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Abstract
This research evaluates the efficiency of blistering lines over a 2-year period starting January 2013 till December 2014

using data envelopment analysis models. The planned production quantity in units, defect quantity in units, and idle time in

units are selected as inputs. The actual produced quantity in units is the output measure. The data are then normalized using

the min–max normalization. Six windows are formed, and then the technical, pure technical, and scale efficiency are

calculated for three identical blistering machines lines, BL1, BL2, and BL3, in each year. Results showed significant

reductions in technical (TIE), pure technical (PTIE) inefficiency, and scale inefficiency (SIE) scores in year 2014. For BL1,

the average TIE, PTIE, and SIE are reduced from 0.1152 to 0.0477, 0.0751 to 0.0176, and 0.0429 to 0.0304, respectively.

For BL2, the average TIE, PTIE, SIE are reduced from 0.0968 to 0.0282, 0.0514 to 0.0133, and 0.0486 to 0.0149,

respectively. Finally, for BL3, the average TIE, PTIE, SIE are reduced from 0.0936 to 0.0527, 0.0396 to 0.0154, and

0.0556 to 0.0380, respectively. In practice, the sources of TIE are mainly failure to operate at most productive scale size

(SIE) and/or the poor input utilization (PTIE). In conclusion, the research results provide valuable feedback on how to

improve efficiency, utilize resources, and effectively manage production lines.

Keywords Window analysis � CCR � BCC � Inefficiency � DEA

1 Introduction

In pharmaceutical industry, packaging process of the vac-

cines and medicines is important to ensure the integrity and

quality of these products throughout the distribution chain.

One of the important packaging processes is blister pack-

ing, which is used for packing a number of products, such

as tablets and capsules. Blister packing provides a barrier

protection for shelf life requirements and provides also a

degree of tamper resistance. The most important reason for

introducing blister packaging technology is to offer

patients a clearly marked individual dose that enables them

to check whether they are taking the prescribed drugs on a

given day. Continual assessment of the efficiency of blister

packing process is crucially important for pharmaceutical

companies to be competitive in Jordanian market.

Data envelopment analysis (DEA) has been employed to

assess the performances of a number of homogeneous

decision-making units (DMUs), which used multiple inputs

to produce multiple outputs [1–3]. A wide range of busi-

ness applications for efficiency evaluation can be found in

[4–6]. Nevertheless, when a limited number of DMUs are

available, DEA window analysis makes it feasible to

observe how each DMU performs in different periods

based on the principle of moving averages by treating each

DMU in different periods as a separate unit [7–13]. Yang

[14] developed an enhanced DEA model for decomposition

of technical efficiency in banking. Řepková [15] assessed

efficiency of the Czech banking sector employing DEA

window analysis. Tavana et al. [16] employed a hybrid

fuzzy MCDM method for measuring the performance of

publicly held pharmaceutical companies. Al-Refaie et al.

[17] employed DEA window analysis and Malmquist index

to assess energy efficiency and productivity in Jordanian

& Chien-Wei Wu

cweiwu@ie.nthu.edu.tw

1 Department of Industrial Engineering, University of Jordan,

Amman 11942, Jordan

2 Department of Industrial Engineering and Engineering

Management, National Tsing Hua University,

Hsinchu 30013, Taiwan

123

Neural Computing and Applications (2019) 31:3703–3717
https://doi.org/10.1007/s00521-017-3303-2(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3303-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3303-2&amp;domain=pdf
https://doi.org/10.1007/s00521-017-3303-2


industrial sector. Banerjee [18] performed an empirical

study to measure the efficiency of Indian pharmaceutical

companies during recession period utilizing DEA tech-

niques. Gascón et al. [19] measured the efficiency of large

pharmaceutical companies. Rentala et al. [20] conducted a

comparative analysis of transitory trips and post-trips

periods and assessed institutional reforms and export effi-

ciency of Indian pharmaceutical industry. In this research,

a Jordanian pharmaceutical company aims at evaluating the

efficiency of its three blistering packing lines, BL1, BL2,

and BL3, and determining the sources of the inefficiency

over a period January 2013 to December 2014 by DEA

techniques. The aim is to guide production managers in

decision-making process on how to improve productivity

and better utilize the available resources, reduce ineffi-

ciency, and assess the need for technology introduction.

