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Abstract
Transient stability is very important in power system. Large disturbances like fault in a transmission line are a

concern which needs to be disconnected as quickly as possible in order to restore the transient stability. Faulty current

and voltage signals are used for location, detection and classification of faults in a transmission network. Relay detects

an abnormal signal, and then the circuit breaker disconnects the unhealthy transmission line from the rest of the health

system. This paper discusses various signal processing techniques, impedance-based measurement method, travelling

wave phenomenon-based method, artificial intelligence-based method and some special technique for the detection,

location and classification of various faults in a transmission network. In this survey, paper signifies all method and

techniques till August 2017. This compact and effective survey helps the researcher to understand different techniques

and methods.
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1 Introduction

To supply uninterrupted electric power to the end users is a

challenging task for the power system engineers. The cause

of the fault may be beyond human control, but it is

essential to detect the type of the fault and accurately locate

it. Conductors contact with each other or ground, and then

fault is generated. Different kinds of faults are single line-

to-ground fault (SLG), line-to-line fault (LL), double line-

to-ground fault (LLG) and triple line fault (LLL). SLG, LL

and LLG faults are unbalanced faults, whereas LLL fault is

balanced one. High fault current flows in the power system

network due to short circuit, and it causes overheating and

mechanical stress on the equipment of the power system

[1–5].

Open circuit occurs when any one of the situation

aries such as disconnection of one or more phases; or

circuit breakers/isolators opens; or joins of cable or

jumper break occurs at the tower tension point. Due to

open circuit one or two phase, produce unbalance current

in the system, so it causes heating of rotating machine.

Such abnormal condition should be protected by pro-

tective scheme.

Information is collected from journals, books, confer-

ence papers, articles online libraries, and databases like

IEEE, IET, ELSEVIER, Taylor & Francis, Google Scholar,

Scopus, EBSCO and many more relevant websites.

The remaining part of the paper is systematized as fol-

lows. Section 2 presents conventional methods that are

used for transmission line protection, Sect. 3 is about sig-

nal processing technique, Sects. 4 and 5 explain various

methods of artificial intelligence (AI)-based techniques and

some special techniques, Sect. 6 explains the strength and

weakness of all the technique, Sect. 7 is about comparative

study of fault classification, location and detection of

transmission line, Sect. 8 presents practical case study and

comparison of fault detection, classification and location

methods, and Sect. 9 gives the conclusion drawn from the

survey followed by references.
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2 Conventional methods used
for transmission line protection

Impedance measurement-based method and travelling

wave method are the conventional methods broadly used

for detection, classification and localization of the fault in a

transmission line [6].

In impedance-based methods, the distance relay opera-

tion is accurate and reliable on low value of fault impe-

dance, but did not rely for high fault impedance [7]. Based

on a number of current and voltage signals collected from a

terminal of transmission line, single-end or two-end

impedance methods are proposed. The concept of single-

ended impedance-based method is to identify the location

of the fault by calculating the apparent impedance seen

from one termination of the line. Impedance-based method

fault position error is high due to high fault path impe-

dance, load on the line, source parameters and shunt

capacitance [8–11].

Two-ended impedance-based method is implemented to

locate the fault to eliminate the above-said problems. The

disadvantage of this method is a high computational burden

due to measurement of current and voltage signals at two

ends of the line. However, improve the accuracy to locate

the fault [12–14].

Travelling wave-based methods are used to determine

the distance of fault by using correlation of forward and

backward waves travelling in a transmission line. This

method has less error to locate faults in high resistance

faults. But the main difficulties are computational burden,

expensive and high sampling frequency, difficult for

practical application [15–17].

3 Signal processing technique

3.1 Discrete wavelet transform

Time scale decomposition of DWT is done by a digital

filtering process up to level 8 as displayed in Fig. 1. The

fault signal is fed to the low pass filter (LPF) and high pass

filter (HPF) where factor 2 is down-sampled. Detail coef-

ficient (d1) is the production of HPF at level one.

Approximation coefficient (a1) is the production of LPF at

level one. Similarly, the process is continued to decompose

the signal until and unless only two samples are left for

decomposition. Due to less computational burden, DWT is

used in fault analysis in a transmission line [18–21].

The DWT of a signal x(t) is defined as

DWTðx;m; nÞ ¼ 1
ffiffiffiffiffiffi

am0
p

X

m

X

n

xðkÞw� k � nb0a
m
0

am0

� �

ð1Þ

where K, m and n are integer. am0 and nb0a
m
0 are represented

as dilation (scale) and translation (time shift) parameter. b0
and a0 are constant and taken as 1 and 2, respectively [89].

3.2 Wavelet transform

Wavelet transform has flexible resizing of the window for

use of frequency–time information. It is applicable for non-

stationary signal. But detailed information can be obtained

in WT at a higher sampling frequency [22–24].

Mathematical expression of a signal x(t) in WT is given

below

Ws;sðtÞ ¼
1
ffiffi

s
p

Z

1

�1

xðtÞw t � s
s

� �

dt ð2Þ
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Fig. 1 Decomposition tree of

discrete wavelet transform

(DWT)
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Translation factor and scale factors are denoted as s and m,

respectively. wðtÞ is the mother wavelet [25].

3.3 Wavelet packet transform (WPT)

To get the important data on high frequency, WPT is imple-

mented. So both approximation coefficient (a1) and detail

coefficient (d1) are decomposed to get full frequency band.Due

to calculation burden, it is decomposed up to 4 levels as shown

in Fig. 2. SoWPT gives an excellent frequency resolution and

maximum number of features than DWT [26–28].

WPT of a signal x(t) is

W
n;a
b ¼ 2a=2

Z

f ðtÞwnð2�at � bÞdt ð3Þ

Wavelet position and scale are denoted by b and a. Mother

wavelet is wn. The nth and (n ? 1)th level decomposition

are related as

W
2nþ1;aþ1
k ¼

X

hðb� 2kÞWn;a
b ð4Þ

W
2nþ1;aþ1
k ¼

X

gðb� 2kÞWn;a
b ð5Þ

where wavelet quadrature mirror filter coefficients are

h(i)and g(i) [94].

3.4 S Transform

S transform is the combined properties of wavelet trans-

form and short-time Fourier transform (STFT). It is

implemented for non-stationary signals where the window

width changes inversely with frequency. The main

advantage of the ST than other signal processing tool is that

it provides information on time, frequency and phase angle

of signal. S transform is protected to noise. So it is widely

used in fault studies in power system [29–31].

The mathematical expression for S transform [32] for

signal x(t) is specified as:

S s; fð Þ ¼
Z

1

�1

x tð Þ fj j
ffiffiffiffiffiffi

2p
p e

� s�tð Þ2 f 2
2 e�i2pftdt ð6Þ

Time and frequency signify t and f, respectively. s is the

control parameter for adjusting the Gaussian window.

Frequency (f) and phase (/) [32] of the signal is well

defined in (7) and (8).

/ s; fð Þ ¼ a tan
imagðSðs; f ÞÞ
realðSðs; f ÞÞ

� �

ð7Þ

F s; fð Þ ¼ 1

2p
o

ot
2pf sþ / s; fð Þf g ð8Þ

4 Artificial intelligence (AI)-based
techniques

Artificial intelligence (AI)-based methods are used for

detection, classification and position of the fault in a trans-

mission network. Support vector machine (SVM), decision
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Fig. 2 Wavelet packet transform (WPT)
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tree (DT) classifier, extremely learning machine (ELM)-

based method, artificial immune system (AIS), self-orga-

nizing map (SOM), auto-regressive neural network

(ARNN), artificial neural network (ANN)-based technique,

adaptive neuro-fuzzy inference system (ANFIS), adaptive

resonance theory (ARP), fuzzy logic control (FLC) and

expert system technique and many more are AI-based tech-

niques used in power system. To find the solution of complex

multiobjective nonlinear systems, the above-said methods

are used to get faster solution and less error. The paper

focuses on signal processing techniques in combination with

artificial intelligence methods to accurately detect, locate

and classify the faults in a transmission network.

4.1 Artificial neural network (ANN)

Due to simple, better generalization property, adaptive

nature, ANN is widely used for fault location, classification

and detection in power system transmission line in both real-

time and offline application. Faulty signal is trained by ANN

as an input and to diagnose fault condition as an output [33].

4.2 Back-propagation neural network (BPNN)

For pattern recognition, BPNN is effectively used. To adjust

the feedback of network, error is reduced. The main problem

is selecting the number of neurons and hidden layers for each

layer. Using large number of neurons and hidden layers

makes the training process slow. On the other hand, less

number of neurons and hidden layers make divergent of the

training process [34] BPNN is used to identify the fault in the

transmission network. BPNN and PNN (probabilistic neural

network classifier) with S transform are used to detection and

classification of fault is proposed in [35]. Six statics features

are imported from current or voltage signals by S transform

and then classified by probabilistic neural network (PNN).

But under noise condition, the accuracy of fault classification

is reduced.

4.3 Probabilistic neural network (PNN)

The training examples are classified allowing to their distri-

bution values of probability density function (PDF) in PNN

algorithms. Mathematically, the PDF is explained below [36]

fkðXÞ ¼
1

Nk

X

Nk

j¼1

exp �
X � Xkj

	

	

	

	

2r2

� �

ð9Þ

The output vector of the hidden layer H is modified as

Hh ¼ exp �
P

i Xi �Wxh
ih

2r2

� �

ð10Þ

netj ¼
1

Nj

X

h

W
hy
hj Hh andNj ¼

X

h

W
hy
hj ; ð11Þ

netj ¼ maxkðnetkÞ then yj ¼ 1 else yj ¼ 0. Number of input,

hidden units, outputs, training examples and clusters are

denoted as i, h, j, k and N, respectively. Smoothing parameter

(standard deviation) and the input vector are presented as r

and X, respectively. The Euclidean distance between the

vectors X and Xkj is given below

X � Xkj

	

	

	

	 ¼
P

i ðX � XkjÞ2. The connection weight between
the input layer X and the hidden layer H is Wxh

ih and hidden

H1
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Fig. 3 Structure of PNN
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layer to the output layer Y is W
hy
hj as shown in Fig. 3 [86].

Input vector is classified into two classes in a Bayesian

optimal manner. To calculate the PDF, Bayes decision rule

is applied. All PDF is positive and equal to one after

integration over all values [86].

4.4 Feedforward neural network (FFNN)

FFNN made with input, hidden and an output layer with

multilayer perceptron and back-propagation learning

algorithm. The error produced by this method is minimized

by adjusting weight and biases of the network. FFNN

structure is shown in Fig. 4 [37].

If x1, x2,…., xi,…xn are the input variable of neuron j.

The output uj is given below

uj ¼ u
X

N

i¼1

wijxi þ bj

 !

ð12Þ

where u is the activation function and the bias of neuron

j is bj. wij is the weight factor connecting ith input and jth

neuron [168].

4.5 Radial basis function neural network
(RBFNN)

RBFNN contains 3 layers, and they are characterized by

input, hidden and output layer. The input layer signals are

given to the hidden layer where nonlinear radial basis

function neuron action will take place, and linear neurons

contain the output layer. Figure 5 shows the RBFNN

architecture. The output Y is expressed as below

Y ¼ f ðxÞ ¼ w0 þ
X

m

i¼1

Wi/ðDiÞ ð13Þ

where the x = input vector, bias = w0, weight parame-

ter = Wi, number of nodes in hidden layer = m, radial

basic function (Di) is a Gaussian function.

/ðDiÞ ¼ exp
�D2

i

r2

� �

ð14Þ

where r is the cluster radius. RBFNN locates the fault in

transmission line better than BPNN [38, 39].

