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Abstract
A new dynamic system, the fractional-order Hopfield neural networks with parameter uncertainties based on memristor are

investigated in this paper. Through constructing a suitable Lyapunov function and some sufficient conditions are estab-

lished to realize the robust synchronization of such system with discontinuous right-hand based on fractional-order

Lyapunov direct method. Skillfully, the closure arithmetic is employed to handle the error system and the robust syn-

chronization is achieved by analyzing the Mittag-Leffler stability. At last, two numerical examples are given to show the

effectiveness of the obtained theoretical results. The first mainly shows the chaos of the system, and the other one mainly

shows the results of robust synchronization.
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1 Introduction

Fractional calculus, memristor and neural network are all

hot topics in the scientific community. Scientists have

obtained many results in the three fields above, respec-

tively. So now, it is well known that the study of the

combination of three, memristor-based fractional-order

neural networks, is a potential research direction.

Fractional calculus, as another branch of the calculus, is

the promotion and generation of the common integer-order

calculus, dating from about 300 years ago. Lots of scien-

tists threw themselves into fractional calculus for many

years. But due to the lack of application background and its

complexity in various fields, fractional calculus was stud-

ied only in the area of mathematics for such a long time.

But recently, facts proved that the theory of fractional-

order differential equations offers an excellent tool in

modeling in various fields of physics, mathematics, engi-

neering and so on [1–3]. The descriptions of some

dynamical systems in the study using fractional-order

models are superior to the integer-order systems [4]. It is

not difficult for us to perceive that many researchers have

turned their attention to the fractional calculus and built

fractional-order models, proposing some good results. A

method based on the state observer design for a class of

nonlinear fractional-order systems (FOSs) with the frac-

tional-order 0\a\1 is presented and the asymptotic sta-

bility conditions of closed-loop control nonlinear systems

are derived by Fractional Lyapunov direct method in Ref.

[5]. The synchronization method of two identical frac-

tional-order chaotic systems is developed with lower order

than the existing fractional order 3 by designing suit-

able sliding mode control and a new cryptosystem is

derived for an image encryption and decryption based on

the synchronized lowest fractional-order 2.01 chaotic sys-

tems in Ref. [6].

As far as we know, the neural networks can be con-

structed by nonlinear circuit which are designed to emulate

the function of the human brain. In recent years, the neural

networks have enjoyed a high popularity for the reason that

their widespread applications in the fields of pattern

recognition, optoelectronics, associative memory, remote

sensing, optimization, modeling and control (see [7–9]). In

& Yongguang Yu

ygyu@bjtu.edu.cn

Shuxin Liu

15121539@bjtu.edu.cn

Shuo Zhang

13118395@bjtu.edu.cn

1 Department of Mathematics, Beijing Jiaotong University,

Beijing 100044, People’s Republic of China

123

Neural Computing and Applications (2019) 31:3533–3542
https://doi.org/10.1007/s00521-017-3274-3

http://orcid.org/0000-0002-9336-0376
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3274-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3274-3&amp;domain=pdf
https://doi.org/10.1007/s00521-017-3274-3


Refs [10, 11], the neural networks are applied to approxi-

mate solutions of the differential equations of fractional

orders. And as for the dynamics analysis of the neural

networks, there already have some results. In Ref. [12], the

state synchronization and the exponential synchronization

are achieved for a class of chaotic neural networks with or

without delays based on the drive-response concept and

Lyapunov stability method and the Halanay inequality

lemma, respectively. And the modified function projective

synchronization is achieved between two chaotic neural

networks with delays based on the nonlinear state observer

and the drive-response concept in Ref. [13]. In Ref. [14],

the exponential synchronization for master-slave chaotic

delayed neural network with limited communication

capacity and network bandwidth based on event trigger

control scheme is concerned. Most of all, we know that the

fractional-order systems, in comparison with the integer-

order parts, have one significant feature that is their infinite

memory based on the properties of the fractional-order

calculus. Hence, scientists start to incorporate a memory

term into a neural network model, named fractional-order

artificial neural networks. As a peculiar kind of neural

networks, the fractional-order neural networks have

received more and more attention and some important

results about the models have been investigated in Refs.

[15–18].

Memristor, according to the equation deduced, is first

introduced in Chuas seminal paper [19] in 1971. It is the

representative of the fourth perfect electrical element

which can describe the relationship between the flux and

the charge with alterable resistance. But it was not clearly

experimentally demonstrated until 2008, that the scientists

at Hewlett Packard Labs proudly announced the real

implementation of the memristor physically with an official

publication in Nature [20, 21]. Recently, the memristor,

serving as a nonvolatile memory, enjoys some good

properties and plays an important role in the modeling (see

[22–26]). The reason why the memristor can enjoy a high

popularity is because its nanometer dimensions and the

memory characteristic. Based on the previous work, it is

well known that the memristor performs the same as the

neurons in the human brain. If we use the memristors

instead of resistors to act as the connection weights and the

self-feedback connection weights among the neurons, then

there creates the memristor-based neural networks, which

is a state-dependent switching system. As for the dynamics

analysis of the memristor-based neural networks, there

already have some results. In Ref. [27], the existence,

uniqueness, and stability of memristor-based synchronous

switching neural networks with time delays are studied by

introducing multiple Lyapunov functions. In Ref. [28], the

paper addresses the problem of circuit design and global

exponential stabilization of memristive neural networks

with time-varying delays and general activation functions.