The remainder of this paper is organized as follows. Sec-

tion 2 presents DEA models. Section 3 presents data col-

lection and analysis. Section 4 summarizes results and

discussions. Finally, research conclusions are made in the

last Sect. 5.

2 DEA models

DEA is a data-driven frontier analysis technique that floats

a piecewise linear surface to rest on top of the empirical

observations [21]. The most well-known DEA models were

the CCR [1] and BCC [22] models. Consider a set of n

DMUs. For DMU k, let yrkðr ¼ 1; . . .; sÞ denote the level of
rth output, and xikði ¼ 1; . . .;mÞ the level of the ith input.

The CCR model is used to measure the technical efficiency

of a specific DMU k as follows [23, 24]:

(CCR Model)

Min h

s:t:
ð1aÞ

hxik �
Xn

j¼1

kjxij � 0; i ¼ 1; . . .;m ð1bÞ

Xn

j¼1

kjyrj � yrk; r ¼ 1; . . .; s ð1cÞ

kj � 0; j ¼ 1; . . .; n

h unrestricted in sign
ð1dÞ

The optimal h denoted by h* satisfies 0 B h* B 1. If h*
equals to one, the DMU under measurement is technically

efficient and lies on the efficiency frontier that is composed

of the set of efficient units. The model above is often

referred to as the input-oriented Charnes–Cooper–Rhodes

(CCR) model under constant returns to scale (CRS)

assumed, which means that a proportional increase in all

inputs results in the same proportional increase in output.

An input-oriented model seeks to minimize inputs while

satisfying at least the given output levels. Similarly, when

outputs will be maximized, one can obtain an output-ori-

ented model when inputs are fixed at their current levels.

As a result, the objective value (or score) of CCR is des-

ignated technical efficiency (TE), which reflects the firm’s

ability to obtain maximum output from a given set of inputs

[25]. On the other hand, CRS means that when input

increased by a factor a, the output increases by the same

factor. That is, the size of operation of DMU is optimal.

Increasing returns to scale (IRS) means that when input

increased by a factor a, the output increases by more than

a. Decreasing returns to scale (DRS) means that when input

increases by a factor a, the output increases by less than a
[26]. To take variable returns to scale (VRS) into account,

the CCR model is extended to BCC model as follows:

Min h

s:t:
ð2aÞ

hxik �
Xn

j¼1

kjxij � 0; i ¼ 1; . . .;m ð2bÞ

Xn

j¼1

kjyrj � yrk; r ¼ 1; . . .; s ð2cÞ

Xn

j¼1

kj ¼ 1 ð2dÞ

kj � 0; j ¼ 1; . . .; n

h unrestricted in sign
ð2eÞ

The DMU operates under variable returns to scale if it is

suspected that an increase in inputs does not result in a

proportional change in the outputs. The BCC model mea-

sures the pure technical efficiency (PTE) which ignores the

impact of the scale size by only comparing a DMU to a unit

of similar scale [27]. The PTE measures how a DMU uti-

lizes its sources under exogenous environments; a low PTE

implies that the DMU inefficiently manages its resources.

The use of the BCC model allows decomposition of TE

score into PTE and scale efficiency (SE) scores, where the

relationship between them is expressed as:

SE ¼ TE

PTE
ð3Þ

SE measures how the scale size affects efficiency. SE

also provides the ability of the management to choose the

optimum size of resources, in other words, to choose the

production scale that will attain the expected level of

production.

When using DEA, an important rule of thumb is that the

number of DMUs is at least twice the sum of the number of
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inputs and outputs. Otherwise, the model may produce

numerous relatively efficient units and decrease discrimi-

nating power. To resolve this difficulty, DEA window

analysis [28] was introduced, in which the performance of

a DMU in any period can be compared with its own per-

formance in other periods as well as the performance of

other DMUs. The window should be as small as possible to

minimize the unfairness comparison over time, but still

large enough to have a sufficient sample size [29]. Consider

N DMUs (n = 1,…,N) that all use r inputs to produce s

outputs and are observed in T(t = 1,…,T) periods. Let

DMUt
n represent an observation n in period t with input

vector Xn
t and output vector Yn

t which are, respectively,

given by:

Xt
n ¼

x1tn

..

.

xrtn

2

64

3

75; ð4Þ

Yt
n ¼

y1tn

..

