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Abstract

Fuzzy fractional diffusion equations are used to model certain phenomena in physics, hydrology biology and amongst
others. In this paper, an implicit finite difference scheme is developed, analysed and applied to numerically solve a fuzzy
time fractional diffusion equation. For our case, the fuzziness is in the coefficients as well as initial and boundary
conditions. The time fractional derivative is defined using the Caputo formula. The stability of the implicit finite difference
scheme is analysed by means of the Von Neumann method. A numerical example has been given to check the feasibility of
the approach and to examine certain related aspects. It was found that the results obtained are in good agreement with the
proposed theory. Hence, the proposed scheme is suitable for solving fuzzy time fractional diffusion equations.

Keywords Fuzzy numbers - Caputo formula - Fuzzy time fractional diffusion equation - Implicit finite difference scheme

1 Introduction

Fractional differential equations have attracted consider-
able attention for the past 10 years or so. This is evident
from the number of publications on such equations in
various mathematical and scientific databases. Crisp
quantities in the fractional differential equations which are
deemed imprecise and uncertain can be replaced by fuzzy
quantities to reflect imprecision and uncertainty. This leads
to fuzzy fractional differential equations (FFDEs). There
have been a number of recent studies on the solutions of
FFDEs [1-7]. Agarwal et al. [8] considered the solution of
fractional differential equation with uncertainty. The
problem in question was an initial value problem involving
a fractional ordinary differential equation. The fractional
derivative was evaluated using the Riemann-Liouville
formula. Later, Allahviranlo et al. [9] introduced the

DX Hamzeh Zureigat
zhhr16_mah069 @student.usm.my

Ahmad Izani Ismail
ahmad_izani @usm.my

Saratha Sathasivam

saratha@usm.my

School of Mathematical Sciences, Universiti Sains Malaysia,
11800 Gelugor, Pulau Pinang, Malaysia

concept of Riemann-Liouville H-differentiability, which is
a direct generalization of the fractional Riemann-Liouville
derivative using Hukuhara difference to solve uncertain
fractional differential equations (UFDEs) using Mittag-
Leffer functions. The obtained explicit solutions of UFDEs
were derived by applying the equivalent integral forms of
UFDEs. Then, Takaci et al. [10] used the fuzzy Laplace
transform to construct exact and approximate solutions of
FFDE:s in the sense of Caputo Hukuhara differentiability,
i.e. the fractional derivative was evaluated using Caputo
formula and fuzzy differentiability evaluated using the
Hukuhara approach. The obtained results were expressed in
the form of fuzzy Mittag-Leffer function. Salahshour et al.
[11] then used the fuzzy Laplace transform definition to
solve FFDEs under Riemann—Liouville H-differentiability
and investigated the efficiency and utility of the Laplace
transform method. Later, Ghazanfari and Ebrahimi [12]
applied the differential transformation method (DTM) to
solve fuzzy fractional diffusion equations. The DTM is an
iterative procedure for obtaining analytic series solution of
differential equations. It was found that the DTM was a
highly effective and simple scheme for obtaining approx-
imate analytical solutions of fuzzy fractional diffusion
equations. Chakraverty and Tampaswini [13] later pro-
posed a new computational technique to handle the fuzzy
fractional diffusion equations. These approaches convert
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the fuzzy diffusion equation into interval-based finite dif-
ference equations (FDEs) and then transform the obtained
equation into crisp form by using the double parametric
form of fuzzy numbers. Finally, this crisp form is solved by
the Adomian decomposition method (ADM) to obtain the
uncertain bounds of the solution.

Salah et al. [14] developed the homotopy analysis
transform method (HATM) to solve fuzzy fractional heat
and wave equations. The HATM is a combination of the
homotopy analysis method and the Laplace decomposition
method. HATM yields approximate analytical solution in
the form of a series. It was found that the HATM is effi-
cient, simple and involves less computational work as
compared to other analytical methods. To the best of our
knowledge, there seems to have been no attempt to solve
fuzzy fractional diffusion equations by using finite differ-
ence schemes. Most of the papers on the solution of fuzzy
fractional diffusion equations involve approximate analyt-
ical methods. Our paper will investigate the use of a finite
difference scheme for solving fuzzy time fractional diffu-
sion equations. The availability of a reliable and efficient
finite difference scheme will facilitate the numerical solu-
tion of fuzzy time fractional diffusion equations.

