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Abstract
The most challenging issues in association rule mining are dealing with numerical attributes and accommodating several

criteria to discover optimal rules without any preprocessing activities or predefined parameter values. In order to deal with

these problems, this paper proposes a multi-objective particle swarm optimization using an adaptive archive grid based on

Pareto optimal strategy for numerical association rule mining. The proposed method aims to optimize confidence, com-

prehensibility and interestingness for rule discovery. By implementing this method, the numerical association rule does not

require any major preprocessing activities such as discretization. Moreover, minimum support and confidence are not

prerequisites. The proposed method is evaluated using three benchmark datasets containing numerical attributes. Fur-

thermore, it is applied to a real case dataset taken from a weight loss application in order to discover association rules in

terms of the behavior of customer page usage.

Keywords Multi-objective optimization � Association rules � Particle swarm optimization

1 Introduction

With the rapid growth of technology, data collection has

become a relatively easy task. A huge number of data can

be easily collected and transformed into valuable infor-

mation. Data mining is a method of retrieving and trans-

forming raw data into meaningful information [1]. One

well-known data mining technique is association rule

mining. Association rule mining (ARM) is an approach to

discover a valuable relationship among a set of items

within a given set of data. It was first introduced by

Agrawal et al. [2]. ARM produces a list of rules, made up

of antecedents and consequents.

In ARM, dealing with a dataset containing categorical

and quantitative attributes is a challenging problem. Most

ARM methodology discretizes attributes and treats them as

categorical attributes [3]. However, quantitative attributes

usually have a wider range of continuous values, and a

complex process is required to discretize all the attributes

[4, 5]. In order to deal with numerical dataset, a dis-

cretization scheme is required to transform numerical data

into categorical data. This transformation requires a pre-

defined range or limitation, which is subjectively defined.

Thus, if the range is not suitable, the result is unlikely to be

accurate. In order to overcome this problem, some methods

have included the discretization in their algorithm [6, 7].

This paper also proposes an association rule algorithm

which can automatically categorize numerical data. The

proposed algorithm therefore does not require data dis-

cretization, since it can automatically categorize each

variable.

Measuring the quality of rules discovered by a data

mining algorithm is a non-trivial problem. It involves

several criteria, some of which are quite subjective. Ideally,

the rules discovered by a data mining algorithm should be

accurate, comprehensible (simple) and interesting (novel,

surprising, useful) [8]. For example, a rule
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{Pregnant} ? {Female}. This rule has a very high accu-

racy and can be considered as a simple and comprehensible

rule. However, it is entirely uninteresting since it contains a

very obvious relationship. In order to cover these objec-

tives, it has been proposed that ARM considers multi-ob-

jective problems rather than single-objective problems.

Solving ARM as a multi-objective problem has been

proposed in some previous studies. Ghosh and Nath [3] and

Qodmanan et al. [9] proposed a multi-objective ARM

considering three common objectives: confidence, com-

prehensibility and interestingness. These studies solved

ARM using a multi-objective genetic algorithm. Other

metaheuristic-based methods for solving multi-objective

ARM have been proposed by Alatas et al. [6] and

Beiranvand et al. [4]. Alatas et al. [6] considered the

confidence, comprehensibility and amplitude of interval as

the objectives, and solved the problem using a differential

evolution-based algorithm. Recently, Beiranvand et al. [4]

applied particle swarm optimization to solving multi-ob-

jective ARM.

This paper proposes a rule discovery method that uses

an adaptive archive grid multi-objective particle swarm

optimization algorithm (MOPSO) to find the effective

rules. It considers three objectives, namely confidence,

comprehensibility and interestingness. In addition, this

paper is also focuses on numerical data.

The remainder of this paper is arranged as follows.

Section 2 describes the basic concepts of association rules,

multi-objective optimization and PSO. The proposed

MOPSO for numerical association rule mining is described

in Sect. 3. Section 4 presents a thorough discussion on

computational experiences. Section 5 presents the case

study. Finally, concluding remarks are given in Sect. 6.

2 Literature study

This section briefly reviews some theories related to

association rule mining and particle swarm optimization as

applied in this paper.

2.1 Association rules

Association rule mining (ARM) was first introduced by

Agrawal et al. in 1993. It aims to find interesting relations

between variables within a dataset. An association rule is

an implication expression of the X ! Y , where X and Y are

disjoint item sets. X is referred to as the antecedent, while

Y is called the consequent. Usually, association rules are

applied to datasets with Boolean attributes. Although

Boolean ARM can extract meaningful information from

the data, many real data consist of categorical (e.g., sex or

brand) and quantitative (e.g., age, salary or heat) data.

