

tion are less in case of STFOFPID than in STIOFPID, thus

again proving its superiority. Figure 17 presents these

results in a graphical form. Another statistical analysis was

done with a condition when FESS is removed from IPS to

Table 3 Ultracapacitor parameter variations

Conditions Performance measure STIOFPID STFOFPID

Nominal ISE 1.22791 1.1391

ISDCO 2.54768 2.56074

J 3.7756 3.69985

IAE 4.67062 3.7850

30% increase ISE 0.930345 0.868501

ISDCO 14.4219 14.3599

J 15.3523 15.2284

IAE 3.78484 3.10253

50% increase ISE 0.842923 0.781377

ISDCO 27.8014 27.7082

J 28.6443 28.4896

IAE 3.48937 2.91958

30% decrease ISE 2.10551 1.94238

ISDCO 44.8954 45.0817

J 47.0009 47.0241

IAE 6.68396 5.42445

50% decrease ISE 3.88923 3.5066

ISDCO 224.026 224.66

J 227.916 228.167

IAE 9.54979 7.7859

Table 4 Performance improvement for ultracapacitor parameter

variations

Conditions Performance measure % improvement

Nominal ISE 07.23

IAE 18.96

30% increase ISE 06.64

IAE 18.02

50% increase ISE 07.30

IAE 16.32

30% decrease ISE 07.74

IAE 18.84

50% decrease ISE 09.83

IAE 18.47

Neural Computing and Applications (2019) 31:4137–4155 4151

123



STIOFPID STFOFPID

(a) (b)

(c) (d)

Fig. 13 Control and frequency

deviation with varying UC

parameters a, b frequency

deviation plot for STIOFPID

and STFOFPID. c, d Control

signal plot for STIOFPID and

STFOFPID

Fig. 14 Variation of objective

function value, with percentage

increase/decrease in UC

parameters
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Fig. 15 Variation of J with

respect to varying UC

parameters at 30%, 50%
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showcase the robustness of the STFOFPID controller. The

quantitative comparison has been shown in Table 8. Again,

it was observed that the STFOFPID controller provided

better performance in terms of error-based performance

criterion as well as aggregate performance criterion. Also,

the standard deviation of the fractional-order controller is

lesser than the integer-order controller, i.e. STIOFPID

controller.

6 Conclusions and discussions

In this paper, an attempt has been made to juxtapose self-

tuned integer-order fuzzy PID (STIOFPID) controller and

self-tuned fractional-order fuzzy PID (STFOFPID) con-

troller applied to efficiently control the integrated power

system (IPS). The used IPS employed various generation

systems like diesel engine generator (DEG), fuel cell (FC),

solar thermal power generation (STPG), wind turbine

generator (WTG) and aqua electrolyzer (AE) and energy

storage systems such as flywheel energy storage system

(FESS), battery energy storage system (BESS) and ultra-

capacitor (UC). These self-tuned controllers are Takagi–

Sugeno model-based nonlinear adaptive fuzzy controllers

whose parameters were optimized by cuckoo search algo-

rithm on the basis of the objective function value defined as

the sum of integral of squared error and integral of squared

deviation of controller output, for the effective frequency

variation control in the predefined load power. Under

nominal conditions, it was observed that the STFOFPID

controller demonstrated better performance as compared to

the STIOFPID controller.

In order to test the robustness of controllers, different

case studies were carried out. These studies included,

introduction of a rate type saturation nonlinearity in the

paths of certain energy storage/generation elements, UC

parameters variation and disconnection of certain energy

Table 5 Performance comparison when disconnecting different

components

Component Performance measure STIOFPID STFOFPID

Nominal ISE 1.22791 1.1391

ISDCO 2.54768 2.56074

J 3.7756 3.69985

DEG ISE 1.23532 1.03195

ISDCO 2.56692 2.71683

J 3.80224 3.74878

FESS ISE 1.27501 1.06568

ISDCO 2.78611 2.95705

J 4.06112 4.02277

BESS ISE 1.24171 1.03787

ISDCO 2.6074 2.76222

J 3.8491 3.8001

Table 6 Performance improvement in ISE while disconnecting dif-

ferent components

Component ISE Values % improvement

STIOFPID STFOFPID

Nominal 1.22791 1.1391 07.23

DEG 1.23532 1.03195 16.46

FESS 1.27501 1.06568 16.41

BESS 1.24171 1.03787 16.41
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Fig. 16 Variation of J with disconnection of some parameters

Table 7 Statistical analysis under nominal conditions

Controller Average J (100 iterations) Standard Deviation

STIOFPID 4.109652 0.265073

STFOFPID 4.048094 0.238039

Average

Std. Deviation

4.109652

0.265073

4.048094

0.238039

STFOFPID STIOFPID

Fig. 17 Graph showing the difference in the average and the standard

deviation of the controllers

Table 8 Statistical analysis with FESS removed from IPS

Controller Average

ISE

Average

IAE

Average J (100

experiments)

Standard

Deviation

STIOFPID 1.42358 5.23243 4.35269 0.27268

STFOFPID 1.21641 4.56377 4.18745 0.23402
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storage elements from IPS. Additionally, performance

analysis was also performed under varying random noise to

compare both the controllers. Based on the intensive sim-

ulation studies, it was observed that STFOFPID offered

better results when FESS, BESS, UC and DEG were sub-

jected to saturation. For UC parameter variations, again

STFOFPID offered a superior performance over its integer-

order counterpart. Further, certain blocks such as BESS,

DEG and FESS were disconnected one by one and per-

formance of both the controllers was evaluated for the

predefined objective function, and it was again observed

that STFOFPID relatively performed better than STIOF-

PID. Finally, a simple performance analysis for 100 indi-

vidual iterations reiterated the superiority of STFOFPID

controller over the STIOFPID. Overall, based on the pre-

sented investigations STFOFPID controller is concluded to

an efficient and robust technique to control the IPS as

compared to STIOFPID controller.
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