2 Fuzzy time fractional diffusion equation

In this section, we present the general form of time frac-
tional diffusion equation in a fuzzy environment by using
the basic concepts of fuzzy properties [15-18]. Consider
the one-dimensional fuzzy time fractional diffusion equa-
tion with the initial and boundary conditions

0%u(x,t,0) %i(x,1) -
67“ —a(x)?—&—b(x),

IZ(X, O) :.f(x)vﬁ(oa t) =g,

O<x<l, t>0
u(l,0)=z2
(1)

where ii(x,t) is a fuzzy function [16] of crisp variables ¢

0%ii(x,t,%)
and x, R

azg)(;’t) is a fuzzy partial Hukuhara derivative [9]

is the fuzzy time fractional derivative of

order o,

with respect to x. @(x) and b (x) are fuzzy functions for the
crisp variable x. i#(0,x) is the fuzzy initial condition, and
i(0,¢)as well as u(/,0) is fuzzy boundary conditions
with g, Z being fuzzy convex numbers. Finally in Eq. 1,
the fuzzy functions d(x), b(x) and f(x) are defined as fol-
lows [19]:

I;(x) = AézSz(x) ’ (2)
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where s1(x), 52(x) and s3 (x) are the crisp functions of the crisp

variable x with 51 s 52 and 53 being the fuzzy convex numbers.
The fuzzification of Eq. 1 for all » € [0, 1] is as follows [19]

[a(x, 1)], =ulx, t;r), u(x, 1;7) (3)
u(x,t,0 O%u(x, t,05r) O"u(x,t,0r)
{ } %t ’ %t )
X, 1;7) azﬁ X, tr
{ } zet ’ éx; i (3)
la(x)], = k(x;7r), k(x;7) (6)
[l;(x ]r =b(x;r), E(x; r) (7)
[it(x, 0)], = u(x,0;r), u(x, 0; r) (8)
[ﬁ<07t)] _ﬂ(oa L r) (07 5 I’) (9)
@00, =u(l, ;7). a0, 1;7) (10)
F(x)], =f(x;r),f ) (11)
8], = &(r),8(r)
Mazgmww 12)

—
S
~
=
=
=
-
—
1>
~
-
—
[\
I
3
—
~
—
Pt
1%}
o
—
=
Na¥

(13)
()], = [0(r)3, 03(r)]53(x)

The membership function is defined by using the fuzzy
extension principle [19]

{g(x, t;r) = min{a(@(r), )| n(r) € a(x,t;r)}
u(x, t;r) = max{u(pn(r), )| u(r) € i(x,t;r)}
According to [19], by fuzzfication of Eq. 1 and defuzzfi-

cation of Eqgs. (2-14), we can rewrite the Eq. 1 in the
following new formula. The Lower bound of Eq. 1

(14)

“u(x,t, Q’u X, r
FUL) _ [0y v () D 4 [0, ]
0(r)3s3(x)

(15)
The upper bound of Eq. 1

0%u(x,t,a) o%u(x, 1;r)

ac:t’ = [0:(r)]s1(x) ax}
i(x,0;7) = 03 (r);53(x)
u(0,#;7) = g(r),u(l, ;1) =2(r)

+ [02(r)]52(x)

(16)

We next consider a discretization of Eqs. 15 and 16.
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3 The fuzzy implicit finite difference method

In this section, we present a fuzzy implicit scheme using
Caputo formula for time fractional derivative and central
difference approximation for second-order space derivative
to solve the fuzzy time fractional diffusion equations.