Inputs
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∑ ϕ
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2x

Nx
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1 jw

2 jw
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ju

Fig. 4 Feedforward neural network algorithm structure
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Fig. 5 Architecture of radial

basis function network
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4.6 Fuzzy logic-based methods

Fuzzy logic works on the principle of ‘if–then’ relation-

ship. It is used for classification, location and detection of

fault in a transmission network. The computational burden

of this method is less, but accuracy is affected due to the

resistance of the fault and the inception angle of the fault

[40, 41].

A simple overall organization of a fuzzy scheme con-

sists of fuzzification, fuzzy inference system, fuzzy rule

base and defuzzification as displayed in Fig. 6 for fault

classification. In the fuzzification stage, crisp numbers are

mapped into fuzzy set. After fuzzification, the fuzzified

inputs are given to the fuzzy inference system, and fol-

lowing the given fuzzy rule base, it gives the type of fault

in its output. Finally, in the defuzzification stage, the fuzzy

output set is mapped into crisp fault type [42].

4.7 Adaptive neuro-fuzzy inference system
(ANFIS)

Adaptive network means multilayer network, where every

node operates a particular function of the applied data set.

The function of the node varies node to node. It is similar

to neural network, and the function is same as a fuzzy

inference system. ANFIS is used for location and classifi-

cation fault in a transmission line. Accuracy of this method

is better. Due to fuzzy logic, it will take more time to train

the data set. A method uses wavelet multiresolution anal-

ysis (MRA) to extract the important features, then applying

the ANFIS to locate the fault in transmission line [43]. In

[44], ANFIS method is compared with the fuzzy inference

system (FIS), adaptive neuro-fuzzy inference system and

artificial neural network (ANN) to locate the fault in the

system. Error analysis by Monte Carlo simulation presents

that the ANFIS algorithm is better reliable and precise than

FIS and ANN methods in the circumstance of different

simulations of various faults. But in this proposed method,

computational efficiency is affected during processing of

the data and more memory space is required for the

calculation.

For fuzzy inference system, x and y are two inputs and fi

is the output. Mathematically, 2 fuzzy if–then rules of

Takagi–Sugeno’s are given below

Rule 1: if x is A1 and y is B1, then f1 ¼ p1xþ q1yþ r1
Rule 2: if x is A2 and y is B2, then f2 ¼ p2xþ q2yþ r2

where fuzzy sets are denoted by Ai and Bi and design

parameters are pi, qi and ri.

The architecture of ANFIS consists of 5 layers as shown

in Fig. 7 [21].

Layer 1: Every node in these layers is an adaptive node

with a node function.

o1i ¼ lAiðxÞ ð15Þ

o1i ¼ lBiðyÞ ð16Þ

where input to the node are x and y and o1i is the mem-

bership function of Ai and Bi. Ai and Bi are the linguistic

labels related to node function. So lAiðxÞ can adopt any

bell-shaped function as follows

lAiðxÞ ¼
1

1þ x�Ci

ai

� �2
� �bi

ð17Þ

Label 2: Every node is fixed and multiplies with the

incoming signal. Firing strength is the weight degree of the

if–then rules. The output is

Wi ¼ lAiðxÞlBiðyÞ ð18Þ

Layer 3: It is the normalized layer and normalized the

firing strength.

Wi ¼
Wi

W1 þW2

ð19Þ

Layer 4: All the nodes in these layers are square node

with a node function.

Wifi ¼ Wiðpixþ qiyþ riÞ ð20Þ

Layer 5: The summation of all incoming signal output is

o5i ¼
X

i

Wifi ¼
P

i Wifi
P

i Wi

ð21Þ

4.8 Decision tree (DT)

DT is a data miming classification technique. For high-

dimensional pattern classification, DT is applied based on

selection of attribute that maximizes and fixes data divi-

sion. Attributes are split into several branches recursively

until the termination and the classification are achieved.

The mathematically DT technique is

Fuzzy rule base

Fuzzy Inference systemFuzzification Fuzzy rule base

Input Output

Fig. 6 Fuzzy logic system for

fault classification
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X ¼ X1;X2; . . .. . .. . .. . .Xmf gT

Xi ¼ x1; x2; . . .xij; . . .. . .xin

 �

S ¼ S1; S2; . . .Si; . . .. . .Smf gT
ð22Þ

The available observation number is m, the independent

variable number is n, m dimension vector S is having the

variable predicated from X andXi. T is the vector transpose.

The ith component of n dimension independent variable

xi1; xi2; . . .xij; . . .. . .xin is autonomous variable of the pattern

vector Xi.

The target of DT is to predict S based on the observation

of X. DTs shows differnt level of accuracy when devel-

oped from different X. To get the optimal tree is a difficult

task because of the large size of the search space. This

algorithm develops a DT by a sequence of local optimal

decision about which features can be used to partition data

set X. The optimal size DT Tk0 is generated according to

the below optimization problem

RðTk0Þ ¼ min
k
fRðTkÞg; k ¼ 1; 2; 3. . .. . .K ð23Þ

RðTÞ ¼
X

t2T
frðtÞpðtÞg ð24Þ

The misclassification error of the tree Tk is presented by

RðTkÞ, where the optimal DT model Tk0 is used to reduce

the misclassification error RðTkÞ. Binary tree (T) is

T 2 fT1; T2; T3; . . .. . .; Tk; t1g, where the index number of

the tree is K, tree node is t, root node is t1. Re-substitution

estimation of error in misclassification of the node t is

r(t) and probability drop into node t is p(t). TL and TR are

denoted as subtrees and define the left and right set of

partition. Figure 8 shows the lattice L binary partition into

conjointly left/right sets. Two-dimensional binary classifi-

cations are shown in Fig. 9. The left set gets the lattice

elements with feature q having less value than threshold. In

right set, feature q value of lattice components is more than

the threshold value [110].

4.9 Support vector machine

SVM is a statistical method used for the computational

learning purpose [45]. Sequential minimal optimization

(SMO) for kernel support vector machine is implemented

in LIBSVM to support the regression (nu-SVR). It has

always given a global solution rather than local minima.
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The error bound is controlled with cost parameter, and

width of hyper axis is controlled by gamma parameter.

SVM is used for better accuracy in the location and clas-

sification of fault in a transmission line. SVM structure

algorithms are shown in Fig. 10, where K(�) = kernel

function, M = number of support vectors, F(x) = decision

function, W = weights and b = bias [46–48].

For n dimension inputs Si(i = 1, 2,….M), where M is

the sample number. Output Oi = 1 for class 1 and

Oi = - 1 for class 2.

Mathematically, the hyperplane is

f ðsÞ ¼ wTsþ b ¼
X

n

j¼1

wjsj þ b ¼ 0 ð25Þ

where n dimension vector is w and b is a parameter. The

position of hyperplane is decided by w and b magnitude as

shown in Fig. 11.

If Oi = 1, then the constraints is f ðsiÞ� 1 and if

Oi = - 1, then f ðsiÞ� � 1, so

Oif ðsiÞ ¼ OiðwTsþ bÞ� þ 1 ð26Þ

wk k�2
is the geometrical distance. Then the optimiza-

tion problem of the optimal hyperplane is [45]

Minimize
1

2
wk k�2þC

X

M

i¼1

ni ð27Þ

Subject toOiðwTsþ bÞ� 1� ni and ni � 0 for i

¼ 1; 2; . . .M ð28Þ

The optimal bias of b* is

b� ¼ � 1

2

X

SVs

Oia
�
i ðvT1 si þ vT2 siÞ ð29Þ

For class 1 and class 2, v1 and v2 are random SVM.

The decision function is

f ðsÞ ¼
X

SVs

aiOis
T
i sþ b� ð30Þ

Data samples have classified as

s 2 Class-1; f ðsÞ� 0

Class-2; otherwise

� �

ð31Þ

4.10 Random forest

Biggest grouping de-correlated tree interpreters are called

as random forest, and every tree independently depends on

the random vector sample. Instability and noise are the

major disadvantage of a singular tree, but when developed

suitably deep, they have a comparatively small bias. So

there are perfect candidates for collaborative rising as they

can apprehend complex interactions and totally benefit

from a combination-based variance decrease [49]. Random

selection of features to divide each node and resampling

the training set to propagate each tree yield error rates that

are de-correlated and noise tolerant. The errors of the

forests are converged to a perimeter as the number of trees

in the forest is huge [50].

The main concept of the collaborative tree growing

processes is in the nth tree (n B Ttree, total number of tree

ensemble). hn is produced as a random vector and inde-

pendent of hn; . . .. . .hn� 1 previous random vector in the

same distribution. From the training set M, single tree

grows and the attribute set hn, and output classify Sn (Y,

hn), here input vector is Y. In the random riven selection, h
contains the number of Ttree, the no of attributes Ta[ Ttry
in the training set M.

The assemblage of tree-structured classifiers {Sn(Y, hn),
n = 1,…Ttree} contained in random forest, where hn is

liberated indistinguishable distributed random vectors and

tree performs a unit vote for the utmost popular class at

input Y, respectively.
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All distinct trees are united to predictions for ensemble

of trees. For the class that most trees vote is reverted as the

extrapolation of the ensemble to classify.

cTtreeRF ðYÞ ¼ majority vote ĈnðYÞ; n ¼ 1. . .. . .. . .ntree ð32Þ

ĈnðYÞ is the class prediction of the nth RF tree.For clas-

sification, the class that most trees vote is returned as the

prediction of the ensemble. In relatively class frequency,

i.e. for prediction probability single tree average is

pTtreeRF cTtreeRF 2 fM; IgY
� 


¼ 1

Ttree

X

Ttree

1

PSnðhn;TÞðcn 2 fM; IgjYÞ

ð33Þ

where PSnðhn;TÞ is the probability associated with Y by the

RF tree Sn(Y, hn). A old-fashioned decision tree basically

signifies an overt decision boundary, and a case E is clas-

sified into class c if E falls into the decision area consistent

to c. The class probability p(c|E) is normally projected by

the portion of occurrences of class c in the leaf into which

E falls [51, 52].

4.11 Extreme learning machine (ELM)

Extreme learning machine has only one optimize hidden

layer. The main advantage of ELM is that there is no

requirement of tuning of the hidden layer. Figure 12 shows

the structure of ELM. Kernel function and nonlinear acti-

vation function are applied to scale the data for a definite

range. Weight and bias value adjustment is not required in

ELM methods. It is faster and gives better performance

than conventional function ELM used for fault location and

classification in the power system network [53, 54].

ELM technique is explained by using a training data set

of xi ;f yig where xi 2 <p and ti 2 <q, i = 1… n. n is the

number of samples. Mathematically, single hidden layer

feedforward neural network expressed as

X

l

i¼1

bif wi � xj þ bi
� 


¼ Oj ; j¼1;.........;n ð34Þ

where f(x) is the activation function. wi is the weight that

connects ith input neuron to hidden neuron and bi is the

weight that connects ith hidden neuron to output neuron.

‘bi’ is the bias represented by the threshold of the ith

hidden neuron, and output of jth input is denoted by Oj.

For n sample and (L) hidden layer of the ELM is given

below [55]

X

l

j¼1

Oj � tj
	

	

	

	 ¼ 0 ð35Þ

So, (33) turns out to be:

X

l

i¼1

bif wi � xj þ bi
� 


¼ tj; j¼1;.........;n ð36Þ

(35) is stated as:

Hb ¼ T ð37Þ

where

H ¼ f wi � xj þ bi
� 


ð38Þ

H is the hidden layer matrix, and input weight w and biases

b are randomly chosen. So least-square solution

minb Hb� Tk k ð39Þ

The result of (36) is stated as:

b
�
¼ HyT ð40Þ

where H� signifies the Moore–Penrose general inverse of

matrix H, hidden layer output matrix is symbolized by b
and target matrix is symbolized by T.