.

ystn

2
64

3
75 ð5Þ

If the window starts at time kð1� k� TÞ with width

wð1�w� T � kÞ, then the matrices of inputs and outputs

are, respectively, denoted as follows:

Xkw ¼

xk1 xk2 � � � xkN
xkþ1
1 xkþ1

2 � � � xkþ1
N

..

. ..
. . .

. ..
.

xkþw
1 xkþw

2 � � � xkþw
N

2

6664

3

7775; ð6Þ

Ykw ¼

yk1 yk2 � � � ykN
ykþ1
1 ykþ1

2 � � � ykþ1
N

..

. ..
. . .

. ..
.

ykþw
1 ykþw

2 � � � ykþw
N

2

6664

3

7775 ð7Þ

Substituting inputs and outputs of DMUt
n into CCR

model or BCC model will produce the results of DEA

window analysis.

3 Data collection and analysis

In this study, three blistering packing lines; BL1, BL2, and

BL3, are considered. The data are obtained from the pro-

duction reports over a period of 2 years (January 2013 to

December 2014). The replacement of BL1 by NBL1 took

place at the end of year 2013. In DEA analysis, the planned

production quantity in units (PPQ), defect quantity in units

(DQ), and idle time in units (IT) are selected as inputs. The

actual produced quantity in units (APQ) is the output

measure. The data are then normalized using the min–max

normalization with a range 0.1–0.9 [30]:

XN ¼ 0:1þ 0:8ðX � XminÞ
ðXmax � XminÞ

; ð8Þ

where XN denotes the normalized value of the input or the

output data, X denotes the original value of the data, while

the Xmax and Xmin denote the maximum and the minimum

original values of the data. Table 1 provides the inputs and

output data for blistering lines BL1 and NBL1 during

January 2013 to December 2014. Similar data are collected

for BL2 and BL3. The basic concept in window analysis is

the consideration of each blistering line as a different one

in each of the months listed at the top of the table in order

to obtain the scores listed in the rows that constitute the

window. The stub on the left side indicates the window

length and the periods covered.

3.1 Analysis of technical efficiency

Table 2 presents the TE scores for BL1 during years 2013

and 2014. For instance, the first row (1–6) extends from

January 2013 to June of the same year for a window length

of 6 months that is exhibited in the first row. The next row

(2–7) starts in February and extends to July, for another

window, and so on. Cooper et al. [31] determined the

number of windows and the number of data points as

follows:

w ¼ k � pþ 1; ð9Þ
dl ¼ n� p� w; ð10Þ

where w is the number of windows, k is the number of

periods, p is the length of window, dl is number of ‘‘dif-

ferent’’ lines, and n is the number of the production lines.

In this research, the number of windows is

7(= 12 - 6 ? 1), and dl is 126(= 3 9 6 9 7). The TE

scores, which measure inefficiencies due to input/output

configuration as well as the size of operation, are calculated

using CCR model. Further, the rows can be used to

examine trends that occur in each window. The columns

are used to examine stability properties. From Table 2, it is

noted that:

• The average efficiency values listed in each column

show stable performance, because the differences

between the efficiency averages in each month are

negligible. For example, all the efficiency averages are

equal to one in June.

• For BL1 in year 2013, the coefficient of variation (CV)

values listed in all of the seven windows (rows) are

larger than 5%, which means that the dispersion is

significant, and thereby a trend is observed in the

efficiencies of the same window. Contrary to NBL1 in

year 2014, most of the CV values are less than 5% that

indicates lack of trend in most windows.
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• The average TE values are less than one in all windows

for both BL1 and NBL1, and thereby they are

concluded inefficient in all windows. However, BL1

is found efficient in Months May and June, while NBL1

is only found efficient in January and December

Table 3 displays the technical inefficiency (TIE) for

BL1 and NBL1. To analyze the sources for ineffi-

ciency, the projection onto the efficient frontier is

performed. Table 4 presents the projection onto the

efficient frontier for the maximum and minimum TE

values for BL1 and NBL1 during years 2013 and 2014.