2.2 Multi-objective optimization

The main challenge in the real-world optimization problem

is that multiple solutions may exist, and it is difficult to

compare one solution with another. Thus, how to simul-

taneously optimize a multi-objective problem is practically

relevant. This paper applies a Pareto method to optimize

more than a single objective. In the Pareto method, a

candidate solution that is better than all other candidates

for each objective is said to dominate other candidates.

None of the solutions included in the POF are better than

the other solutions in the same POF for all the objectives

being optimized; hence, all of them are equally acceptable.

In the maximization problem, let F ¼ f1; f2; . . .fnf g be

a set of objective functions. A solution s belongs to the

POF if there is no other solution s0 that dominates it. A

solution s0 dominates s if and only if the following two

conditions in Eq. (1) are satisfied:

8i 2 1; 2; . . .; nf g; fi s0ð Þ � fi sð Þ; and 9i
2 1; 2; . . .nf g; fi s0ð Þ[ fi sð Þ ð1Þ

Figure 1 shows an example of a Pareto optimal front

with two objectives f1 and f2, which must be maximized

simultaneously. The shaded region represents the feasible

solutions. si represents solution i in the objective space.

Solutions s1; s3; s6; s9; s11; s12 are not dominated by any

other solutions among the available feasible solutions.

2.3 Metaheuristic method

Metaheuristics provide acceptable solutions in a reasonable

time for hard and complex problems in science and engi-

neering [10, 11]. Recently, metaheuristic algorithms have

been applied in association rule mining [12, 13]. Table 1

Fig. 1 Pareto front concept
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summarizes some previous studies related to the applica-

tion of metaheuristic algorithms in multi-objective associ-

ation rule mining for numerical datasets.

2.4 Multi-objective particle swarm optimization
using adaptive archive grid (MOPSO)

Particle swarm optimization (PSO) algorithm is a nature-

inspired metaheuristic proposed by Eberhart and Kennedy

[14]. Each particle represents a potential solution. In find-

ing the optimal solution, PSO algorithm maintains the

searching directions of all particles. Let xi tð Þ denote the

position of particle i in the search space at time step t [15].

Each particle iteratively moves across the search space to

find the best solution (fitness). Besides its current position,

each particle also records its own best position, as well as

the fitness value. This position is called pbest. Another

position, called gbest, is the best position among all par-

ticles’ positions. During the exploration process, the par-

ticles update their velocity (vi), pbest and gbest. The

velocity is updated using Eq. (2):

v~i t þ 1ð Þ ¼ wv~i tð Þ þ r1c1 pbest � xi
! tð Þ

� �

þ r2c2 gbest � xi
! tð Þ

� �
; ð2Þ

where w is an inertia weight to control the exploration and

exploitation abilities of the particle. r1 and r2 are two

random numbers uniformly distributed in the range of [0,

1], while c1 and c2 are two acceleration constants which

usually lie between [1, 4].

Multi-objective optimization (MOO) differs from sin-

gle-objective optimization. This study applies a multi-ob-

jective optimization inspired by Coello et al. [16]. The

main objective of an archive in multi-objective optimiza-

tion algorithms is to track all of the non-dominated solu-

tions found so far. The MOPSO is proposed based on the

Pareto archive strategy. It uses an adaptive grid concept, in

which the objective space is separated into a number of

hypercubes. The edge length of these hypercubes, lk, is

calculated in Eqs. (3)–(5):

lk ¼
a fmax;k � fmin;k

� �

nGrid
; ð3Þ

where

fmax;k ¼ max
a¼1;...A:ns

fk xað Þjxa 2 Af g; ð4Þ

fmin;k ¼ min
a¼1;...A:ns

fk xað Þjxa 2 Af g; ð5Þ

where fk is the value of objective function k, fmax;k and fmin;k

are the maximum and minimum values of objective func-

tion k, a 2 0; 1ð Þ is the parameter controlling the ratio of

objectives’ value and grid size, nGrid is the grid size and

A denotes the archive.