Following the definition of Caputo formula, we discretize
the time fractional derivative in Eq. 1 such that [20]:

=Ar" Z v (u™

ot

ol u(x t,00) 0 4 o(Af) (a7

wherevozl, Vj:(l— )Vj_]7 ]:1,2,
Also by using the central difference approximation
definition, we can discretize the second partial derivatives

%u(xt) %u(xt)

2T as follows:
Oty (0, 157) i1, (5 157) = 203, (6 157) + sy, (3,1 7)
Ox? h?
(18)
Gzﬁ,-y,,(x, 6r) i n(X,t57) — 20, (X, 157) + Uiy (X, 15 7)
Ox? n h?

(19)
i indicates a spatial grid point and » a temporal one.
Equations (17, 18, 19) are substituted in Eqgs. (14, 15) to
obtain:

n

Ay ()

Jj=0
i s _271')1 b Ui 0\ X L
— gy terta D) 2 BB U Ty
(20)
NS (@)
Jj=0
— a(x, ) Ui (X, 137) — ZE,”E;, 6r) F i 6r) B(x, )
(21)
Now we let p(r) = £<xhﬁ) “ and from Egs. (21, 22), we

obtain for all r € [0, 1]

= Py, (X, 857) + (14 2p)w; (X, 657) — pui_y (X, 157)

n—1
= — ZV/M’?” . (Z v]> 0 FALD(x, 1) (22)
=1

— i1 p(x,857) + (1 4+ 2p)a; (x, 15 7) — plij—y o (x, 85 7)

n—1

= — ZVJ”’” i+ (Z vj> U 0+Ab(x,r) (23)

For each spatial grid point, Egs. (22, 23) are evaluated to
yield linear equations. At the end of each time level, a

system of linear equations is obtained. This system is then
solved to obtain the values i(x, ¢, o) for that particular time
level.

4 Stability analysis

Ma [21] developed implicit finite difference schemes for
the crisp time fractional diffusion equation with source
terms. Wang and Qin [22] developed a fuzzy finite dif-
ference scheme for heat conduction problem which did not
involve fractional derivative. In addition, the stability
properties of the scheme were also investigated. We shall
follow the approaches to analyse stability in [21, 22] in our
investigation of the stability of the implicit finite difference
schemes proposed in the present for the fuzzy time frac-
tional diffusion equations.

It is first assumed that the discretization of initial con-

dition introduces the fuzzy error 72?
Let g? = g? — ?sf) i} and llf‘ be the fuzzy numerical
solutions of scheme in Eqgs. (22, 23) with respect to the

initial data’s g" and g*" respectively.

Let (i}, (x, 50)], = [ uf, (r), iy ()],
where r € [0, 1].

The error bound is defined as:
@), = [d - @] . (24)

where

n!

@] = {20} = { 5';'((1’;—_ ELE:’((};’)) o)

which satisfies the finite difference Eq. 1.
Forn =1

—pej(r) + (1 +2p)ej (r) — s &, (r) = &)(r) (26)
—pE; (r) + (1 +2p)E; (r) = s &, (r) =& ()
For n>2
{_Sﬁ:-ul # 0+ 2e —rsty = =Xy (S 4
=S &+ (I+2p)e) —re, = _Z, 1 Vi & T4 (Z, 0 Vi ) &
(27)
Suppose that
= )" =0 (r)i
£(r) eV (28)

= Zn(r) eV —omi

Substituting Eq. 28 into Egs. (26, 27) to obtain:
Forn=1
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{ —p A(r)eVLOED 4 (14 2p)(r)eV L0 — p j(r) eV L = o/ =00 29)
—p Z(r)e\/fé(r)(l#l) + (1 +2p)A(r)e —0(r)i _ p A(r) eV Oi=1) —  pV/—0()i
For n>2 1 1
A(r) = Min , _ <1
—pi"(r)e‘/m (14 2p) 2 (e Naren p (neV IO 1+ 2p(1—cosO (r) 1+ 2 p (1 —cosO(r))
=Sy £ VR (T ) e 20 ) = MO | e () T 29 e ] -
- — cos —
—pT'(r) VT 1 (1 42p)T'(r)eV T — p 7 (1) TG pLZemt ()7 14 2p (1~ cosblr))
==y 77 )em+<Z;Q;VJ) eV Now let |4m| sh, m=1,23,..,n-1
m=1,23, ...n—1
(30) In [17], there is a lemma which states:
Begin with n=1, in Eq. 29 to obtain The coefficients v; = (—1y (j) (j=0,1,2,...) satisfy:
p A(r)eV 8 O 4 (14 2p) A(r)eV 2 — p Ar) eV = eV (31)
= \/—