For BL1, the fourth window (4–9) corresponds to the

largest TE average of 0.9204 (TIE = 0.0796). For this

window, the following efficiencies are observed

0.8713, 1.00, 1.00, 0.7646, 0.8904, and 0.9961 for the

first period till the sixth period, respectively. For the TE

in April (= 0.8713) to become efficient, the planned

production quantity in units (PPQ), defect quantity in

units (DQ), and idle time in units (IT) should be

decreased by 12.88, 51.35, and 68.36%, respectively.

For months May and June, the TE is equal to one;

hence, no reductions in the inputs are needed. For the

TE (= 0.7646), the PPQ, DQ, and IT should be

decreased by 23.54, 57.14, and 82.03%, respectively.

For the fifth period (August) with the average TE of

0.8904, the PPQ, DQ, and IT should be decreased by

12.88, 51.35, and 68.36%, respectively. Finally, for the

sixth period (September, TE = 0.9961) the DQ and IT

should be decreased by 61.10 and 52.02%, respectively.

Further, the smallest average TE (= 0.8466) corre-

sponds to window (6–11). For this window, the TIE

equals 0.1543. In order to reduce TIE, the efficiency

values are analyzed and are found equal to 1.00,

0.7646, 0.8904, 0.9961, 0.5902, and 0.8385 for months

June–November, respectively. In Table 4, the TE

(= 0.5902), for example, can become efficient when

Table 1 Inputs and output data for BL1 and NBL1 during January 2013 to December 2014

Period Blistering Original data Normalized data

Inputs Output Inputs Output

Line PPQ (units) DQ (units) IT (units) APQ (units) PPQ (units) DQ (units) IT (units) APQ (units)

Jan. BL1 10,000,000 111,000 2,400,000 7,400,000 0.7974 0.3960 0.9000 0.6333

Feb. 8,600,000 66,640 1,730,300 6,800,000 0.6538 0.1974 0.6737 0.5606

Mar. 10,400,000 81,780 918,200 9,400,000 0.8385 0.2652 0.3992 0.8758

Apr. 8,800,000 94,380 905,600 7,800,000 0.6744 0.3216 0.3949 0.6818

May 7,600,000 44,880 750,000 6,800,000 0.5513 0.1000 0.3423 0.5606

Jun. 7,750,000 56,240 93,700 7,600,000 0.5667 0.1509 0.1205 0.6576

Jul. 10,250,000 109,880 1,940,100 8,200,000 0.8231 0.3910 0.7446 0.7303

Aug. 6,600,000 65,400 534,600 6,000,000 0.4487 0.1919 0.2695 0.4636

Sep. 4,500,000 58,080 41,900 4,400,000 0.2333 0.1591 0.1030 0.2697

Oct. 7,100,000 81,000 2,020,000 5,000,000 0.5000 0.2617 0.7716 0.3424

Nov. 11,000,000 88,360 1,500,600 9,400,000 0.9000 0.2946 0.5960 0.8758

Dec. 6,900,000 76,880 620,120 6,200,000 0.4795 0.2432 0.2984 0.4879

Jan. NBL1 5,300,000 28,518 871,480 4,400,000 0.4453 0.1624 0.4546 0.4273

Feb. 5,900,000 33,244 1,266,750 4,600,000 0.4915 0.1789 0.6172 0.4455

Mar. 5,000,000 34,726 765,270 4,200,000 0.4222 0.1841 0.4109 0.4091

Apr. 5,100,000 61,366 1,038,630 4,000,000 0.4299 0.2771 0.5233 0.3909

May 3,300,000 40,143 459,850 2,800,000 0.2911 0.2030 0.2853 0.2818

Jun. 6,500,000 86,535 1,013,460 5,400,000 0.5378 0.3650 0.5130 0.5182

Jul. 4,600,000 41,705 558,290 4,000,000 0.3913 0.2085 0.3258 0.3909

Aug. 8,500,000 57,584 1,442,410 7,000,000 0.6919 0.2639 0.6894 0.6636

Sep. 8,000,000 59,248 1,340,750 6,600,000 0.6534 0.2697 0.6476 0.6273

Oct. 5,900,000 38,083 261,900 5,600,000 0.4915 0.1958 0.2039 0.5364

Nov. 11,200,000 135,142 1,464,000 9,600,000 0.9000 0.5347 0.6983 0.9000

Dec. 4,700,000 52,890 47,100 4,600,000 0.3990 0.2475 0.1155 0.4455

PPQ planned production quantity, DQ defect quantity, IT idle time, APQ actual produced quantity
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only DQ is reduced by 37.53%. Similarly, Tables 2 and

3 also display the TE and TIE averages for NBL1 in all

seven windows, respectively. In Table 2, the first

window (1–6) corresponds to the largest TE average

(= 0.9806). However, the fifth window (5–10) corre-

sponds to the smallest TE average (= 0.9153). In

Table 3, the corresponding TIE values are calculated

0.0194 and 0.0862. Table 4 displays the required

actions to enhance the TE efficiency for this machine.