A truncated archive is used to store non-dominated

solutions. For each iteration, if the archive is not yet full, a

new particle position representing a non-dominated solu-

tion is added to the archive. However, because of the size

limit of the archive priority is given to new non-dominated

solutions located in less populated areas. In the case that

Table 1 Studies related to metaheuristics in numerical ARM

Method Basic method Objective function Concept

Genetic algorithm association rules (GAR)

[7]

Genetic

algorithm

Covered, marked

and amplitude

GAR to find the frequent item sets in numerical databases

and intervals of each attribute that conforms a frequent

item sets

Multi-objective using genetic algorithm for

negative and positive quantitative

association rule mining [25]

Genetic

algorithm

Covered, amplitude GA is proposed as a search strategy for not only positive

but also negative quantitative association rule (AR)

mining within databases

Rough particle swarm optimization

(RPSOA) [24]

Particle

swarm

optimization

Covered and

amplitude

RPSOA based on the notion of rough patterns that use

rough values defined with upper and lower intervals that

represent a range or set of values

Multi-objective differential evolution

algorithm (MODENAR) [6]

Differential

evolution

algorithm

Confidence,

comprehensibility

and

interestingness

DE as a search strategy based on Pareto front concept for

mining accurate and comprehensible numerical

association rules

Chaotic particle swarm optimization

algorithm [26]

Particle

swarm

optimization

Predictive accuracy

and

comprehensibility

Classification rule mining has been modeled as a multi-

objective optimization problem with predictive accuracy

and comprehensibility objectives

Association Rules Multi-objective genetic

algorithm (ARMGA) [9]

Genetic

algorithm

and FP tree

Confidence,

comprehensibility

and

interestingness

Genetic algorithm and FP tree algorithm to improve the

efficiency of multi-objective association rules
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members of the archive must be deleted, members in

densely populated areas have the highest probability of

deletion. More densely populated hypercubes have a lower

score. Roulette wheel selection is then used to select a

hypercube, Hh, based on the selection fitness values. The

global guide for particle i is selected randomly from among

the members of hypercube Hh. Particles will therefore have

different global guides.

3 Methodology

This paper proposes a multi-objective particle swarm

optimization algorithm using an adaptive archive grid for

numerical association rule mining. The original MOPSO

algorithm was proposed by Coello et al. [16]. They pro-

posed a multiple objective particle swarm optimization

algorithm integrating the concept of Pareto dominance and

adopted an archive controller. The integration of these two

approaches decides and stores the membership of new non-

dominated solutions found in each iteration. The proposed

MOPSO algorithm considers three objectives: confidence,

comprehensibility and interestingness.

(a) Confidence

Confidence is a standard measurement for association

rules. Confidence is very important to measure how often Y

appears in transactions t that contain X. The confidence

value, CONF, can be obtained by Eq. (6):

CONF ¼ r X [ Yð Þ
r Xð Þ ; ð6Þ

where r X [ Yð Þ is the total number of transitions that

contain both X and Y, and r Xð Þ is the total number of

transactions that contain X only [17].

(b) Comprehensibility

Knowledge comprehensibility is a kind of subjective

concept—a rule that is incomprehensible to one user may

be very comprehensible to another. Nevertheless, to avoid

difficult subjective issues, the data mining literatures often

use an objective measure of rule comprehensibility. In this

paper, the fewer the number of rules in the antecedent, the

more the comprehensible it is, according to Ghosh and

Nath [3]. Equation (7) is used to quantify the comprehen-

sibility of the rules which may contain more than one

attribute in the consequent:

Comprehensibility ¼ log 1þ Cj jð Þ
logð1þ jA [ CjÞ ; ð7Þ

where |C| and A [ Cj j show the number of attributes in the

consequent and the whole rule (both antecedent and con-

sequent of the rule), respectively [5].

(c) Interestingness

Rule interestingness measures the potential for rules

generated by ARM to be surprising for the user. The basic

intuition about this approach is to find the potentially

interesting rules over the whole dataset. For instance,

{Salary = High} ? {Credit = good}. This rule tends not

to be very surprising for the user—even though it might be

an overall good rule, in the sense of being accurate and

comprehensible. In contrast, a similar rule {Salar-

y = High} ? {Credit = bad} will be surprising and so

potentially interesting since its prediction is the opposite of

what the user would expected, given the occurrence of the

condition in the rule antecedent [18]. The interestingness

can be calculated by Eq. (8):

Interestingness ¼ SUP A [ Cð Þ
SUP Að Þ

� �
� SUP A [ Cð Þ

SUP Cð Þ

� �

� 1� SUP A [ Cð Þ
SUP Dð Þ

� �
: ð8Þ

The equation contains three parts. The first expression

describes the probability of generating the rule based on the

antecedent. The second part shows the probability based on

the consequent, while the last one describes the probability

of not generating the rule based on the whole dataset [5].