p
—p)»()er( 1+ 2p)7(r)e ,0<,>,-_ﬂ(r)e\/,7:

vo=1, V/<O jzl, 2,3,...

Siov>0 k=23,

Divide Eq. 31 on V=0 to obtain: 1
2.
-/ (i _
€ =1 3. From this lemma and Eq. 30, we obtain
4

{ p eV LU (14 2p)Alr) = p A(1)
—p Z(r)e\/m + (14 2p)a(r) —p A(r) e V00 = 1
{A(r){(l +2p) = p (VO 4 VIO = LV +(1+2p> (e H - p 2 e RO
: R S5 e T (S5 5
AN[(1+2p) —p (e 00 4 e 70“)’)] =1 T m+(1+zp 7' (e mf—pin(r)e ST
Ar)[ (1+2p) = 2 pcost (r)] = 1 = =y I eV (D) eV
{I(r)[ (14+2p) — 2 pcosO(r)] = 1 (33)
A1+ 2p (1 —cosl (r)] =1
{I(r)[ 14+ 2p (1 —cosO(r))] =1

(32)

—0i
.« . e = L
According to the Zadeh extension principle [21], we Divide Eq. 33 on{ oV i to obtain:
obtain:
—p 2NV (142p)2(r) —p X(e YT = =Sy () + Ty (34)
—p X (r)eV 00 L (14 2p) 7 (r) —p A (r)e VI = — ;;11 v 2 (r)+z_;;} vj

"N (1+2p) —p <V—Q<’”’+ e *W)]: =3y )+ v
p (e Y )] ]11'“()"‘20"]

2N (1 +2p) —p (2 cost ()] = - ;:: v z" )+ v 35)
7' (1+2p) = p (2 cosO(r)] = =3 vy 7 <>+z,ov,

{A (N[ 1+2p(1 = cosd ()] = = Y= vy 27(r >+z

(N 1+ 2p(1 = cosO(r)] = =S vy 7700 + 05 v
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So, ()| <1
Thus, = =
1 n—1 n—1 { |}" (V)’Sl
n _ _ . n—j i . ’ . .
A(r) = T 2p(1 = cosd () * { Zv_, A(r) +ZV] } T.h.erefore, acco.rdmg .to Yon Neumann s criterion for
ﬁ‘ ﬁo stability, the fuzzy implicit finite difference scheme defined
() = 1 _ .l X : i () + "z: y by Eq. 1 is unconditionally stable for all r-level set and for
1 +2p(1 — cos0 (r)) P = all 0<a<1.
Therefore, 5 Numerical example
in _ 1 /-Ln j -
|2"(r)] = 1+2p(1 — cost ( Z"/ r)+ Z;Vf In this section, we implement the implicit finite difference
1 W approximations to solve fuzzy time fractional diffusion
|2 (r)| = T 20— ot () * [—ZVJ ’ +Zvj } equations for different orders of o to investigate the
P = =0 implicit finite difference method. The Wolfram
n—1 n—1
A (r % )n—J V;
£(r) = 1+2p(1—c0s0 LZI ¢ ]Z()]}
n—1 n—1
—=n —n j
Lo(r * r) + Vi
(= 1+2p(1—c0s9 LZI: ;]]
n— n—1
A'(r) < * P+ v
4ns 1—|—2p(1—c0s9 l = | )| /ZO:]]
n—1 n—1
2(r * 7 ’ +) v
(< 1+2p(1—60s0 [ ) j;oj
1
() < [ 1,
_(r)— ijl( ";)4‘2 Vi *1—‘1-2]7(1—6‘03‘9())
—n _ _ 1
ir<{ ’.‘71 —v.) + YLIV'}* —
()= [ (59) + 20 1+2p(1 — cosO (r))
1
A(r) = — — coi (Ve vt v
2"(r) T 2p(1= cosl (7)) [(=vi)+ (=v2) + .o+ (mvat) Fvo+vi+ v+ 4 V]
— 1
r)= = —vi)+ (=) + ...+ (—Vvu1) +Vvo+Vi+Vvo+...4+V,_
(r) T 201~ ol () [ (=v1) + (=72) (=Vn-1) +vo +vi 4 1]
A'(r) = ! * V)
=Y 14 2p(1 — cosO (r)) 0
— 1
A(r) = = * Vo
14+ 2p(1 — cosO (r))
1
A'(r) =Mi <1
£(r) m[l +2p(1 — cosO (r))] -
—n 1
A (r) = Max = <1
14+ 2p(1 — cosO (r))
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MathematicalO software was used to conduct the numeri-
cal experiment for the proposed method.