5 Emerging computational intelligence
techniques

5.1 Stationary wavelet transform (SWT)

SWT is alike as WPT and also called as non-decimated

wavelet transform. The main change in SWT is up-sam-

pling of the decomposed coefficients. So the filter coeffi-

cient at every level holds the same no. of samples as the

original signal. DWT does not get the equivalent shift of

the output, but SWT has this property due to shifting of the

original signal [128]. Filtering and feature extraction by

SWT is applied in [130]. Decaying DC offset current due to

current transformer, high-order harmonics and noise are

removed by SWT.

Fig. 12 Structure of ELM
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5.2 Principal component analysis (PCA)

The main advantage of PCA is to map the data from the

original high-dimensional space to low-dimensional sub-

space, so the dimension of the data is reduced, where the

best outcome is the variance of the data [145]. In [140]

wavelet transform (WT) and principal component analysis

(PCA), techniques are used for location and classification

faults in Taipower 345 kV power transmission network.

For feature extraction, PCA is used in [146].

5.3 Wide-area fault location methods

Location of faults in power network PMU plays a major

role, but failure occurs to locate the fault if the end terminal

PMU fails to record the faulty signal. It is not economical

to locate PMU at every bus of the network due to com-

munication problem and high cost. But optimal PMU

placement overcomes this problem [147]. In [148, 149],

location of fault in transmission grid was determined using

wide-area synchronized voltage measurements with the

help of global positioning system (GPS) receivers. The

main advantage of the proposed algorithm is, it requires

less synchronize measuring devices. The outcomes of the

technique give closed-form expression solution. Location

of the fault in transmission line by using a non-iterative

wide-area technique was proposed in [150]. Impedance

matrix was developed by the help of pre-fault positive-

sequence and negative-sequence network topology. The

location of the fault in the transmission line is determined

by using linear least-squares method. The accuracy of the

technique is not affected by the high resistance fault. In

[151], PMU was used to synchronize the voltage and cur-

rent signals for the localization of the fault in the trans-

mission grid and successfully diagnose the fault in a

hierarchical manner.

5.4 Modal transformation

The phase signal of three-phase systems is decomposed

into their modal components by means of the modal

transformation matrices. For the un-transposed multiphase

lines, eigenvector-based transformation matrix is applied to

the phase impedance and admittance matrices to decide the

current and voltage transformation matrices. Wedepohl,

Karrenbauer and Clarke transformations are non-identical

real-value matrices, which are selected for balanced

(equally transposed) multiphase lines [135]. In [152, 153],

Clarke transformation was implemented to decouple three-

phase quantity to a, b (two stationary phase components)

and 0 (zero-sequence component) on the basis of charac-

teristics of fault.

5.5 Independent component analysis (ICA)

ICA is defined as given below.

Let random vectors be X and S, where X ¼
fx1; x2; . . .. . .. . .xng and S ¼ fs1; s2; . . .. . .. . .sng. The

matrix A has element aij. The X
T is the transpose of X a row

vector, as all vectors are taken as column vectors. The

mixing model is

X ¼ As ð41Þ

If A is the columns matrix, then A is denoted by aj. The

modified model matrix is

X ¼
X

n

i¼1

aisi ð42Þ

The ICA is the statistical model in Eq (40). So ICA is

also called generative model [154, 155]. In [156], a com-

bination of ICA, travelling wave and SVM in high-voltage

(HV) transmission lines for the location and classification

of fault is proposed. The results of the technique give 100

and 99% classification and location accuracy in a real

transmission line of a noise faulty signal environment. The

main advantage ICA technique overcomes the noise

problem in the signal. ICA works on the principle of blind

source separation problem [157] and applicable for the

separation of the Gaussian signals from non-Gaussian

signals [158].

5.6 Pencil matrix method

To extract the parameter from the exponentially damped/

undamped signal, PMM is applied in [159]. PMM is less

affected by noise and has better computational efficiency

[160]. PMM is also used to extract the fundamental fre-

quency component of transmission line and eliminating the

DC offset and higher-order harmonic components of the

faulty signal [161]. The algorithm of matrix pencil is

explained in [162, 163].

6 Strength and weakness of all
the technique

Generalized strength and weakness of all the technique are

explained in Table 1 as given below.
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Table 1 Generalized strength and weakness of all the techniques

Methods Strength Weakness

ANN

technique

1. ANN is quite successful in determining the correct fault

type

2. It is easy to use, with a few parameters to adjust

3. Easy to implement

4. Application of wide range of problems in real life

5. ANN learns and reprogramming is not needed

1. For high-dimension problem, training process is complex

2. Gradient-based back-propagation method gives a local

optimum solution for nonlinear separable pattern classification

problem

3. Slow convergent in BP algorithm

4. Convergent depends on the choice of initial value of weight

parameters connecting to the network

PNN

technique

1. No learning process is required

2. No need to set the initial weights of the network

3. No relationship between learning processes and recalling

processes

4. It is guaranteed to converge in Bayesian classifier

5. PNN has fast learning time and is insensitive to outlier

1. Required high processing time if the network is large

2. Difficult to know how many neurons and layers are required

3. Learning can be slow

4. Required large memory space to store the model

Fuzzy

methods

1. Solve uncertainty problems

2. Using simple ‘if–then’ type of relation

1. Not robust at all

2. For large training data, experts are required for making fuzzy

rules and membership function

ANFIS

technique

1. Hybrid learning rule tunes the parameters properly

2. Converges much faster

3. Reduce the dimension of the search space

4. Smoothness and adaptability

1. Computational complexity is very high

SVM

technique

1. High accuracy

2. Work well, even if data are not linearly separable in the

base feature space

3. Misclassification possibilities are less

4. Maximize the margin to minimize the error bound

5. The dimension of space is not affected by the upper bound

generalized error

1. Speed and size requirement both in training and testing is

more

2. High complexity and extensive memory requirements for

classification in many cases

Random

forests

1. Easy to use and simple

2. Accuracy is very high

3. Relatively robust in noise and outliers

4. Not overfitting if taking large no of trees

5. It gives a useful internal estimation of error and correlation

6. Insensitive to the choice of the split

1. The RM model becomes slower for better accuracy as more

no. of tree ensembles

2. Random forests become overfit for some data sets with noisy

classification/regression tasks

3. Low prediction accuracy and high variance

Decision

Tree

1. Simple to understand and interpret

2. Can be combined with other decision techniques

3. Easy to generate rules

1. The calculations can get very complex, particularly if many

values are uncertain and/or if many outcomes are linked

2. Information gain in decision trees is biased in favour of those

attributes with more levels

3. May suffer from overfitting

ELM

technique

1. Only one optimize hidden layer

2. There is no requirement of tuning of the hidden layer

3. Weight and bias value adjustment is not required in ELM

1. Local minima issue

2. Easy overfitting

3. Difficult to find the optimal solution

PCA 1. Minimize the re-projection error

2. It is simple and fast

3. Reduce the dimensionality of the data

4. Reduction of noise

1. If the number of dimensions is greater than the number of data

points, then covariance matrix is needlessly large

2. The covariance matrix is problematic to be calculated in a

correct manner

Wide-area

fault

location

1. Both monitoring and control operation are done 1. Placement of PMU in power network is a challenging task for

researchers
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7 Comparative studies of fault classification,
location and detection of transmission
line

To sustain the stability of power networks, it is required to

detect the fault and locate the fault in a transmission line.

So many methods and techniques are used to detect the

faults. Different circumstances like the fault inception

angle, loading condition, fault resistance, harmonics and

DC offset in the fault signal result in unsatisfactory output.

Researchers have implemented various methods and algo-

rithms in both online and offline to identify, locate and

classify the faults on transmission network, so that the

system operates effectively and efficiently. Comparative

analysis of different methods that are used for classifica-

tion, location and detection of fault in transmission line is

shown in the table below. The purpose of the system, input

used for algorithm, features and numerical result of the

various methods are highlighted in Tables 2, 3, 4, 5 and 6.

Table 2 represents the comparative study of fault location

of a transmission line, and Table 3 shows the comparative

study of fault classification of a transmission line. Fault

classification and detection of transmission line is pre-

sented in Table 4, and fault classification and location of

transmission lines is compared in Table 5. Comparative

study of fault classification, location and detection of

transmission line is presented in Table 6.

8 Practical case study and comparison
of fault detection, classification
and location methods

Travelling wave-based technique is implemented in [164]

to locate the fault in a 230 kV, 200-km transmission line

using the real-time digital simulator (RTDS). The main

advantage of this technique is synchronization of data from

both the terminal is not required. So this method is appli-

cable for real-time application for synchronized or unsyn-

chronized two-terminal data. The outcome of this method

is acceptable. In [165], PMU-based state estimation tech-

nique is implemented in a real 18-bus distribution network

for the detection and location of faults and faulty line. The

outcomes of this method are not affected by noise and the

nature of load/generators. But this technique is more costly,

as PMU is placed at every bus of the system. Current and

voltage signals of both ends are used to locate the faults at

CEMIG (Energetic Company of Minas Gerais—Brazil)

transmission lines in [166]. Digital event recorders are

installed for collection of signal. The proposed algorithms

mainly depend on the fault point voltage magnitude and do

not require the phase angle and synchronized data set. So

this technique is robust, accurate and easy to apply in real

short-circuit cases. The fault location error is only 0.03%.

The maximal overlap discrete wavelet transform

(MODWT) [167] is applied in real-time detection of fault,

where faults are produced by the real-time digital simula-

tor. MODWT has the same characteristic as DWT but up-

sampling take place there. The current and voltage signals

are decomposed by MODWT and then computed for

detection of fault in real time. But this technique’s accu-

racy is affected by the saturation of the transducer. In

Table 1 continued

Methods Strength Weakness

Modal

Transform

1. Independent of frequency and electrical values

2. Single transformation matrix for three-phase system and

identical for voltage and current

3. Transposed and non-transposed of the electrical values are

done by a simple matrix multiplication without convolution

methods

1. It requires a good set of modal parameters

2. This may prove hard to get a complex structure

3. The estimated forces are limited to the frequency range based

on the modes nominated for the modal transformation

ICA 1. It minimizes the statistical dependence between its

components

2. ICA helps optimal dimension reduction

3. Simplicity of the transformation

1. The order of the independent components (IC) is challenging

to define

2. ICA obtained the local minimum solution easily

3. The exact amplitude and sign of the IC cannot be resolved

Pencil

Matrix

Method

1. The damped harmonic decomposition of percussion signals

is recorded

2. PMM is quite robust in the presence of noise

3. Less computational burden

1. The MP method ignores the Hankel structure of the matrix

pencil and suffers from a degradation of estimation accuracy at

low SNR
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Table 2 Comparative study of fault location of a transmission line

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Mazon et al.

[56]

Spanish Electrical

Power System,

50 Hz/60 Hz

La Lomba–

Herrera 380 kV,

189.3 km

Pre-fault

voltage and

current

magnitudes

Not

mentioned

Artificial neural

networks (ANNs

1. The FALNEUR

software package uses

all these input and

output data to train the

network

2. The error levels

mentioned were

achieved with

maximum training time

varying from 5 s to

2.5 min

3. The architecture

selected was the back-

propagation method

based on the

Levenberg–Marquardt

optimization technique

4. The ‘ansig’ function

was chosen as transfer

function for the hidden

layer, and the linear

function in the output

layer

The average error in

the fault distance

less than 0.12%, and

the maximum error

in some situations

was not more than

0.7%

Radojević

et al. [57]

400 kV, 100 km,

50 Hz

Voltage and

current

magnitudes

Not

mentioned

Least error squares

technique

1. The sampling

frequency 6400 Hz

2. The duration of data

window was 20 ms

The relative error was

0.0099%

Chen et al.