These objectives are computed and considered as a

maximization problem based on the Pareto optimal strat-

egy. The results of this method are measured by several

measurement factors for evaluation purposes. There are at

least three factors that can be evaluated in order to ensure

the quality of the generated rules, namely support, ampli-

tude and size.

(a) Support

This criterion measures the quality of a rule based on the

number of occurrences of a rule in the whole dataset. A

rule that has very low support may occur simply by chance.

A rule with more occurrences in the dataset is considered to

be of better quality. This support is evaluated over all the

rules generated, using Eq. (9):

SUP ¼ r X [ Yð Þ
n

ð9Þ

(b) Amplitude

Amplitude is obtained to evaluate the mean size of the

intervals extracted for each attribute in the rules; smaller

amplitude is considered more interesting. The amplitude

value is calculated by Eq. (10):

Amplitude ¼ 1

m

Xm

i¼1

ui � li

max Aið Þ �min Aið Þ ð10Þ
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where ui and li are the upper and lower bounds of interval i,

respectively, Ai is attribute i and m is the number of

attributes.

(c) Size

The size shows the mean number of attributes appearing

in the rule result. Based on the comprehensibility objective,

the fewer the attributes in the antecedent, the more under-

standable the rule! Thus, this factor is measured by the

number of attributes involved in each rule. A smaller size

indicates that the attributes involved are not too numerous.

3.1 MOPSO algorithm

The proposed MOPSO for numerical ARM consists of

three parts: initialization, adaptive archive grid and particle

swarm optimization (PSO) searching. Figure 2 shows the

flowchart of the MOPSO algorithm.

3.1.1 Solution representation

In this MOPSO algorithm, each particle represents a rule

solution. Each attribute in the particle consists of three

parts. The first part of an attribute in the particle specifies

which part of the rule it belongs to. If 0�ACi\0:33, then

the attribute belongs to the antecedent. If

0:33�ACi\0:66, then the attribute belongs to the con-

sequent. If 0:66�ACi � 1, then the attribute belongs to

neither. The second and third parts represent the upper and

lower bound values of that attribute in the dataset. The

upper bound is always greater than the lower bound gen-

erated in each particle. Table 2 illustrates the particle

representation.

For example, suppose a dataset consists of four attri-

butes (A, B, C, D). MOPSO represents a solution for this

dataset as follows:

A 0:1ð Þ 0:2ð Þ 0:5ð Þ B 0:45ð Þ 0:8ð Þ 0:9ð Þ C 0:9ð Þ 0:1ð Þ 0:3ð Þ
� D 0:36ð Þ 0:7ð Þ 0:8ð Þ

The expression above represents a generated rule

A ? BD. Attribute C is not included in the rule, since the

value of AC is equal to 0.9. The rule contains attribute A

from 0.2 until 0.5, attribute B from 0.1 until 0.3 and

attribute D from 0.7 until 0.8.

3.1.2 Initialization

The initial particles and velocities are randomly generated

based on the size of the population and the aforementioned

particle structure. The initial particle generation is based on

[19]. The random particles are evaluated to find the

potential solutions based on their objectives.

3.1.3 Adaptive archive grid

In this step, all the particle solutions are compared to obtain

the non-dominated solution based on the Pareto optimality

approach. According to Coello et al. [16], there are two

components to maintain the repository as follows:

(a) The archive controller

This decides whether a certain solution is eligible or not.

The non-dominated vectors found at each iteration in the

primary population are compared (on a one-to-one basis)

with respect to the contents of the external repository,

which will be empty at beginning of the search. If the

external archive is empty, then the current solution is

accepted (Fig. 3 Case 1). If this solution is dominated by an

individual within the external archive/repository, then such

a solution is automatically discarded (Fig. 3 Case 2).

Otherwise, if none of the elements contained in the external

population dominate the solution wishing to enter, then

such a solution is stored in the external archive (Fig. 3

Cases 3 and 4). Finally, if the external population has

reached its maximum allowable capacity, then the adaptive

grid procedure is invoked (Fig. 3 Case 5).

(b) The grid

In order to produce well-distributed Pareto fronts, this

approach uses a variation of the adaptive grid proposed by

Knowles and Corne [20]. The basic idea is to use an

external archive to store all the solutions that are non-

dominated with respect to the contents of the archive. In

the archive, the objective function space is divided into

regions, as shown in Fig. 4. Note that if the individual

inserted into the external population lies outside the current

bounds of the grid, then the grid must be recalculated, and

each individual within it must be relocated, as shown in

Fig. 5.