Example 1 Consider fuzzy time fractional diffusion
equations [10]
o%i(x, 1) O%i(x,t
a(x,1) _ Ol ), 0<x<l[, t>0 (36)
or* Ox?

subject to the boundary conditions #(0,7) = i(1,7) = 0 and
initial condition

i(x,0) = ksin(mx), 0< x<1 , (37)

where o (r) = [0.1r — 0.1,0.1 — 0.17] for all » € [0, 1]. The
exact solution of Eq. 36 was given in [10]:

u(x 'r:xwirinnx 38
(xsoir) = DSy R in(e) (39)

The absolute error of the solution of Eq. 36 can be
defined as:

E], = |u(t,x;r) — u(t,x;r)|
E]r = }U(t,x; r) — u(t, x; r)|

(39)

[E], = la(t,x;r) —i(t,x;7)| = { [

According to Egs. (20, 21) in Sect. 3 the implicit finite
difference method formula for solving Eq. 36 is as follows:

n
ATy vy (7 — )
=0

ﬂi+1,n(x7 5 r) - zﬂi,n(xa 5 r) +ﬂ[—1,n(xa 5 r)

_ - (40)
Ay (i )
=0
_ ﬁi-‘rl,n(xa L r) - zui,n(xa 5 r) + ﬁi—l,n(x’ L r) (41)

h2
As explained in Sect. 3 we obtain

=Py, (615 7) A+ (14 2p)u (X, 157) — puy_y ,(x, 85 7)

n—1 n—1
= - Z Villi p—j t (Z Vj) Yo (42)
=

J=0

_pﬁi+1,n(X, t; }") + (1 =+ Zp)ﬁi,n(xa t; }") _pﬁi—l,n(xv [ I")
n—1 n—1
= — Z Vjﬁi,nfj + (Z Vj) ﬁi,O (43)

At Ax=h=0.1and A®=(0.01)"°=0.1to get p(r)

= %l—t; = % we have the following results:

Tables 1 and 2 and Figs. 1, 2, 3, 4 and 5 show that both
the implicit finite difference and exact solution at r = 0.05,

@ Springer

Table 1 Lower solution of Eq. 36 by implicit FDM at t = 0.05, o =
0.5 and for all r € [0, 1]

r-level  %(0.9,0.05;r) [E] ,

0 —0.007854034999317416 0.0005933599789698339
0.2 —0.006283227999453932 0.0004746879831758668
0.4 — 0.004712420999590449 0.0003560159873818988
0.6 —0.0031416139997269667  0.00023734399158793383
0.8 —0.0015708069998634825 0.00011867199579396691
1 0 0

Table 2 Upper solution of Eq. 36 by implicit FDM at t = 0.05, o =
0.5 and for all r € [0, 1]

r-level %(0.9,0.05;r) [E],

0 0.007854034999317416 0.0005933599789698339
0.2 0.006283227999453932 0.0004746879831758668
0.4 0.004712420999590449 0.0003560159873818988
0.6 0.0031416139997269667 0.00023734399158793383
0.8 0.0015708069998634825 0.00011867199579396691
1 0 0

o =0.5 and for all r € [0,1] attain the triangular fuzzy
number shape and thus satisfy the fuzzy number properties
as explained in [21].