[58]

400 kV, 300 km,

50 Hz

Voltage and

current of all

phases

Not

mentioned

Artificial neural

network

1. The back-propagation

learning rule based on

the Levenberg–

Marquardt optimization

technique is used to

train ANN

2. It needs a lot of

memory

3. The test data are 2000,

and it is trained by 2000

iterations

Maximum absolute

error for fault

distance is 3.5%

Funabashi

et al. [59]

Parallel double-

circuit line

Phase voltages

and currents

signal

Not

mentioned

Algorithm-1 employs

an impedance

calculation and

Algorithm 2

employs the current

diversion ratio

method

1. Phase components of

the line impedance are

used directly, so

compensation of

unbalanced line

impedance is not

required

2. This technique is

suitable for the

transmission lines for

which synchronizing

measurement and data

transmission systems

are available

For balanced line

parameters, fault

location

accuracy\ 1.0 km
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Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

de M. Pereira

et al. [60]

500 kV, 320 km Post-fault

voltage

phasors

Not

mentioned

Nelder–Mead

simplex (direct

search) method

1. The sampling rate used

was 960 Hz

2. It does not use post-

fault current so the

saturation of current

transformers error is

avoided

3. With and without the

equivalent impedance,

the error is about 1.5%

An error ± 5% in

voltages and

currents results in a

maximum error of

2.7% of the line

length

Liao et al.

[61]

200 miles Voltage signal Not

mentioned

Impedance-based

algorithm (IBA)

1. IBA neglects the shunt

capacitance of the

transmission line and

desirable for online

applications

2. LPLMBA and

DPLMBA are

modelling the shunt

capacitance

3. CBA is an iterative

method to compensate

for the shunt

capacitance

4. Data synchronization

is not needed.

5. It is free of CT errors

6. Compensation-based

algorithm (CBA),

lumped parameter line

model-based algorithm

(LPLMBA), and

distributed parameter

line model-based

algorithm (DPLMBA)

are more accurate than

IBA

Error for all the tested

cases is within 1%

for IBA and 0.2%

for all the other

algorithms

Jung et al.

[21]

154 kV,

combined

14-km

transmission

line and 6.06-

km underground

cable

Voltages and

current

signal

� cycle Wavelet transform;

Neuro-fuzzy

system

1. FIR filter is used to

remove the DC offset

2. Mother wavelet—

Daubechies (Db4)

3. DWT is decomposed

up to level three

4. 228 different faults are

generated for analysis

5. Learning is carried out

by the back-

propagation method

Not mentioned
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Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Jung et al.

[62]

400 kV, 60 km,

50 Hz

Current signal 1 cycle Wavelet 1. Mother wavelet ‘Db5’

decomposed up to third

level

2. 3840 Hz (64

sample/cycle) was

selected for sampling

frequency

3. The fault was detected

within 1 cycle by using

D1 component

4. Fault location by using

A3 component of which

harmonics are removed

Not mentioned

Reddy et al.

[44]

380 kV, 360 km Voltage and

current

signal

� cycle WPT and ANN 1. Mother wavelet is

Daubechies (Db4)

2. The signal is

decomposed up to 3

levels by WPT

3. The sampling

frequency is 10 kHz

4. It represents a data

reduction technique, so

computation burden is

reduced

5. Pre-fault 1/2 cycle and

post-fault

1/2 cycle

Fault location

maximum error

- 1.67% and min

error - 0.06%

Reddy et al.

[63]

400 kV, 300-km

transmission

line

Current signal Not

mentioned

Adaptive neuro-

fuzzy inference

system, Monte

Carlo simulation

(MCS)

1. The sampling

frequency is 12.5 kHz

2. Daubechies wavelet

(Db4) is used as a

mother wavelet in

multiresolution analysis

(MRA)

3. Rules are framed for

the FIS editor

(Mamdani type) using a

fuzzy logic toolbox of

MATLAB

4. ANFIS algorithm is

quite reliable and

accurate in the case of

random simulation of

the fault

Not mentioned

Perera et al.

[64]

230 kV, 12-bus

transmission

system, 50 Hz

Current signals Not

mentioned

Wavelet transform

and travelling

wave-based

technique

1. DB4 mother wavelet is

used

2. The time delay was

determined as 0.52 ms

3. Sampling frequency of

50 kHz

Not mentioned
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Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Ekici et al.

[33]

380 kV, 360 km Current signal 1 cycle Wavelet packet

transform (WPT)

and artificial neural

network (ANN)

1. Wavelet energy and

entropy features are

extracted from

decomposed signal

2. Daubechies-4 (Db4)

was selected as a

mother

wavelet and decomposed

up to 3 levels

3. 2000 data are selected

for wavelet packet

decomposition

4. The sampling

frequency is 10 kHz

Location error less

than 2.05%

Sadeh et al.

[43]

100-km, 220 kV

transmission

line combined

90-km

transmission

line with 10-km

underground

cable

Fundamental

component

of three-

phase

currents and

zero-

sequence

current

1 cycle Adaptive network-

based fuzzy

inference system

(ANFIS)

1. 2132 patterns are

produced for training

the ANFISs, among

which 1520 patterns are

associated with the

overhead line and the

rest are for the

underground cable

2. During training, the

maximum percentage

error for the overhead

line and the

underground cable are

0.0109 and 0.031,

respectively

3. During testing process,

the maximum

percentage error for the

overhead line and the

underground cable is

0.0277 (about 24.9 m)

and 0.038 (about

3.8 m), respectively

The exact location of

faults such that the

maximum

percentage error is

kept below 0.07%

Gayathri

et al. [65]

400 kV and

150-km line,

50 Hz

Positive-

sequence

voltage and

current

waveforms

Not

mentioned

Radial basis function

(RBF)-based SVM

and scaled

conjugate gradient

(SCALCG)-based

neural network

method

1. The signals are

sampled at 5 kHz

2. RBF kernel is selected

for the proposed

approach

3. The results are

obtained in very short

duration of time

The maximum error

of fault location is

limited to 1.93 km

to 0.0001 km

Sadeh et al.

[66]

400 kV, 300-km

transmission

line

compensated by

a series

FACTS device

Samples of

voltage and

current at

both ends

Not

mentioned

Recursive algorithm 1. Sampling rate of

40 kHz

2. The suggested

algorithm does not

utilize the compensator

device model and the

knowledge of the

compensator device

operating mode to

compute the voltage

drop during a fault

The error is kept

below 0.5%
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Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Ezquerra

et al. [67]

‘La Lomba–

Herrera’

overhead

transmission

line, 380 kV,

189.3 km,

50 Hz

Pre-fault

voltage and

current

magnitudes

at one end

Not

mentioned

Artificial neural

networks (ANNs)

and field-

programmable gate

array

1. The FPGA platform

runs at 60 MHz and

consuming less power

2. Hardware implements

are done in this

technique.

3. ANN executed in the

PC with the

SARENEUR tool

The fault location

error is 0.03%

da Silva et al.

[68]

230 kV

Transmission

System of

Tucuruı́ (TUC

86-3003R-5)

Measurements

of voltage

and current

up to the

50th

harmonic

Not

mentioned

Neural networks 1. This method uses the

harmonic

decomposition of the

leakage current to

analyse the condition of

line insulation

2. Use a neural network

to locate the

fault

3. Determine the

capacitance fault value

and fault location, help

to analyse the insulation

conditions of the line.

Not mentioned

Zhang et al.

[69]

IEEE 9-bus Three-phase

current and

voltage

signal

Not

mentioned

Pattern classification

and linear

discrimination

principle of pattern

recognition theory

1. Wide-area time

synchronization

capability

2. The running time of

discriminant analysis is

0.0320 s.

3. The task of pattern

classification is the

feature extractor and

the classification.

4. Measurement of

phasor measurement

units.

Not mentioned

Garcı́a-

Gracia

et al. [70]

132 kV, 80-km,

50 Hz

transmission

system

Three-phase

current

waveform

Not

mentioned

Wavelet modulus

maxima (WMM)

technique.

1. Effective high resistive

zero-crossing instant

fault detection and

location scheme is

presented

2. Daubechies-4 (Db4)

wavelet was selected as

a mother wavelet

3. The sample with

1 MHz (20,000 samples

per cycle) to minimize

errors in aerial mode

measurements

4. Zero mode, velocity is

fixed to

2.3205 9 108 m/s

being errors of

estimated fault location

within 1%.

The maximum

relative error

detected in these

simulations is

0.94%.
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Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Ray et al.

[28]

400 kV, 300 km,

50 Hz series

compensated

transmission

line

Voltage and

current

signal

1 cycle WPT and ANN 1. The sampling

frequency is 30 kHz

2. Mother wavelet is

applied Daubechies

(Db2)

3. The signal is

decomposed by DWT

up to the eighth level

4. Total training data set

is 126,000 and test data

set is 216,000

6. The feature set is

normalized between 0

to 1

Maximum

error\ 0.35% and

mean error\ 0.25%

Jiang et al.

[71]

IEEE 39-bus

system, ZJP

76-bus system

Current signal Not

mentioned

Phasor measurement

unit (PMU) voltage

measurements

1. Fault region

identification stage and

an exact fault location

stage are done.

2. The proposed approach

is not affected by fault

resistance, fault type or

pre-fault loading

conditions.

3. The constraint of edge-

ring circuits for the

PMU placement

scheme is necessary

and is first proposed in

this paper.

Max. fault location

error 0.8%

And location accuracy

100%

Mamis et al.

[72]

400 kV, 240 km,

50 Hz

Current signal

at one end

Not

mentioned

Fast Fourier

transform (FFT) and

travelling wave

theory

1. Time domain signals

are sampled at

25.6 kHz with 512

numbers of samples.

2. Hanning window is

used to reduce FFT

leakage.

The fault location

error is reduced to

0.12%

Mahamedi

et al. [73]

400 kV, 200-km,

50 Hz double-

circuit

transmission

line

Negative-

sequence

voltages

magnitude

Not

mentioned

The ratio between

negative-sequence

voltages at both

ends of the faulted

circuit is used to

calculate the fault

location.

1. It eliminates the errors

produced by the CT

measurement.

2. It is independent of the

fault resistance and

fault type

3. The need of

synchronization is not

required

4. This algorithm

could not detect the 3

phase fault

Source reactance’s

deviate 10% from

their real, the

estimation of

maximum error of

5%.
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[169], maximal overlap discrete wavelet transform

(MODWT) and discrete wavelet transform (DWT) are

implemented in real time for fault detection and location

500 kV, 400-km-long transmission lines. The MODWT

gives acceptable accuracy (mean error is 0.63%) as com-

parable to DWT. The technique is executed with the help

Table 2 continued

References System used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Swetapadma

et al. [19]

400 kV, 100 km,

50 Hz

Three-phase

voltages and

three-phase

current

Pre-fault

one cycle

and post-

fault 2

cycles

ANN and DWT 1. The cross-country fault

is expressed by earth

fault presenting in

different phases of

same circuits at

different locations.

2. The percentage of the

line covered by zone-1

relay up to 99%

3. Total fault cases—

3800

4. ANN is trained using

Levenberg–Marquardt

algorithm

Percentage error in

fault location is

within ± 1% in

Gayathri

et al. [39]

400 kV, 150-km,

EHV double-

circuit

transmission

line

Three-phase

Positive-

sequence

voltage and 6

line current

Not

mentioned

Radial basis function

(RBF)-based SVM

and scaled

conjugate gradient

(SCALCG)-based

neural network

method

1. Sampling rate is 5 kHz

2. Very short duration of

time (2e-004 s) to

locate the fault.