The adaptive archive grid is a space formed by hyper-

cube. The detailed steps for the adaptive archive grid are as

follows:

Step 1 Obtain and store all non-dominated particles in

the archive.

Step 2 The archive controller determines which

particles must be inserted into the repository or

archived, based on the rules in Fig. 3. The

archive controller will allow all particle values to

be added into the archive, since it is an empty

archive, namely rep.

Step 3 Generate a hypercube of the search space

explored so far, and locate the particles using

these hypercube as a coordinate system, where

each particle’s coordinates are defined according

to the values of its objective functions.

Neural Computing and Applications (2019) 31:3559–3572 3563

123



Start

Initiate particles and velocities

Evaluate each of particles

Generate hypercubes

Select local best

Select global best
using rolette wheel selection

Update velocities

Check boundaries constaraints

Update particles positions

End

Delete extra archive based on
hypercubes position

Size archive
exceeded?

Evaluate each of particles

Obtain and store all the non-dominated
particles into archive

Generate hypercubes

Update archive for all the non-
dominated particles

Obtain all the non-dominated particles

Yes

Archive

Initialization

Adaptive Archived Grid

PSO Searching

Stop Criteria?

No

No

Yes

Fig. 2 Multi-objective particle

swarm optimization algorithm

using adaptive archive grid
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Step 4 Obtain all non-dominated particles. The non-

dominated particles are obtained after the

particles move to different positions in the search

space. These new non-dominated particles are

ready to be inserted into rep. However, the size

of these archives must be checked first, and if it

exceeds the predefined size, the excess particles

must be deleted based on the hypercube position.

Otherwise, it will just be updating rep.

3.1.4 PSO searching

The PSO searching as a part of the proposed MOPSO

algorithm follows the following steps:

Step 1 Stopping criteria

The stopping criterion in this MOPSO procedure is the

number of iterations.

Step 2 Local best selection (pBest)

Local best is the memory of each particle that serves as a

guide to travel through the search space. If the current

particle dominates the local best, then the local best will be

updated by the current particle.

Step 3 Global best selection (rep(h))

The selection of global best (rep (h)) is made using

roulette wheel selection from rep. The index h is selected

in the following way: Those hypercubes containing more

than one particle are assigned fitness equal to the result of

dividing any number x (x[ 1, in this paper, x = 10 [16])

by the number of particles they contain.

Step 4 Velocities update

The speed of each particle is computed using the

velocity by Eq. (2).

Step 5 Boundary constraints

Table 2 Solution representation
Attribute 1 Attribute 2 … Attribute n

AAC1 LLB1 UUB1 AAC2 LLB2 UUB2 … … … AACn LLBn UUBn

Ns = New Solution

Ns

Ns

Case 1

Ns = New Solution

Ns S1

Case 2

S1≥ Ns S1

Case 3

≥ S1

Ns

Ns = New Solution

Ns

Case 4

S1

S2

S3

S4

≥ {
S4

Ns

S1

Ns ~

Case 5

S1

S2

S3

S4

S5 S5

S4

S3

S2

S1

Ns 

Ns = New Solution

Ns = New Solution

Fig. 3 Possible cases for archive controller
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The boundary constraints restrict the velocity and pre-

vent particles moving beyond the feasible search space. In

this study, the particle limit is between 0 and 1. The

velocity limit is from - 0.5 to 5, based on [16].

Step 6 Particle update

The new position of particle i, pop ið Þ, is updated using

Eq. (11), where v ið Þ is the velocity of particle i.

pop ið Þ ¼ pop ið Þ þ v ið Þ ð11Þ

Step 7 Particle evaluation

0 1 2 3 4 5 6 7

A B
C
D E

F
G

H
I
J

K

L

M

N

Ns =[5.6,3.2]

0 1 2 3 4 5 6 7

A B
C
D E

F
G

H
I

Ns
K

L

M

N

Ns =[5.6,3.2]

0

1

2

3

4

5

6

7

Fig. 4 Adaptive grid when the solution lies within the current boundaries of the grid

0

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

A B
C
D E

F
G

H
I
J

K

L

M

N

Ns =[7.2,0.2]

0 1 2 3 4 5 6

A B
C
D E

F
G

H
I

Ns

K

L

M

N

0

1

2

3

4

5

6

7

7

Fig. 5 Adaptive grid when the solution lies outside the previous boundaries of the grid
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The new particle position is re-evaluated to find other

potential solutions. The particle evaluation procedure is

explained under Initialization.