Now we compare between the numerical and exact
solutions of Eq. 36, for different orders of o.

Figures 6, 7 and 8 shows that both the implicit finite
difference and exact solutions satisfy the fuzzy number
properties by attaining the triangular fuzzy number shape.
Also, the exact solution agrees with the implicit finite
difference solutions for different values of «. The com-
parison of numerical and exact solutions when o =

Fig. 1 The exact solution for the lower bound of Eq. 36 at Ar = 0.01,
h=01andr=0



Neural Computing and Applications (2019) 31:4085-4094

4091

Fig. 2 The exact solution for the upper bound of Eq. 36 at Ar = 0.01,
h=0.1and r=0

implicit FDM & exact
T

Exact = |
Implicit FDM +

0.8

r-level

0.4

0.2

0.00+

Z0.005 0.000 0.005

{(0.9,0.05,0.5,r)& #1(0.9,0.05,0.5,r)

Fig. 3 Exact and implicit FDM of the solution of Eq. 36 at « = 0.5,
x=10.9, r=0.05 for all r € [0,1]

Fig. 4 Exact and implicit FDM of the solutions of Eq. 36 at different
values of o for all r € [0, 1]

0.008
0.006
0.004
0.002

Fig. 5 the lower implicit FDM of the solution of Eq. 36 at o = 0.2 for
all r € [0,1]

implicit FDM & exact
T

(o] 3 ]
Implicit FDM at a= 0.4 L] Exact of a=0.4 0.4 —

Implicit FDM at a= 0.5 Exact of a=0.5 0.5

0.8} Implicit FDM at a= 0.6 Exact of a= 0.6

0.2

0.0t + 7=

1 1 1 a
~0.005 0.000 0.005
0(9,a,n& b(9,a,r)

Fig. 6 the lower implicit FDM of the solution of Eq. 36 at o = 0.5 for
all r € [0, 1]

0.4, 0.5, 0.6 shows that the scheme is accurate and the
results confirm our theoretical analysis.

Example 2 Consider fuzzy time fractional diffusion
equations [14]

o%i(x,t) 1, d%(x,1)
=—.x

o 2 oxz

O<x<l, t>0
(44)

subject to the boundary conditions #(0, ) = #(1,¢) = 0 and
initial condition

i(x,0) = kx*, 0< x<1, (45)

where o(r) = [0.17 — 0.01, 0.01 —0.017] forall r € [0, 1].
The exact solution of Eq. 44 was given in [10] :

@ Springer
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Fig. 7 the upper implicit FDM of the solution of Eq. 36 at o = 0.2 for
all r € [0, 1]

Fig. 8 the upper implicit FDM of the solution of Eq. 36 at o = 0.5 for
all r € [0, 1]

tan

u(x,to5r) = ;mé(r)xz (46)

The absolute error of the solution of Eq. 44 can be
defined as:

[E], = li(t,x:7) — it 5:7)| = { [éf’:

__(t,x; r) —u(t,x;r)|

u
U(t,x;r) —u(t,x; r)‘

(47)

According to Egs. (20, 21) in Sect. 3 the implicit finite
difference method formula for solving Eq. 44 is as follows:

n
A vy (7 - )
=0

_ L ot (667) = 2, (4 157) + thi g (4 57)

2 h?
(48)
Ay vy (@ )
=0
_ lxz Uip1p(X, 157) = 2050 (X, 857) + Himy (X, 15 7)
2 h?
(49)