3. Mutual coupling

between the lines

problem is overcome.

4. RBF kernel is used for

extraction of the

principle eigenvectors

of the feature space and

de-noising the signal.

The maximum errors

of fault location

1.852 km (double

circuit) and

minimum—

7.874e-003 km

Dobakhshari

et al. [74]

Western systems,

coordinating

council

(WSCC)9-bus

and 22-bus test

systems 345 kV

Positive-

sequence

voltage

Not

mentioned

Linear-weighted

least-squares

(WLS) method

1. Sampling rate is

100 kHz

2. The proposed method

is not affected by fault

type and resistance

3. This technique is

obviating the need to

deal with CT saturation

as well as unreliable

zero-sequence

parameters of the line.

Fault location error is

less than 1%

Capar et al.

[6]

380 kV, 300-km,

transmission

line with series

capacitor

Voltage and

current

signal

Not

mentioned

Impedance based 1. Test system simulated

in DIgSILENT

2. Sampling rate is

10 kHz

3. Simulation time was

0.2 s

Fault location error is

less than1%
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Table 3 Comparative study of fault classification of a transmission line

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Dalstein

et al. [75]

380 kV, 100-km

double-line

transmission

line

Three-phase

voltages and

currents

Not

mentioned

Feedforward neural

networks (FNN)

1. 1 kHz sample rate is

used

2. 30 input nodes, two

hidden layers and an

output layer with 11

nodes

3. 45,000 training patterns

simulating and 30000 for

training patterns

Longest

classification

time is 7 ms

Song et al.

[76]

Not mentioned Three-phase

voltages and

currents

Not

mentioned

The back-propagation

neural network structure

with supervised learning

1. The neural networks

concerned here include:

(i) back-propagation net;

(ii) features-map net; (iii)

radial basis function net;

(iv) counter-propagation

net and (v) learning

vector quantization net

(LVQ)

2. Total 55 000 patterns are

generated

3. A data window length of

4 samples at 720

samples/second

The maximum

misclassification

rate is 0.04% of

LVQ network

Aggarwal

et al. [77]

Double-circuit

transmission

lines 128 km,

5 GVA and 35

GVA

generation

Three-phase

voltage and

six-phase

currents

Not

mentioned

Back-propagation network

classifier

1. It is used as a front end

to an output layer with

supervised learning and

is called self-organizing

map (SOM).

2. SOM is a combined

unsupervised/supervised

learning network

3. Sampling rate (800 Hz)

and 3 sample-data

window gives

satisfactory results

4. The number of Kohonen

neurons is very much

dependent on the number

of training sets

Misclassification

rate SOM-based

network was less

than 1%

Whei-Min

Lin et al.

[78]

80 km, S1-

24GVA, S2-

19SVA

3 voltages and

3 currents

Not

mentioned

Radial basis function

(RBF) neural network

with orthogonal-least-

square

(OLS) learning

1. Gaussian function was

chosen for RBF

2. The sampling rate of 800

HZ

3. The network based on a

BP training algorithm

4. Hidden layer possesses

20 neurons and

converged after 85 049

epochs

Not mentioned
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Table 3 continued

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Adu et al.

[79]

Southwestern

Public Service

Company

(SPS),

Companhia

Energetica de

Minas

Gerais

(CEMIG) in

Brazil,

Positive- and

negative-

sequence

components

of the

current

parser

Not

mentioned

The algorithm is based on

the measurement of

phase angles between

the positive- and

negative-sequence

components of the

current phasor

1. It can be used where

multiple transmission

lines are present

2. The proposed technique

is independent of the

isolation device, system

configuration, and the

power system operating

conditions during faults

3. Selecting the faulted

feeder by using the least

error squares phasor

estimator

4. Fault data provided by

Ontario Hydro and

Companhia Energetica de

Sao Paulo (CESP) in

Brazil

Not mentioned

Pradhan

et al. [37]

230 kV,

200-km,

50 Hz series

compensated

line

Current signal Not

mentioned

Discrete wavelet

transform and fuzzy

logic system

1. Mother wavelet is Meyer

2. 90% of the line is

simulated at 0.02 s

3. Triangular fuzzy

membership is applied

4. Two FLS designs for

faulty phase/ground

selection and fault

section identification

Not mentioned

Youssef

et al. [80]

300-km, 50 Hz

transmission

lone

Three line

current

Not

mentioned

Wavelet transforms and

fuzzy logic-based

technique

1. The sampling rate is

4.5 kHz

2. Db8 mother wavelet is

used

3. Wavelet is decomposed

up to level four

4. This paper represented

online application of

fault classification

5. This method is fast,

accurate, robust and

simpler computation

Identify the faults

in less than

10 ms

Das et al.

[81]

400 kV,

300 km,

50 Hz

Three line

current

� cycle Fuzzy logic 1. Implement a digital

distance protection

scheme

2. 2400 test cases are

studied

3. The time taken by this

method is about 10 ms

The accuracy is

more than 97%

Megahed

et al. [82]

500 kV, 50 Hz,

300 km power

system

Three phases

and ground

current

signal

� cycle Discrete wavelet

transform

1. The mother wavelets

used ‘Db4’ for fault-zone

identification and ‘Haar’

for fault classification

2. The sampling frequency

is taken as 200 kHz

Not mentioned
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Table 3 continued

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Mahanty

et al. [83]

400 kV, 100 km Three-phase

currents

Not

mentioned

RBF neural network and

wavelet

1. Wavelet multiresolution

analysis (MRA) level 1

2. The sampling interval

being 10 ls

3. Analysing wavelet is

biorthogonal spline

4. FIA range 0�–360�

Not mentioned

Mahanty

et al. [84]

400 kV,

300 km,

50 Hz

Three-phase

currents

� cycle Fuzzy logic 1. The sampling interval is

1 ms and the number of

samples per phase is ten

2. The triangular fuzzy

membership function is

used and varies from 0 to

1.

3. The sampling interval

for the proposed method

is 1 ms

Not mentioned

Samantaray

et al. [85]

230 kV, 50 Hz,

300 km TCSC

is located at

the midpoint,

150 km

Three-phase

currents

signal

1 cycle S transform and

probabilistic neural

network (PNN)

1. S transform is an

extension to the idea of

the Gabor transform and

wavelet transform

2. It is based on a moving

and scalable localizing

Gaussian window

3. Sampling rate of 1 kHz

4. Energy and standard

deviation are the features

to extract for analysis

5. Out of 500 data sets

generated, 300 data sets

are used to train and 200

for testing

Maximum

classification

accuracy is

98.62% and

section

identification is

99.86%

Samantaray

et al. [86]

400 kV,

300 km,

50 Hz

Post-fault

current and

voltage

samples

1/4 cycle Support vector machine

(SVM)

1. The total time taken for

faulty phase selection is

10 ms (half-cycle).

2. Sampling frequency of

1.0 kHz

3. SVM 1 and SVM 2

trained and tested with

300 data sets for phase

selection and ground

detection, respectively

4. The polynomial and

Gaussian

kernels-based SVMs are

used

Faulty phase

selection and

ground detection

with error\ 2%.
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Table 3 continued

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Valsan et al.

[87]

50 Hz Three-phase

currents

signal

1/3 cycle Field-programmable gate

array (FPGA).

1. Test work is done with

very high-speed

integrated circuit

(VHDL)

2. The sampling frequency

is 2 kHz

3. Daubechies (Db6)

wavelet is used

4. Total of 3520 test cases

were generated

5. Karrenbauer

transformation used

avoids the need for

multipliers

The fault

classification

time is 6 ms and

gives 100%

accurate results

Nguyen

et al. [88]

500 kV. 20

miles, 60 Hz

Three-phase

currents

signal

1 cycle Adaptive neuro-fuzzy

inference system

1. Seven inputs with two

membership functions, so

a 128 rules system

2. The sampling frequency

is 30,240 Hz

3. 2660 fault cases for

training data

4. The main advantage of

ANFIS is automatically

tuning the fuzzy

membership functions

Classification

accuracy more

than 99.92% and

in real time more

than 81.82%

Upendar

et al. [89]

400 kV, 50 Hz,

300 km

Three-phase

current

signals

Not

mention

PSO-based multilayer

perceptron neural

network and wavelet

transform

1. Current signals are being

decomposed into nine

levels using the MRA

algorithm

2. Current signals with 512

samples

3. Daubechies mother

wavelet is used

4. 48 960 training samples

are 1209 600, and testing

data sets are generated

99.91%

Average fault

classification

accuracy

Pérez et al.

[24]

500 kV,

390 km,

50 Hz

Current signal

one of the

phases

1/10 cycle Adaptive

wavelet algorithm

(AWA) and Bayesian

classification

1. Sampling rate is

500 kHz

2. 546 fault cases

3. Daubechies (Db4)

mother wavelet is used

4. ATA windows of

approximately 2 ms are

required

Accuracy is 100%

Chothani

et al. [90]

400 kV, Current signal 1 cycle Support vector machine

(SVM)

1. 28 800 fault cases are

used

2. Accuracy of 99% for all

the fault cases

3. Effect of CT saturation

is taken into

consideration

The Gaussian RBF

kernel gives the

highest accuracy

of 99.833%
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Table 3 continued

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

Seyedtabaii

et al. [91]

230 kV,

200 km,

50 Hz

Phase currents 1 cycle Artificial neural network

(NN)

1. The sampling rate is 20

samples per cycle

2. 1260 faulty cases were

simulated using

MATLAB-Simulink

3. Signal sampled at 1 kHz

4. Accurate MLP training

without any heuristic

parameter involvement

and reduce the size of the

network to the minimum

of one node per phase

Not mentioned

Beg et al.

[92]

132 kV network

with 14 buses

and 10, 14 bus

are 220 kV

lines, 50 Hz

Voltage signal 3 cycles Discrete wavelet

transforms and

feedforward artificial

neural network

1. MRA wavelet

decomposition up to

level 5 and bior1.3 is

used as the mother

wavelet

2. 262 non-fault and 448

fault events are produced

using PSCAD/EMTDC

3. 80% data are given for

training

4. Network contains one

input layer, two hidden

layers and one output

layer

Overall

classification

accuracy of

96.79%

Jafarian

et al. [93]

230 kV, 330 km Current signal 1/4 cycle Dyadic wavelet transform

and support vector

machine (SVM)

1. The sampling frequency

of 160 kHz

2. The signals are

decomposed up to five

stages

3. 1500 fault cases were

simulated

4. 800 faults were

randomly selected to

train the SVMs, and the

remaining cases were

used to test the trained

SVMs

5. The wavelet transform is

used to remove random

noise

Maximum

classification

accuracy is

100% of Gaussian

kernel function

Vyas et al.

[94]

400 kV,

300-km, a

TCSC is

placed at

midpoint of

the

transmission

line

Current signal � cycle Polynomial-based

Chebyshev neural

network (ChNN) and

discrete wavelet packet

transform

(DWPT)

1. Fault patterns are

produced by PSCAD

2. Training data—2400

Testing data—30,000

3. Sampling frequency—

4 kHz

4. Suitable for digital

protection application

5. Faster and more accurate

Accuracy—

99.39%
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of real-time digital simulator (RTDS). Real-time and off-

line fault classification is done in [170] by using the

MODWT technique in 230 kV transmission line. Offline

and real-time classification are evaluated by using actual

oscillographic records and real-time digital simulator

(RTDS), respectively. For line-to-ground and line-to-line

faults, the classification accuracy in real time is 100%. But

in the wavelet coefficient energy investigation, the mis-

classification problem occurs for the double line-to-ground

fault. In [136], hardware arrangement is done for analysis

Table 3 continued

Reference The system used Input used Post-fault

data (Cycle)

Algorithm Feature Numerical result

He et al.