4 Experiment results

This section presents the evaluation of the proposed

method. The proposed MOPSO for numerical ARM is

applied to some benchmark datasets. The evaluation covers

the sensitivity analysis for the parameter setting in the

MOPSO and comparison with other metaheuristic

methods.

4.1 Datasets

The computational experiments were conducted using

three benchmark datasets selected from the Bilkent

University Function Approximation Repository. These

datasets were introduced by Guvenir and Uysal [21].

Table 3 gives a description of each dataset. The algorithm

is implemented in MATLAB, on a PC with an Intel Core i7

@3.40 GHz Processor and 16 GB RAM.

4.2 Parameter settings

Since the proposed algorithm involves some parameter

settings, this section aims to analyze the effect of the

parameter setting on the results. This paper applies a

general factorial design to determine the best combination

of tuning parameters. The experimental factors for PSO are

inertia weight (w), learning rate 1 (c1.) and learning rate 2

(c2), while the archive size parameter is fixed at 100. The

factors and levels of determination are summarized in

Table 4. The parameter settings in this paper are based on

previous papers and a preliminary experiment [20, 22, 23].

Table 5 summarizes the results of generaal factorial

design (Table 5).

Analysis of variance is employed to conduct a statistical

test of the MOPSO tuning parameters effect model. The

statistic results given in Table 6 show that for the Bas-

ketball dataset, c1 and interaction between w and c1 sig-

nificantly influence the results. The result shows that a

smaller c1. and w lead to better results for the Basketball

dataset. For the Body Fat dataset, w and interaction

between w and c1 significantly influence the results. Better

results are obtained with higher values of w and c1. On the

other hand, for the Quake dataset, different parameter

settings do not significantly affect the results. The best

parameter settings for each dataset are shown in Table 7.

4.3 Experimental results and analysis

In order to obtain the best solution, 20 independent runs

were conducted using the optimal parameters. The results

were then compared with other algorithms. Parameter

settings for these algorithms were optimized in previous

studies [4, 5, 7, 24]. In this paper, the proposed MOPSO

algorithm is compared with multi-objective PSO algorithm

for association rules (MOPAR) [4], multi-objective dif-

ferential evaluation algorithm for mining numerical asso-

ciation rules (MODENAR) [6], genetic algorithm

association rules (GAR) [7], multi-objective genetic algo-

rithm (MOGAR) [5] and rough particle swarm optimiza-

tion (RPSOA) [24]. The first comparison considers the

support result. It is then followed by confidence, amplitude,

size and the number of rules.

Table 8 shows the average support value for each

method over benchmark datasets. It shows that the MOPSO

algorithm obtains the best support for the Quake dataset.

The best algorithms for the Body Fat and Basketball

datasets are the MODENAR and MOGAR algorithms,

respectively. In terms of confidence, shown in Table 9, the

proposed MOPSO algorithm achieves better results for two

of the three tested datasets. These results also show that

among the five algorithms, three have relatively higher

confidence. These three algorithms are the MOPSO,

MOPAR and MOGAR algorithms. This is because they use

confidence as one of their objective functions.

Furthermore, the amplitude is presented in Table 10.

The proposed MOPSO algorithm only can obtain the best

amplitude value for the Body Fat dataset. For the Basket-

ball dataset, the best result is given by the MOPAR algo-

rithm, while for the Quake dataset, the best result is given

by MODENAR. For the Basketball and Quake datasets, the

MOPSO algorithm is the second best algorithm. Similar

results were also obtained for the size measure presented in

Table 11. Additional information about the results is

summarized in Tables 12 and 13.

Table 3 Brief information of benchmark data. Source: http://funapp.

cs.bilkent.edu.tr/DataSets/

Dataset No. of records No. of attribute

Basketball 96 5

Body Fat 252 18

Quake 2178 4

Table 4 Factors and levels
Factors Level 1 Level 2

w 0.3 0.8

c1 1 2

c2 1 2
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These results prove that the proposed MOPSO algorithm

is a promising ARM algorithm for numerical datasets. It

can generate a set of rules with high support and confi-

dence. That the generated rules also have smaller

amplitude values shows that they are interesting rules.

Furthermore, the attributes involved in the rules are not too

numerous.