Similarly, the averages of TE, TIE, and required

improvements are conducted for BL2 and BL3.

Tables 2 and 3 display the TE and TIE scores for

machines BL2 and BL3 for all windows. Tables 5 and 6

summarize the required actions to enhance TE effi-

ciency for BL2 and BL3, respectively.

• Observing the averages of TIE scores for the three

machines listed in Table 3, it is noted that the largest

average TIE score (= 0.1152) in year 2013 corresponds

to BL1. Due to replacing this machine by NBL1 in year

2014, the TIE is reduced to 0.0477. Thus, the decision

of replacement successfully improves the TE. More-

over, it is noted that the largest TIE score in year 2014

equals 0.0527, which corresponds to BL3. Figure 1

displays a comparison of TIE scores between years

2013 and 2014 for each machine. It is seen that the TIE

scores in year 2014 are much less than 2013 due to

some action taken to reduce the inputs: PPQ, DQ, and

IT.

3.2 Analysis of pure technical efficiency

The TE is a measure of efficiency without scale consider-

ation by comparing a DMU to other DMUs of the same

size only. However, the pure technical efficiency (PTE)

scores are computed under the assumption of VRS using

BCC model. PTE reflects the managerial performance to

organize the inputs in the production process. Table 7

displays the obtained PTE scores for BL1 and NBL1 in all

windows.

Table 3 also displays the PTIE values in all windows.

Clearly, none of the PTIE equals to zero in any window.

Thus, the windows are PTE inefficient. In Table 7, it is

noticed for BL1 that the windows (4–9) and (6–11) cor-

respond to the largest and smallest PTE score averages of

0.9764 and 0.8886, respectively. In Table 3, the corre-

sponding PTIE values are 0.0236 and 0.1139. Moreover,

the largest and smallest PTE score averages for NBL1 are

0.9918 and 0.9704, which correspond to windows (7–12)

and (5–10), respectively. The corresponding PTIE values

are 0.0082 and 0.0296. To analyze the PTIE, the projection

onto the efficient frontiers is carried out. Table 4 lists the

reduction needed to enhance PTE, or reduce PTIE. For

example, for window (4–9) for BL1 (PTE = 0.9764) in

Table 7, the corresponding PTE scores are calculated and

found equal to 0.9670, 1.00, 1.00, 1.00, 0.8914, and 1.00.