[95]

500 kV, 50 Hz Three-phase

current

signals

� cycle Wavelet transforms and

rough membership

neural network (RMNN)

classifier

1. Back-propagation (BP)

algorithm is employed

for determining the

optimal connection

weights between neurons

of the different layers in

the RMNN

2. The sampling frequency

is 50 kHz

3. Mother wavelet is

Daubechies (Db4)

4. Classification rate is

100% for non-ground

fault and 97% of ground

fault

Average success

classification rate

of 99.4%

Vyas et al.

[96]

300 km, 50 Hz,

three-phase,

400 kV and

TCSC at the

middle of the

transmission

line

Three-phase

current

signals

1/2 cycle Discrete wavelet

transform (DWT) and

Chebyshev neural

Network (ChNN).

1. 3600 fault patterns are

separated out for training

and remaining 28,800

fault patterns are

explicitly used for testing

of the algorithm

2. The sampling frequency

is 4 kHz

3. Here ‘Db1’ used as a

mother wavelet and

decomposes up to the

first level of resolution

Classification

accuracy is

above 99%

Gao et al.

[97]

300-km,

345 kV,

Positive-

sequence

three-phase

voltages

1 cycle Classification and

regression tree (CART)

algorithm

1. CART is a

nonparametric decision

tree learning technique

that is in the form of if–

else statements

2. Total number of fault

cases—2880

Learning

accuracy—100%

Testing

accuracy—

99.981%
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Table 4 Comparative study for classification and detection of fault on a transmission line

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Barros et al.

[98]

Different lines of

the power system

of northern Spain

Voltages of

the three

phases

Not

mentioned

Kalman filters and

8-bit

microprocessors

1. Low-cost 8-bit

6809-type processors

2. Fault detection by

Kalman filters

3. An 8-bit MC6809B

processor, which

operates with a 2 MHz

clock

4. Three-phase faults are

correctly detected in the

first two samples

analysed

5. Used in computer

relaying applying

6. 5 cycles of the pre-fault

and 150 cycles post-fault

signals

Classification and

detection of faults

accurately less than

20 ms

Liang et al.

[99]

174.4 km Current and

voltage

signals

Not

mentioned

Wavelet

multiresolution

analysis (MRA)

1. Sampling frequency of

600 Hz and a single-

stage MRA filter bank

are selected

2. Daubechies (Db4)

wavelet is used

3. MRA gives a reliable

solution in high

impedance fault

condition

Not mentioned

Chowdhury

et al. [100]

Transmission line

modelled using

Simulink having

three segment

model

Three-phase

voltages and

currents

signal

Not

mentioned

Wavelet theory and

artificial neural

networks for

detection and

Kohonen network

for classifying the

fault

1. Creation of a measure

to serve as the indicator

of normal–abnormal

behaviour and

2. Design of a decision

rule, based on that

measure, to detect the

fault

3. Three-layer

feedforward neural

network is used for fault

detection

4. Use Daubechies

wavelet of order ten

Not mentioned

Wang et al.

[101]

Simulation is done

using EMTDC/

PSCAD program

Faulted

voltage and

current

1 cycle Fuzzy neuro-

techniques

1. Back-propagation

algorithm and a

suitable fuzzy controller

2. FFT algorithm removes

the high harmonic

components and

attenuates the

exponential component

The detection is

achieved in less

than 10 ms
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Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Hong et al.

[102]

220 kV, 177.4 km Three-phase

currents

Not

mentioned

B-spline wavelet

transforms

1. Sampled at a frequency

of 600 Hz, so the

computation burden

decreased

2. It is suitable for the

high-speed digital

distance protection

3. By comparing the

moving average of these

transforms, fault types

are easily classified

4. This algorithm is valid

for any fault inception

angle

Not mentioned

Dash et al.

[103]

190 miles, 50 Hz Voltage and

current

signal

Not

mentioned

Minimal radial

basis function

neural network

(MRBFNN).

1. This technique uses a

sequential learning

procedure to determine

the optimum number of

neurons in the hidden

layer without resorting

to trial and error

2. The number of training

patterns is reduced to

just 40 for fault

classification and 70 for

location task,

respectively

3. LIKF (locally iterated

Kalman filter) is used to

adjust the network

parameters like centre,

width and connecting

weight

Not mentioned

Martı́n et al.

2003 [104]

300 km, 50 Hz Three-phase

voltages and

currents

signal

� cycle Discrete wavelet

transforms

(DWTs) and ANN

1. The sampling frequency

is 1600 Hz

2. Two hidden layers and

feedforward neural

networks are used

3. A total of 3800

simulations was

generated half of them

were used for training,

and the other half for

testing

4. Haar and Daubechies

wavelets are used

Not mentioned
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Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Yeo et al.

[105]

154 kV Korean

transmission line,

26 km

RMS value of

three-phase

currents and

zero-

sequence

current

� cycle Adaptive network-

based fuzzy

inference system

(ANFIS)

1. Sampling rate of 64

samples per cycle

2. Trapezoid function is

used as membership

function

3. Detect and classify the

fault type in a

transmission line based

on the RMS value of

phase currents and zero-

sequence current

4. The fault is detected to

just 18 samples, i.e.

about a quarter cycle of

the fundamental

frequency

Maximum

classification

error of 2.81%

Chanda et al.

[106]

400 kV, 300 km,

50 Hz

Three-phase

currents

Not

mentioned

Wavelet

multiresolution

analysis (MRA)

1. Daubechies eight (D-8)

wavelet transforms

decomposed up to 3

levels

2. Signals are sampled

every 80 microsecond

3. Simulation is carried

out by using fault

inception angle 0�–180�
and high impedance

faults of 500 O

Not mentioned

Chanda et al.

[107]

230 kV, 200 km,

50 Hz

Current in

each phase

Not

mentioned

Wavelet

multiresolution

analysis

1. Wavelet multiresolution

analysis Daubechies (D-

8) wavelet transforms

decomposed up to third

level

2. Sampling frequency of

12.5 kHz

Not mentioned

Silva et al.

[20]

230 kV, 188 km,

60 Hz

Voltage and

current

waveforms

1 cycle Discrete wavelet

transforms and

artificial neural

networks (ANNs)

1. Sampling frequency—

1200 Hz

2. Normalization current

and voltage signal - 1

to 1

3. Mother wavelet uses

Daubechies-4 (Db4)

4. Number of iterations is

426

5. Number of cases is 720

6. Minimum root-mean-

square (rms) error is

0.02

Fault classification

accuracy is 99.83%

and fault detection

is 100%
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Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Aguilera

et al. [108]

500 kV series

compensated

transmission line,

400 km

One-phase

voltage

signals

1 ms Discrete WT 1. Simulated with

MICROTRAN and

MATLAB

2. Classification between

single phase-to-ground

fault and other faults, the

mother wavelets sym7

and Db15 for detail-3

and detail-8 is used and

sym8 and coif5 for

ungrounded faults

3. Sampling frequency of

80 kHz

4. Spectral energy (SE) is

used as features

Operating time of

less than 4 ms

Zhang et al.

[109]

500 kV, 200 miles,

50 Hz

Three-phase

voltage and

current

signals

� cycle Wavelet transform

and self-

organized art

neural network

algorithm

1. The sampling rate of

200 kHz

2. This method is used to

classify internal and

external faults

3. Adaptive resonance

theory (ART) neural

network is used and the

number of clusters is

increased and their

positions are updated

automatically during the

learning

4. The signals are

decomposed using Db5

wavelet to level 5

5 Generated a set of 3960

fault scenarios for the

system

Fault detection

accuracy = 99.7%

for single line, 92%

of parallel line,

fault classification

accuracy = 99.65%

Valsan et al.

[22]

400 kV, 4 bus, and

L1, L2, L3, and

L4 transmission

lines of length

150, 200, 240, and

180 km,

respectively

Phase current

signal

Not

mentioned

Multiresolution

wavelet analysis

1. Db6 mother wavelet is

used

2. Total number of test

cases—3600

3. Karrenbauer

transformation that is

used avoids the need for

multipliers

4. Sampling frequency—

20 Kz

Fault classification

accuracy—100%

for LG, LL and

LLL fault. For LLG

fault classification

accuracy—99.44%
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Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Samantaray

et al. [110]

230 kV, 50 Hz,

TCSC is placed at

midpoint of the

300-km

transmission line

Three-phase

current and

voltage

signal

1 cycle Decision tree (DT)

and SVM

1. TCSC is designed, so it

provides 30%

compensation at 180�
(minimum) and 40%

compensation at 150�
(maximum) firing angle

2. Noisy environment is

taken into consideration

3. The sampling frequency

is 1.0 kHz

4. 70–30% training and

testing data sets

5. Fault cases simulated

for TCSC line are

16,800 and for UPFC

25,600

6. The computational

burden of SVM is higher

compared to DT

The classification

accuracy for SVM

and DT is 93.6 and

98.8%,

respectively,

He et al.

[111]

500 kV, 300 km,

50 Hz

Zero-

sequence

current and

voltage

signal

� cycle Wavelet singular

entropy (WSE)

1. Sampling frequency—

20 Kz,

2. The model is

established in EMTDC/

PSCAD

3. Detected fault time by

WSE 200.001 ms

4. No of tests—20

5. The ‘db4’ mother

wavelet and 4-scaled

WT are chosen

Classification overall

accuracy—100%

Yusuff et al.

[112]

400 kV,

361.65 km,

50 Hz

Voltage and

current

signal

� cycle SVM and fuzzy

logic reasoning

(FLR)

1. Sampling frequencies

apart from 12.8 kHz

2. 100% accuracy was

achieved with a delay of

1/2 of a cycle

3. Precision rate up to 99%

Classification

accuracy is 100%

Ibrahim et al.

[113]

230 kV, 50 Hz

TCSC is midpoint

of the

transmission line

Currents and

voltages

waveforms

2 cycles TLS-ESPRIT

algorithm and

ANNs

1. TLS-ESPRIT

algorithm, which is a

modified version of the

rotational invariance

technique ESPRIT

algorithm

2. Back-propagation

algorithm is used and

two hidden layers

applied in the network

3. The sampling rate is

512 samples per cycle

4. With two levels of

neural networks, level 1

ANN is used to detect

the fault and level 2;

four neural networks are

used to identify the

faulted phase

Not mentioned
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Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Pérez et al.

[24]

500 kV, 864 km,

50 Hz

One phase of

current

signal

2 ms Adaptive wavelet

and Bayesian

classification

1. The sampling frequency

is 500 kHz

2. DWT decomposition

level 3

3. Mother wavelet—

Daubechies-4 (Db4)

4. It provides directional-

zone protection

5. Current signals of

roughly 2 ms are

analysed to get the result

6. 5328 faults cases were

evaluated for analysis

Fault classification

accuracy—100%,

detection

accuracy—100%

Dash et al.

[114]

300 km, 500 kV,

60 Hz,

STATCOM

installed at

midpoint

One-end

voltage and

measured

line current

phasors

� cycle Cumulative sum

(CUSUM) and

fast discrete S

transform (FDST)

1. The sampling rate is

3.84 kHz

2. Spectral energy is

extracted from current

signal

3. No false detection has

occurred during external

faults even in the

presence of high

measurement noise

4. It is unaffected by the

mutual coupling

between the two lines

The fault location

error is varying

from 0.02 to 2.52%

Yadav et al.

[18]

400 kV, 100-km,

single-circuit

transmission line

50 Hz

Three-phase

current

1/4 cycle WT and linear

discriminant

analysis (LDA).