In addition, the experimental results reveal that PSO-

based and DE-based ARM algorithms can give better

Table 5 Average MOPSO

solution on different tuning

parameters

Tuning parameters w 0.3

c1 1 1 2 2

c2 1 2 1 2

Dataset Basketball 41.02184214 36.86786 40.23458 38.73628

Body Fat 37.23948878 31.89661 30.1911 30.06441

Quake 40.72394392 44.08425 44.83679 43.28271

Tuning parameters w 0.8

c1 1 1 2 2

c2 1 2 1 2

Dataset Basketball 40.30381933 40.37121 38.39427 31.796

Body Fat 33.08585292 30.15898 42.04037 40.54267

Quake 40.54886285 42.79836 43.93529 43.16952

Table 6 Statistic test for parameter analysis (p value)

Parameter Basketball Body Fat Quake

w 0.237 0.023 0.562

c1 0.065 0.147 0.099

c2 0.017 0.170 0.441

w and c1 0.023 0.000 0.917

w and c2 0.862 0.884 0.940

c1 and c2 0.429 0.355 0.065

w, c1 and c2 0.067 0.598 0.656

Table 7 Optimal tuning parameters for MOPSO

Tuning parameters Datasets

Basketball Body Fat Quake

w 0.3 0.8 0.3

c1 1 2 2

c2 1 1 1

Table 8 Comparison of the

support (%) measure in different

methods

Dataset MOPSO MOPAR MODENAR GAR MOGAR RPSOA

Basketball 38.79 30.76 37.2 36.69 50.82a 36.44

Body Fat 37.53 22.95 65.22a 65.26 57.22 65.22

Quake 42.21a 31.97 39.86 38.65 30.12 38.74

aThe best result

Table 9 Comparison of the confidence (%) measure in different

methods

Dataset MOPSO MOPAR MODENAR MOGAR RPSOA

Basketball 89.27 95a 61 83 60

Body Fat 91.69a 81.8 62 85 61

Quake 93.40a 89.32 63 82 63

aThe best result

Table 10 Comparison of the amplitude measure in different methods

Dataset MOPSO MOPAR MODENAR GAR RPSOA

Basketball 15.84 5a 19 25 19

Body Fat 4.25a 15.84 25 29 25

Quake 19.25 94.15 17a 25 17a

aThe best result
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results than can GA-based ARM algorithms. This might be

because, when generating a set of rules, the algorithm

needs to conduct deep searches. Both the PSO and DE

algorithms only have a high capability to focus on narrow

exploitation; however, the GA algorithm has a mutation

operator. This operator is very important for avoiding local

optima and performing large exploration. However, for

problems with fewer local optima, or if the optimal solu-

tion is located in a narrow location, the mutation operator

may become a disadvantage. Therefore, from these results,

PSO-based and DE-based algorithms have relatively better

results. Furthermore, the objective function also has a

significant effect on the result. For instance, the MOPSO,

MOPAR and MOGAR algorithms use confidence, inter-

estingness and comprehensibility as their objective func-

tions. Therefore, they have good results in terms of

confidence and support. On the other hand, MODENAR

includes amplitude in its objective functions, and its results

have low amplitude.

5 Case study

The performance evaluation result presented in Sect. 4

reveals that the proposed MOPSO algorithm can perform

better than some other algorithms. Thus, this paper applies

the proposed algorithm to a real-world problem. This case

study is obtained from a domestic industry that developed a

healthy weight loss application (app). This app provides

services to help users manage their personal health using a

calorie counter, calorie-controlled meals and location

information, and other functions for maintaining body

weight. In order to identify the behavior of customers using

this app, association rule mining is very useful in deter-

mining the relations between each function within the app.

The app dataset is the click log history consisting of 38

page functions or attributes that would be considered as

attribute inputs for the MOPSO. In addition to page attri-

butes, there are several other important attributes.

5.1 Preprocessing

The data preprocessing involves data normalization and

attribute selection. Not all attributes are included in the

data processing because some attributes have zero value.

The attribute selection is conducted based on the following

steps:

Step

1

Calculate the percentages of zero values for each

attribute.

Step

2

Conduct observation for three combinations by

eliminating attributes that have more than 90, 80,

70 and 60% zero values.

Step

3

Compare the results and determine the selection

attributes.

Table 13 lists the alternatives of the selected attributes.

The total number of attributes in solutions 4 and 5 are

similar. The same situation occurs for solutions 3 and 4.

However, the difference in number of attributes left

between solutions 2 and 3 is significant. In other words, if

solution 2 is picked, the overall attributes will contain more

attributes with zero value than without zero value, since

most zero values lie between 80 and 90%. Therefore,

solution 3 is considered the best solution.