For the first period (PTE = 0.9670) to become efficient,

the PPQ should be decreased by 3.31%, DQ by 28.23%,

and IT by 16.88%. Window number 6 has the lowest PTE

average of 0.8861 for BL1. Similarly, the PTIE values are

Table 3 TIE and PTIE values

over years 2013 and 2014
Year Window TIE PTIE SIE

BL1 BL2 BL3 BL1 BL2 BL3 BL1 BL2 BL3

2013 (1–6) 0.1342 0.0831 0.1036 0.0943 0.0724 0.0307 0.0449 0.0117 0.0742

(2–7) 0.1209 0.0656 0.1155 0.0789 0.0543 0.0477 0.0469 0.0123 0.0695

(3–8) 0.0956 0.1196 0.1120 0.0527 0.0358 0.0477 0.0446 0.0857 0.0660

(4–9) 0.0796 0.1101 0.0944 0.0236 0.0296 0.0577 0.0566 0.0822 0.0397

(5–10) 0.1265 0.0932 0.1015 0.0855 0.0549 0.0250 0.0417 0.0438 0.0776

(6–11) 0.1534 0.0952 0.0624 0.1139 0.0596 0.0413 0.0428 0.0409 0.0223

(7–12) 0.0960 0.1110 0.0661 0.0765 0.0532 0.0273 0.0225 0.0634 0.0399

Average 0.1152 0.0968 0.0936 0.0751 0.0514 0.0396 0.0429 0.0486 0.0556

2014 (1–6) 0.0194 0.0347 0.0471 0.0103 0.0297 0.0230 0.0091 0.0050 0.0250

(2–7) 0.0260 0.0367 0.0481 0.0149 0.0277 0.0230 0.0111 0.0090 0.0260

(3–8) 0.0267 0.0295 0.0538 0.0168 0.0148 0.0101 0.0100 0.0147 0.0448

(4–9) 0.0272 0.0225 0.0632 0.0172 0.0068 0.0193 0.0101 0.0158 0.0450

(5–10) 0.0862 0.0252 0.0629 0.0296 0.0068 0.0106 0.0574 0.0184 0.0523

(6–11) 0.0813 0.0206 0.0469 0.0264 0.0000 0.0106 0.0556 0.0206 0.0363

(7–12) 0.0671 0.0284 0.0472 0.0082 0.0075 0.0110 0.0595 0.0209 0.0363

Average 0.0477 0.0282 0.0527 0.0176 0.0133 0.0154 0.0304 0.0149 0.0380

TIE technical inefficiency, PTIE pure technical inefficiency, SIE scale inefficiency
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calculated for BL2 and BL3. The results are also shown in

Table 3. In Table 3, the average of PTIE for BL2 is

reduced from 0.0514 to 0.0154. Similarly, for BL3, the

average of PTIE is reduced from 0.0396 to 0.0154. To

obtain further improvements, Tables 5 and 6 show the

actions needed to improve the PTE scores for BL2 and BL3

in year 2014, respectively.

3.3 Analysis of scale efficiency

Once the TE scores and PTE scores are obtained, the scale

efficiency (SE) scores are calculated as TE divided by PTE

for each window. If the score of TE equals the score of

PTE, then the SE score equals one. This means that the size

of operation is optimal. Otherwise, returns to scale analysis

is required to determine whether operations of blistering

lines need expansion or reduction in their sizes. When a

blistering line has a small size of operation, that is

increasing returns to scale (IRS), then the blistering line

will need to plan for expansion. If the majority of ineffi-

ciency is due to the large size of operations, that is

decreasing returns to scale (DRS), then the blistering line

will need to plan for reduction.

Table 8 displays the SE values for BL1 and NBL1 for

all windows, where the average SE values for BL1 and

NBL1 are found equal to 0.9525 and 0.9726, respectively.

Moreover, it is noted that the largest SE values correspond

to windows (7–12) and (1–6) of 0.9775 and 0.9909 for BL1

and NBL1, respectively. Moreover, the SE values for

NBL1 are larger than their corresponding values for BL1 in

all windows. Table 9 displays the percentages of CRS,

DRS, and IRS for all machines, where it is found that BL1

has 33, 36, and 31.0% of CRS, DRS, and IRS, respectively.

However, NBL1 is 40.5, 36, and 28.5% of CRS, DRS, and

IRS, respectively. For NBL1, the percentage of optimal

size (= 40.5%) is larger than BL1 (= 33%). Moreover, BL1

and NBL1 should reduce their operation sizes. For BL2,

36% of results have optimal size of operations while 47%

of results have IRS. This means that BL2 should expand

their operations. For BL3, the majority of results have IRS

behavior, which means that BL3 should also expand their

operations. For year 2014, the scale of operations is

improved, but the majority of results (= 69%) for BL3 have

IRS behavior, which indicates that BL3 should expand

their operations again. Table 3 displays the scale ineffi-

ciency (SIE) in years 2013 and 2014. Clearly, the SIE is

dropped in 2014. The average of SIE for BL1 is dropped

Fig. 1 Comparison of TIE

values for each machine. a BL1.

b BL2. c BL3
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from 0.0429 to 0.0304, from 0.0486 to 0.0149 for BL2, and

from 0.0556 to 0.0380 for BL3.