1. Current signals are

processed by WT up to

level 3

2. Applicable for both

single-circuit and

double-circuit

transmission line

3. Reach setting—99% of

line length

For detection and

classification

accuracy—100%

Gupta et al.

[115]

Static var

compensator

(SVC)

transmission line

300 km, 400 kV,

50 Hz

Voltage and

current

signal at

both ends

NA Superimposed

sequence

components-

based integrated

impedance

(SSCII).

1. The pilot-relaying

schemes are suitable for

with high-speed

communication channels

2. Reliable for high as

well as low resistance

fault

3. Sampling frequency —

1 kHz

Fault detection

time\ 20 ms

Gopak umar

et al. [116]

IEEE 14-bus

300 km, 400 kV

generators on both

sides, 50 Hz

Voltage and

current

phase angle

FFT analysis and

support vector

machine (SVM)

1. Single PMU used at

only one of the generator

buses used Park’s

transformation

2. 1300 samples have been

utilized for training the

SVM classifier

3. Sampling frequency of

10 kHz

4. PMU for synchronous

measurements of voltage

and current phasors

Fault

classification

accuracy—100%,
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of faults. The high-speed communication action is done by

fibre-optic links/Etherne to locate the fault quickly, where

PMU/digital fault recorder (DFR) is used as sampling unit.

9 Conclusions

Conventional methods are used for detection, classification

and location of the fault in the transmission network, but to

overcome the limitation of these methods, signal

Table 4 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Swetapadma

et al. [117]

400 kV, 50 Hz, the

100-km

transmission line

connected to

infinite bus and

IEEE 9-bus

Fundamental

components

currents and

voltages and

zero-

sequence

currents

� cycle Decision tree-based

scheme

1. The advantage of the

decision tree is that it is

not affected by the size

of the data set used for

training

2. The reliability of this

scheme is not affected

by different fault

conditions such as

variation in fault type,

fault distance, fault

inception angle, fault

resistance etc.

Accuracy of fault

detection is 100%

And overall accuracy

of classification

faults 99.9%

Moravej

et al. [29]

250 kV, 300 km,

60 Hz

Current signal � cycle S transform (ST)

and probabilistic

neural network

(PNN) methods

1. Multilayered

feedforward network

having four layers such

as the input layer,

pattern layer, summation

layer, the output layer

2. Input patterns through

probability density

function (PDF) apply to

the second layer

3. The sampling frequency

of three-phase current is

12 kHz

4. 780 cases are generated,

i.e. 75% of this set is

selected randomly to

train PNN, and

remaining data are used

to test the process

5. The average accuracy

for detection of power

swing (C1) and fault

during power swing (C2)

is 95.5% and 90.93%,

respectively

C1 and C2 are

classified with

accuracy 100 and

90%, respectively
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Table 5 Comparative study of fault classification and location on transmission line

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Dash et al.

[118]

230 kV,

50 Hz,

300 km and

a TCSC

located on a

transmission

line

Voltage and

current

signal

Not

mentioned

Radial basis function

neural networks

(RBFNN) and fuzzy

neural networks

(FNN)

1. The activation function is

Gaussian function

2. 50 data sets are used for

training of the MRBFNN

classifier and 140 data

sets are used for FNN

classifier. Similarly, for

location 100 data sets

considered for MRBFNN

and 50 data set used for

FNN

MRBFNN maximum

location error = 5%

and FNN maximum

location error 8%

Joorabian

et al. [38]

Abbaspor–

Ahwaz-2

400 kV,

137 km,

50 Hz

Voltage and

current

signal

1 cycle Radial basis function

neural network

(RBFNN)

1. The sampling frequency

is 4 kHz

2. Total cases—3000

3. From total cases 60%

cases are taken as training

and other 40% used as

testing data

4. 3000 training and testing

sets are used for analysis

Fault location accuracy

is\ 0.5%

Mahanty

et al. [119]

100 km, three-

phase, source

voltage

400 kV

Three-phase

currents and

voltages

Not

mentioned

Radial basis function

(RBF) neural

networks

1. Only current signals are

required for fault

classification

2. Wider range of

(fault resistance) and fault

inception angle used and

compared to other

schemes, and accuracy is

good

Not mentioned

Gracia et al.

[120]

La Lomba-

Herrera

single line

network

380 kV,

189.3 km

Phase voltage

and current

values

Not

mentioned

Artificial neural

networks (ANNs)

1. ANN is carried out by

means of a software tool

called SARENEUR

2. Fault classification ANN

has a linear activation

function in the output

layer more than two

hidden layers and not

more than six neurons per

layer

3. Training time is less than

a minute

4. Fault location ANN have

two hidden layers (eight

to nine neurons in the first

layer and four to six in the

second), nonlinear

activation function in the

input layer and linear

activation function in the

output layer

5. 15,352 number of cases

are used

6. Villarino–Villalcampo

double-circuit

transmission line,

220 kV, 43.43 km is also

tested

Classification errors

are null in single

lines and smaller

than 1% in double-

circuit lines

Mean errors in the fault

location oscillate

between 0.015 and

0.4%
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Table 5 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Samantaray

et al. [121]

400 kV,

300 km,

50 Hz

Current and

voltage

signal

2 cycle Hyperbolic S transform

(HS transform) and

radial basis function

neural network

(RBFNN).

1. The sampling rate is

1.0 kHz

2. The feature (energy and

standard deviation) is

calculated by a change in

one cycle ahead and one

cycle back from the fault

inception

3. RBFNN has been trained

by 3000 sets of data

4. The error calculated for

all kinds of faults is below

2%

5. RBFNN with recursive

least quare (RLS)

algorithm is used

Fault location error

varies from 0.89 to

1.89%.

Reddy et al.

[122]

400 kV,

300 km,

50 Hz

Three-phase

voltages and

currents

1 cycle Wavelet transform and

fuzzy inference

system (FIS) and

adaptive neuro-fuzzy

inference system

(ANFIS)

1. The triangular fuzzy

number is implemented

2. Type-3 fuzzy reasoning

and ANFIS architecture

(type-3 ANFIS) is used

3. Sampling frequency of

12.5 kHz

4. The network is trained

3000 epochs for which

error is about 3%

5. FIS editor (Mamadani

type) MATLAB toolbox

is used

Maximum fault

location error varies

- 3.67%

to ? 3.33%.

Samantaray

et al. [123]

400 kV,

330 km,

50 Hz

Fault current

and voltage

signal

Not

mentioned

Wavelet and SVM for

classification and

RBFNN (radial basis

function neural

network) with

recursive least-square

algorithm for

location

1. Energy and standard

deviation are extracted

from the decomposed

current signal

2. ‘Haar’ wavelet is applied

as a mother function and

decomposed up to third

level

4. Radial basis function

(RBF) kernel is used in

SVM

5. SVM is trained with 120

sets of examples and

tested for 300 data sets

6. The classification rate is

99.25% in the case of L–

G fault which is the

highest and least in the

case of LLL–G fault

bearing rate of 97.69%

7. RBFNN is trained by

3000 sets of data

Classification rates are

above 97% and

location error in all

kinds of fault is

below 2%
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Table 5 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Reddy et al.

[44]

300 km,

400 kV

Current signal Not

mentioned

Wavelet neuro-fuzzy

combined methods

and adaptive neuro-

fuzzy inference

system (ANFIS)

1. For feature extraction

from wavelet coefficient,

FIS and ANFIS are used

2. Sampling rate—

12.5 kHz

3. Mother wavelet —

Daubechies (Db4) and

decomposed up to 12th

level by WT, but sixth

level detail coefficients

(d6) are considered in the

analysis

4. Triangular fuzzy

membership and Takagi–

Sugeno’s fuzzy

controllers are used

5. ANFIS is using digital

relaying applications in

real time

Fault location

maximum error of

6.5%

Bhalja et al.

[124]

400 kV,

128 km,

50 Hz

Three-phase

voltages and

current

signal

Not

mentioned

Wavelet transforms

and support vector

machine classifier

1. 1000 fault data

generation for data sets

2. Training data set = 4800

and testing data

set = 1080

3. Sampling

frequency = 80

samples/cycle

4. Db1 mother wavelet is

applied

The Gaussian RBF

kernel gives the

highest accuracy of

98.5185%

Sadeh et al.

[43]

220 kV,

50 Hz,

Combined

90-km

overhead and

10-km

underground

cable

Three-phase

voltages and

currents

1 cycle ANFIS 1. Total training patterns—

2132

2. Overhead line associated

with—1520 patterns and

rest patterns are for the

underground cable

3. Rule base contains two

fuzzy if–then rules of

Takagi–Sugeno’s type

4. Algorithm contains 10

ANFISs, 1 for fault type

classification, 1 for faulty

section detection, and the

other 8 networks for

accurate fault location (2

for each fault type)

Location maximum

error is below 0.07%

Fault classification

overhead line

maximum error is

0.0277 (24.9 m) and

underground cable is

0.038(3.8 m)

Valsan et al.

[125]

400 kV, 4 bus,

50 Hz

Three-phase

current

signals

\1 cycle Wavelet transform 1. Relay gives directional

protection

2. To detect the

disturbance takes 1 ms

3. Total cases are 3750

4. Wavelet is decomposed

up to only one level

5. Less computation burden

and fast response

Fault location average

error—0.217% and

maximum absolute

error\ 3%
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Table 5 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Bhowmik

et al. [34]

132 kV,

200 km,

50 Hz

Voltage and

current

signal

Not

mentioned

DWT and BPNN 1. The signal is

decomposed by DWT up

to level three

2. The fault is detected

around 20 ms

3. Training patterns—57

4. Testing (predicting)

patterns—26

Not mentioned

Upender

et al. [126]

400 kV,

50 Hz,

300 km

Three-phase

line current

signal

Not

mentioned

Adaptive resonance

theory (ART) neural

network testing for

classification and

inverse interpolation

method for fault

location

1. Current signal

decomposed into 9 levels

using MRA algorithms

2. Db1 mother wavelet is

used for classifying 10

types of fault

3. ART is capable of

handling either binary or

analogue input patterns/

samples

4. The multilayer

perceptron neural network

is used

5. 512(12.77 kHz) samples

current signal

6. Total tested sample—

1,209,600

Classification

Accuracy = 99.91%

and location errors,

lower than 1.5%

Ya-Gang

Zhang

et al. [69]

IEEE 9-bus

system and

for IEEE 39

Voltage and

current

signal and

power angle

Not

mentioned

Pattern classification

technology and

WAMS

1. This paper presents real-

time PMU measurements,

we used mainly pattern

classification technology

and linear discrimination

principle

2. The running time of

discriminant analysis is

0.0320 s for IEEE 9-bus

system

3. The running time of

discriminant analysis is

0.0690 s for IEEE 39-bus

system

Classification

Accuracy = 100%

for IEEE 9-bus

system

And for IEEE 39-bus

classification

Misjudgement ratio is

0.0256%

Dasgupta

et al. [26]

220 kV,

150 km,

50 Hz,

line/cable

components

(LCCs) of a

pi network

Three-phase

voltage

signals

1 cycle Wavelet packet, and

neural network for

Fault classification

and

Elman back-

propagation

Architecture for fault

location

1. Mother wavelet is

Daubechies Db4

2. The sampling frequency

is 2000 samples per cycle

3. Signals are decomposed

up to level 3 by WT

4. Test result—500

5. Pre-fault � cycle and

post-fault � cycle of

faulty

Fault distance estimate

of 98.28% accurate

and fault classifier

accuracy of 98.67%
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Table 5 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Upendar

et al. [127]

400 kV,

50 Hz.

300 km

Three-phase

currets

Not

mentioned

Classification and

regression Tree

(CART) and wavelet

1. CART is nonparametric

in nature and does not

require any variables to be

selected in advance

2. CART algorithm will

itself identify the most

significant variables and

eliminate non-significant

one

3. CART results are

invariant to monotone

transformations of its

independent variables

4. Wavelet decomposed

three-phase current signal

up to 7th level

5. A total of 1,209,600 fault

cases were simulated

Classification accuracy

is 99.88% and

location error is less

than 1.5%

da Silva

et al. [128]

A 400 kV,

100-km-long

transmission

line

voltage and

current

signal

1 cycle Stationary wavelet

transform (SWT) and

complex-domain

neural networks

1. The 2000 samples per

60 Hz cycle

2. Daubechies’ (Db4)

mother wavelets are used

3. 152 fault scenarios are

created for training the

fault locators

4. 760 simulations are used

for model validation and

another 760 for testing

5. Mean absolute

percentage

errors (MAPEs) for the

training, validation and

test sets are less than 8%
for a different model

Not mentioned

Dutta et al.