As explained in Sect. 3 we obtain

_pEiJrl,n(xv L r) + (1 + Zp)ﬂi,n(xa L }") _pﬂifl,n(xa L l")

n—1 n—1
- T Z Villin—j + (Z Vj> Ui (50)

j=1 J=0

— P15, 57) + (14 2p)iin (5,1 ) — i1 (. 15 7)
n—1 n—1
= — Z Vjﬁi,nfj + (Z Vj) ﬂ,”o (51)
j=1 j=0

At Ax = h= 0.1and A = (0.001)*° = 0.01 to get

p(r) = %xz% we have the following results:

Tables 3 and 4 and Fig. 9 show that both the implicit
finite difference and exact solution at r = 0.05, « = 0.7 and
for all r € [0, 1] attain the triangular fuzzy number shape
and thus satisfy the fuzzy number properties as explained
in [21].

Now we compare between the numerical and exact
solutions of Eq. 44, for different orders of o.

Figure 10 shows that both the implicit finite difference
and exact solutions satisfy the fuzzy number properties by
attaining the triangular fuzzy number shape. Also, the exact
solution agrees with the implicit finite difference solutions

Table 3 Lower solution of

Eq. 44 by implicit FDM at rrlevel #(0.9,0.05;r) [E],

t =0.05,00 = 0.7 and for all s 6

0] 0 —32217126986791893 x 10 8924974815617505 x 10
0.2 —25773701589535144 x 10-5 7139979852492011 x 106
0.4 — 19330276192151353 x 10~ 5354984889369801 x 10~
0.6 — 12886850794767572 x 10-5 3569989926246054 x 10~
0.8 — 64434253978383786 x 10 1784994963130027 x 10~
1 0 0

@ Springer
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Table 4 Upper solution of Eq. 44 by implicit FDM at r = 0.05, o =
0.7 and for all r € [0, 1]

r-level  #(0.9,0.05;r) [E] ,
0 32217126986791893 x 1075 8924974815617505 x 10~°
0.2 25773701589535144 x 10~ 7139979852492011 x 10~°
0.4 19330276192151353 x 10~ 5354984889369801 x 10~°
0.6 12886850794767572 x 107> 3569989926246054 x 1076
0.8 64434253978383786 x 107 1784994963130027 x 1077
1 0 0
implicit FDM & exact
Exact — ]

implicit FDM +

o8l

06l

r-level

04l

02l

00 L S S S S S S I ST S SN S (NS SO S S BT SN S S S NN ST SO S S |
-0.00003 -0.00002 -0.00001 0 0.00001 0.00002 0.00003
{(0.9,0.005,r)& #i(0.9,0.005,r)

Fig. 9 Exact and implicit FDM of the solution of Eq. 44 at « = 0.7,
x=0.9,1=0.05 and for all r € [0, 1]

implicit FDM & exact
T

implicit FDM at =0.7 + Exact of @=0.7 —_—

implicit FDM at =0.8 o Exact of @=0.8

implicit FDM at @=0.9 . Exact of @=0.9 -_—

0.2

0.0t

—0.06002 0 0.06002
(0.9,0.005,r)& 1(0.9,0.005,r)

/ )
-0.00004 0.00004

Fig. 10 Exact and implicit FDM of the solution of Eq. 44 at different
values of o for all r € [0, 1]

for different values of o. The comparison of numerical and
exact solutions when o= 0.7, 0.8, 0.9 shows that the
scheme is accurate and the results confirm our theoretical
analysis.

6 Conclusions

In this paper, an implicit finite difference scheme has been
implemented to obtain the numerical solution for a fuzzy
time fractional diffusion equations. The Caputo formula
was used for the time fractional derivative. The obtained
results by the implicit finite difference scheme satisfy the
fuzzy number properties by taking the triangular fuzzy
number shape. We have also shown that the implicit finite
difference scheme is unconditionally stable. A comparative
study of the numerical and exact solution at different val-
ues of o indicates that the scheme is feasible and accurate.
The proposed implicit scheme can be used to obtain
accurate numerical solutions of fuzzy time fractional dif-
fusion equations. The presented scheme may be extended
to nonlinear fuzzy fractional diffusion equations, and this
will be investigated in detail at a later stage.
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