4 Results discussion and implications

Providing guidance on what can be achieved in the short

and long terms is done by decomposing technical effi-

ciency scores into pure technical efficiency and scale effi-

ciency. The inefficiencies due to technical, pure technical,

scale efficiencies, TIE, PTIE, and SIE, summarized in

Table 3 will be used for determining the main contributor

of inefficiency. Generally, the TIE can be caused by PTIE

or SIE. For illustration, the main contributor of TIE for

BL1 in the first window in 2013 (PTIE = 0.1342,

SIE = 0.0449) is due to pure technical inefficiency. It is

noticed that the PTIE is the main cause for PTE, except the

fourth window (PTIE = 0.0236, SIE = 0.0566) is due to

scale inefficiency. In 2014, the main contributor of TIE for

NBL1 is due to PTIE, except windows (5–10) and (6–11)

are due to SIE. Further, the main contributor of inefficiency

for BL2 in 2013 is due to PTIE, whereas the main con-

tributor of TIE for BL3 in 2013 is due to SIE. In 2014, the

main contributor of inefficiency for BL2 and BL3 is due to

SIE. In practice, when the majority of inefficiency is due to

SIE, increasing/decreasing returns to scale, expand-

ing/downsizing of the operations should be done to observe

an efficiency gains. On the other hand, if the majority of

inefficiency in the production machine is due to PTIE,

management is encouraged to improve the utilization of the

inputs and the resources.

Further, the monthly differences of the TE, PTE, and SE

scores between years 2013 and 2014 for each machine are

calculated and then shown in Fig. 2. For the TE, the dif-

ferences are negative during months May, June, Septem-

ber, and November. This means that the TE scores in 2013

outperform their corresponding values in 2014.

Nevertheless, the differences do not exceed 0.08. However,

the TE differences in the other 8 months are positive and

some differences reach 0.4. Overall, the yearly averages of

TE (= 0.9593), PTE (= 0.9865), and SE (= 0.9726) in 2014

are larger than the averages of TE (= 0.8629), PTE

(= 0.9067), and SE (= 0.9525) in 2013. Significant

improvements are gained in the performance of BL2 and

BL3 in some months in year 2014. Figure 2 can be also

used to identify the source of inefficiency in year 2014. For

example, the positive TE difference (= 0.395) for BL1 in

October is caused by PTE. However, the negative TE

differences of - 0.0775 for BL2 in February and - 0.02

for BL3 in November are mainly attributed by PTE and SE,

respectively.

5 Conclusions

This research successfully evaluated the efficiency of three

blistering lines over a two-year period from January 2013

till December 2014 using DEA techniques. Three inputs

are selected for DEA analysis, including the planned pro-

duction quantity in units, defect quantity in units, and idle

time in units. While, the actual produced quantity in units

is the output. The data are normalized using the min–max

normalization. Six windows are formed, and then the

technical, pure technical, and scale efficiency are calcu-

lated by the CCR and BCC models for blistering machines

in each year. Projection onto the efficient frontiers for TE

and PTE scores is employed to determine appropriate

actions on window inputs as well as on scale size in years

2013 and 2014. Results showed significant reductions in

inefficiency scores in year 2014. For BL1, the average TIE,

PTIE, SIE are reduced from 0.1152 to 0.0477, 0.0751 to

0.0176, and 0.0429 to 0.0304, respectively. For BL2, the

average TIE, PTIE, SIE are reduced from 0.0968 to 0.0282,

0.0514 to 0.0133, and 0.0486 to 0.0149, respectively.

Finally, for BL3, the average TIE, PTIE, SIE are reduced

from 0.0936 to 0.0527, 0.0396 to 0.0154, and 0.0556 to

0.0380, respectively. In practice, the sources of TIE are

mainly failure to operate at most productive scale size

(SIE) and/or the poor input utilization (PTIE). Thus, to

improve the performance of the blistering lines, production

management shall carry out leak testing more frequently

for earlier detection of a leak before a large volume of

faulty blisters are produced, monitoring and addressing

downtime trends, applying quality circles to increase pro-

ductivity, reviewing hiring policy, increasing the size of

raw material orders when the behavior of returns to scale is

IRS, and enhancing employee motivation. One of the

limitations of this research is the lack of a higher number of

observations. As a future research, it would be interesting

to further expand the time span.

Table 9 Returns to scale analysis

Machine 2013 2014

BL1 33% CRS 40.5% CRS

36% DRS 31% DRS

31% IRS 28.5% IRS

BL2 36% CRS 45% CRS

17% DRS 16% DRS

47% IRS 39% IRS

BL3 28.5% CRS 24% CRS

28.5% DRS 7% DRS

43% IRS 69% IRS
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