[129]

IEEE 118-bus,

parallel

transmission

line

Synchronized

voltage and

current

signal

2 cycle Synchronized voltage

and current samples

1. The sampling frequency

is 1 kHz

2. Detects and classifies

faults within 7 ms for all

types of faults

3. Comparing the change of

sign of magnitudes of

instantaneous power

computed at two ends of a

transmission line using

synchronized voltage and

current samples

Fault location accuracy

is within 3%. Fault

and classifier

accuracy of 100%
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processing technique and artificial intelligence (AI)-based

methods are widely applied in power system protection.

Some of the selective and important papers are analysed to

compare the system use, techniques, methods, input signal,

features and numerical results, where artificial Intelligence

(AI)-based method is the efficient, fast, accurate and robust

Table 5 continued

Reference System used Input used Post-fault

data (cycle)

Algorithm Feature Numerical result

Yusuff et al.

[130]

400 kV,

361.297 km,

50 Hz

Three-phase

voltage and

current

signal

� cycle Stationary wavelet

transform (SWT),

determinant function

feature (DFF),

support vector

machine (SVM) and

support vector

regression (SVR)

1. Sampled at 3.2 kHz will

give 64 samples per cycle

2. Approximation

coefficient at level 5 for

Haar, Db4 and Db6

wavelets are applied

3. In SVM, kernel function

is used for better mapping

in high-dimensional

feature space

4. Fault inception angle

varies 0�–90�
5. Support vector machine

(SVM) and support vector

regression (SVR) are used

as classifier and

regression, respectively

100% accuracy is

achieved for

classification and

location accuracy is

2.10E-03

Yadav et al.

[131]

400 kV,

200 km

Current and

voltage

signal

� cycle Fuzzy system 1. It is reliable, accurate and

secure

2. Detect the fault (both

forward and reverse)

3. Primary protection to

95% of line length

4. The fault location error is

validated using Chi-

square (v2) test

Fault location error—

2%

Yadav et al.

[31]

400 kV,

50 Hz,

300 km

Three-phase

voltage and

current

Not

mentioned

Wavelet and artificial

neural network

1. Db4 mother wavelet is

decomposed to 3rd level

of three-phase voltage and

current

2. Average percentage error

in fault location

estimation is within

0.001%

3. Number of test case

studies 10,000 cases

4. It offers primary

protection to 99% of line

length using single-end

data only

% Error range in

location Min. % error

is 0.0007 and Max.

% error is

0.6665
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Table 6 Comparative study of fault classification, location and detection of transmission line

Reference The system

used

Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Girgis et al.

[132]

5-bus three-

generator

system

Current and

voltage

phasors

Not

mentioned

Microprocessor-based

protection that utilizes

phasor quantity and

artificial intelligence

1. The accuracy of fault

location is good at

relatively high

impedance fault

2. Advancement in

digital protection of

power systems

3. The availability of

communication links

between different

digital protection

schemes

Not mentioned

Kezunovic

et al. [133]

161 kV, 13.35

miles

Three-phase

voltage and

current

samples

� cycle Synchronized sampling

using global

positioning system

(GPS)

1. The minimum least-

square method is

applied for the location

of the fault

2. Sampling frequency

24 kHz

3. The whole window of

data contained 1 cycle

of pre-fault and 2

cycles of post-fault data

4. Automated fault

analysis is done by

recording instrument

Fault location error

less than 0.28%

Coury et al.

[134]

400 kV,

330 km

Three-phase

voltage and

current

samples

Not

mentioned

Artificial neural network

(ANN)

1. Alternative Transients

Program (ATP)

software was used

2. Error back-

propagation (EBP)

algorithm was utilized

during the training

process

3. The sampling

frequency is 1 kHz

4. 4050 different faulted

cases were applied

5. The training and

validation sets are 80%

and 20% of the total

training set

6. Classification times

between 4 and 12 ms

Fault detection

takes 2 ms time

and classification

accuracy is

99.44%

Joe-Air Jiang

et al. [135]

345 kV

transposed

transmission

system

Synchronized

voltage and

current

phasors

� cycle PMU phasors and fault

detection index using

Clarke transformation

1. EMTP/ATP simulator

is adopted to evaluate

2. The sampling

frequency is 1920 Hz

(32 samples/cycle).

3. A total of 462

simulation studies have

been conducted and

104 external fault is

tested

4. Average fault

detection time

1.624 ms

The average fault

location error is

well within 1%

Neural Computing and Applications (2018) 30:1377–1424 1415

123



Table 6 continued

Reference The system

used

Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Zhang et al.

[136]

345 kV, system

section from

CenterPoint

Energy

Input voltage

and current

signals

1 cycle Fuzzy adaptive

resonance theory

(ART) neural network

and synchronized

sampling

1. Fuzzy K-NN is used

for classifying purpose

2. The sampling rate is

20 kHz

3. The data processing

errors during

calculation of phasors

are avoided

4. It is tested also WECC

9-bus system

Maximum fault

location error is

0.720 and 100%

accuracy for

detection

Roy et al.

[137]

400 kV,

300-km-long

three-phase

transmission

system

Three-phase

voltage and

current

signal

Not

mentioned

Computer-based digital

relay algorithms using

wavelet neuro-fuzzy

techniques

1. The digital relay is

based on combined

approach of analytical

hierarchy process

(AHP) and fault tree

analysis (FTA).

2. Wavelet coefficients of

Db4 mother wavelet for

the sixth level with a

sampling frequency of

12.5 kHz

3. The standard fuzzy

membership numbers

called triangular fuzzy

numbers are used

The

acceptable failure

rate varies from

0.01 to 0.316

Mohamed

et al. [138]

High-Dam/

Cairo 500 kV,

788 km

double-circuit

line

Three-phase

voltage

and current

samples

� cycle ANN 1. The sampling rate was

taken 16 samples per

cycle of the power–

frequency

2. Data window of 4

samples was utilized

3. The total number of

samples is

9632 out of 70% use for

training and 30% for

testing

4. ANN is constructed

from 24 input nodes, 24

hidden neurons and one

output neuron

Not mentioned

Jiang et al.

[48]

735 kV,

1000 km,

60 Hz

Three-phase

voltage and

current

signal

1 cycle SVM for fault

classification and two-

stage adaptive structure

neural network

(ASNNs) for fault

location

1. Sampling rate-

3860 Hz

2. Mother wavelet—

Daubechies Db4

3. Current and voltage

signal decomposed up

to second level by

multilevel DWT

4. IEEE 14-bus power

network, fault detection

accuracy—99.9%, fault

classification,

sensitivity and

specification 99.73 and

99.9%, respectively

Average fault

location error—

0.61%
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Table 6 continued

Reference The system

used

Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Ibrahim et al.

[139]

Egyptian

500 kV

transmission

network.

50 Hz

Three-phase

voltage and

line current

1 cycle Nonlinear high

impedance earth faults

(HIEFs) using wavelet

transform

1. Daubechies mother

wavelet family (Db4) is

used

2. The sampling rate

employed is 12,500 Hz

3. Accurate faulty line

determined at 0.04 s

4. Only used the RMS

values, so

synchronizing

transmitted data are not

needed

The error does not

exceed 5%

Jiang et al.

[140]

Taipower

345 kV power

transmission

network and

total length of

the power

transmission

lines is

939.61 km,

Three-phase

voltage and

current

signal

1 cycle Negative-sequence

component (NSC),

wavelet transform

(WT), principal

component analysis

(PCA), support vector

machines (SVMs), and

adaptive structural

neural networks

(ASNNs)

1. Real-time power

system simulator using

field-programmable

gate array (FPGA)

platform

2. External cables at a

sampling rate of 3840

samples per second are

used to measure the

signal

3. PCA module used 48

982 logic elements in

the Stratix III FPGA.

The maximum

operating frequency is

76 MHz

4. There are 240,000

power signals

generated for analysis

5. The response time of

detecting a fault is

around 0.0003 s

6. The averaged

detection and

sensitivity, accuracy is

99.9 and 99.87%,

respectively

Classification

accuracy is

99.78% and

averaged fault

location error is

around

0.47%

Moravej et al.

[47]

500 kV,

100 km, series

compensation

(SC) at

midpoint and

two ends of

line

Voltage and

current

signal

1 cycle Hyperbolic S transform

(HS transform) and

SVM

1. No need for fault

section identification

2. District the internal

and external faults

3. Extracting a

characteristic feature

(energy) from a half-

cycle of the current

waveform for the fault

detection

1. Classification

accuracy—99.21

2. District

detection—98.11

3. Location relative

error—2.48E-3
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Table 6 continued

Reference The system

used

Input used Post-fault

data (cycle)

Algorithm Feature Numerical Result

Eristi et al.

[141]

400 kV,

320-km, 50 Hz

series

compensated

transmission

line

Faulted

voltage and

current

1 cycle Wavelet transform and

adaptive neuro-fuzzy

inference system

1. 23,436 fault cases, a

data set is generated

2. Multiresolution

analysis (MRA) is

applied up to 6-level

3. The sampling

frequency is 8 kHz

4. Db4 wavelet is chosen

as the mother wavelet

function

5. After feature

extraction memory

usage, size is reduced

approximately 3200

times

6. The overall accuracy

of fault section

identification and

classification is 99.187

and 99.301%,

respectively

The fault location

error is less than

0.25% on average

Roy et al. [35] 400 kV, 50-Hz,

300 km

Three-phase

voltage and

current

signal

Not

mentioned

S transform-based PNN

classifier for fault

classification and

BPNN for fault

localization

1. Training data set—

1200 and testing data

set—840

2. Gaussian noise 20 dB

SNR is added in

voltage and current

signals

3. Due to noise in current

signals, mean

accuracy—98.7%.

Fault location by BPNN

has maximum error

4.46%

Fault classification

average

accuracy—99.6%

Krishnanand

et al. 2015

[30]

400 kV,

308 km,

50 Hz

Phase current

signal

1 cycle CUSUM algorithm and

‘Fast discrete

S transform (FDST)’

1. CUSUM algorithm

does the cumulative

sum of the differences

between the reference

cycle and the present

cycle to detect any

sudden change in the

signal amplitude

2. Sample size-640

Fault location error

Min.—

8.0986E_06,

Max.—

1.0269E_02

Shaik et al.

[23]

500 kV,

500 MW,

60 Hz

Three-phase

currents and

voltage

signal

� cycle Wavelet transforms

Artificial neural

networks

1. Sampled at a

frequency of 1920 Hz

2. Current and voltage

signals are processed

by WT up to level 3

3. Bior4.4 mother

wavelet is used to

decompose three-phase

voltages and current

signal

Fault location Max.

error—2.3%, Min.

error—0.004%
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for detection, classification and location of the fault in a

transmission line. This paper helps the researcher for

development and further study in this field.
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