5.2 MOPSO implementation

In applying the MOPSO algorithm for the case study, the

parameter combination for w, c1, c2 used follows the

parameter setting for the Body Fat dataset. The values are

0.8, 2 and 1, respectively. This parameter combination is

chosen since the number of attributes in the case study

dataset is similar to that of the Body Fat dataset, and the

Table 11 Comparison of the size measure in different methods

Database MOPSO MOPAR MODENAR GAR RPSOA

Basketball 3.35 2.81a 3.21 3.38 3.21

Body Fat 5.18a 7.79 6.87 7.45 6.94

Quake 2.8 2.79 2.03a 2.33 2.22

aThe best result

Table 12 Comparison of the number of rules in different methods

Dataset MOPSO MOPAR MODENAR GAR RPSOA

Basketball 41 69.75 48 50 34.2

Body Fat 65 70.8 52 84 46.4

Quake 29 54.1 55 44.87 46.4

Table 13 MOPSO summary result

Datasets No. of

rules

Support

(%)

Confidence Comprehensibility

Basketball 41 38.8 0.89 0.82

Body Fat 65 37.53 0.92 0.63

Quake 29 42.22 0.93 0.73

Datasets Interestingness Amplitude Size

Basketball 0.33 15.85 3.65

Body Fat 0.28 4.26 8.27

Quake 0.3 19.26 2.8
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statistical analysis result indicates that these parameter

combinations have significant impact for the Body Fat

dataset. The convergence histories of the MOPSO algo-

rithm for the case study data are shown in Fig. 6.

Table 14 presents the association rule results. It shows

that the top rules with confidence equal to 1 reveals that

users tend to visit and spend more time on click_calo-

ries_map. The close relation between click_calories_map

and suggest_a_meal is shown by the highest support value

found on rule number 1. Users tend to browse the calories

maps provided by restaurants before ordering their meals.

These findings are reasonable, since the calorie information

in this app is very useful support for their diet or exercise

program. Users also tend to use suggest_a_meal and

select_a_restaurant with exercise_information together.

Furthermore, users tend to click select_a_restaurant and

then click exercise_information, as found in rule #4. There

is a close relation between the calories map, weight details

and exercise found in rules #6, #7 and #8.

The following conclusions can be drawn from this

result:

(a) Users of this application tend to use several

functions of this app, due to a lot of zero records

being found.

(b) From the most visited functions, it is found that the

calorie map provided by restaurants is very useful,

helping users select restaurants or to plan their

exercise (Table 15).

6 Conclusions

This paper proposes a multi-objective particle swarm

optimization (MOPSO) algorithm for numerical associa-

tion rule mining. While most ARM algorithms are only

applicable for categorical data, the proposed MOPSO

algorithm includes a discretization procedure in order to

process numerical data. It represents intervals for each

variable in a particle to find the best interval for each

dataset automatically. Furthermore, in order to obtain

interesting and reliable sets of rules, this paper considers

three objectives when generating the rules, namely confi-

dence, interestingness and comprehensibility. This algo-

rithm does away with the need for decision-makers to

determine the minimum support and confidence in

advance.

In order to evaluate the proposed MOPSO algorithm,

three benchmark datasets were applied. The results were

compared with those of four other ARM algorithms,

namely MOPAR, MODENAR, GAR and RPSOA. The

computational results showed that the proposed MOPSO

algorithm gives better results in terms of confidence and
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Table 14 Alternatives of

selected attributes
Solution Actions Total attribute left

1 Keep all the attributes 38

2 Keep attributes having less than 90% zero value 23

3 Keep attributes having less than 80% zero value 14

4 Keep attributes having less than 70% zero value 9

5 Keep attributes having less than 60% zero value 8
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amplitude, resulting in fewer rules being generated. These

results also reveal that PSO-based and DE-based ARM

algorithms are more promising than GA-based ARM

algorithms. This is because ARM requires more intensive

exploitation to get a better set of rules. In addition, the

objective functions used by the algorithm also influence the

rules. Based on the experimental results, by choosing

confidence, interestingness and comprehensibility as the

objective functions, the rules generated might have higher

support and confidence. This study also applied the pro-

posed MOPSO algorithm to a real-world problem. The case

study aims to reveal important information from the user

behavior for a weight loss application. Based on the results

obtained, further study should consider more objectives,

such as amplitude, in order to obtain better rules. Hybrid

metaheuristics also should be evaluated to generate better

rules.
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