By using an impulsive delayed differential inequality and

Lyapunov function, the exponential stability of the

impulsive delayed memristor-based recurrent neural net-

works is investigated in Ref. [29]. And there are more

results in Refs. [30–35].

According to the above discussion, it is significant for us

to analysis the dynamic behaviors of the memristor-based

fractional-order neural networks, which enjoy the advan-

tages of both fractional-order neural networks and mem-

ristor-based neural networks. There are already some

researches about this new system. In Ref. [36], the authors

analyze the global Mittag-Leffler stability and synchro-

nization of memristor-based fractional-order neural net-

works. And the global asymptotic stability and

synchronization of a class of fractional-order memristor-

based delayed neural networks are investigated in

Ref. [37]. In Ref. [38], the paper investigated the projec-

tive synchronization of fractional-order memristor-based

neural networks in the sense of Caputo’s fractional

derivation and by combining a fractional-order differential

inequality. In Ref. [39], by using Laplace transform, the

generalized Gronwalls inequality, Mittag-Leffler functions

and linear feedback control technique, some new sufficient

conditions are derived to ensure the finite-time synchro-

nization of a class of fractional-order memristor-based

neural networks (FMNNs) with time delays for fractional

order: 1\a\2 and 0\a\1, respectively. In the Ref. [40],

the synchronization error system is formulated on the basis

of the theory of fractional differential equations and the

theory of differential inclusion and by employing Hölder

inequality, Cp inequality and Gronwall-Bellman inequality,

several sufficient criteria are proposed to ensure the quasi-

uniform synchronization for the considered delayed frac-

tional-order memristor-based neural networks (FMNNs).

However, the effect of parameter uncertainties are not

taken into consideration in the above researches, which are

unavoidable in our actual life due to some reasons, such as

external disturbance, temperature difference, measure

errors, and so on. Therefore, make certain the two chaotic

systems can also realize the stability or synchronization

with respect to these uncertainties in the design or in the

applications of neural networks is very necessary and sig-

nificant. In other words, the design neural network should

be robust under such uncertainties. It is well known that the

Hopfield neural network is a kind of rather important

nonlinear circuit networks because of their wide applica-

tions in various fields of optimization problem, associative

memory, pattern recognition, etc. There are some results

about the fractional-order Hopfield neural networks [16].

And the results of the memristor-based fractional-order

Hopfield neural network are very few. Actually, the
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memristor-based fractional-order Hopfield neural network,

compared with the common memristor-based fractional-

order neural networks, show more superiority and over-

come the defect that computationally restrictive which has

been found in some existing memristor-based fractional-

order networks. Synchronization is always a hot topic

among the neural networks and the feature of the mem-

ristor. In Ref. [41], Huang et al. focus on the hybrid effects

of parameter uncertainty, stochastic perturbation, and

impulses on global stability of delayed neural networks. In

Ref. [42], Wong et al. investigated robust synchronization

of fractional-order complex dynamical networks with

parameter uncertainties. And Wang et al. [43], studied the

exponential synchronization problem of a class of mem-

ristive chaotic neural networks with discrete, continuously

distributed delays and different parametric uncertainties.

Motivated by the above, there are few results on synchro-

nization problem of memristor-based fractional-order

Hopfield neural networks considering parameter uncer-

tainties, showing the robust of such system. So in this

letter, based on the above works, we will study robust

synchronization of the memristor-based fractional-order

Hopfield neural networks with parameter uncertainties by a

simple controller. Based on the fractional-order Lyapunov

direct method, a suitable Lyapunov function and some

sufficient conditions are presented to achieve the robust

synchronization between the two memristor-based frac-

tional-order Hopfield neural networks with the parameter

uncertainties by analyzing the Mittag-Leffler stability of

the error system. Besides, in the help of the numerical

simulations, it can be proved that the system we study is

chaotic, so the synchronization between the same master-

slave systems is meaningful.

The rest of this paper is organized as follows. Some

basic definitions and relevant lemmas are introduced firstly

in Sect. 2. Then, the fractional-order Hopfield neural net-

works with parameter uncertainties based on memristor are

given and based on the Lyapunov function, robust syn-

chronization is achieved in Sect. 3. At last, numerical

simulations are proposed to show the correctness of the

theoretical results in Sect. 4.

2 Preliminaries

To begin with, we would like to introduce some basic

definitions and relevant lemmas. The fractional-order cal-

culus is the promotion of the integer-order calculus, and it

acts as an important role in the nonlinear science. The

fractional-order calculus has three common definitions,

such as Grunwald–Letnikov, Riemann–Liouville, and

Caputo definitions [1]. As we know, the Caputo fractional-

order derivative is the improvement of the Grunwald–

Letnikov, having the same initial condition with the inte-

ger-order derivatives, which has clear physical meaning.

Thus, we employ the Caputo fractional-order derivative in

this paper.

Definition 1 The Caputo fractional-order derivative is

defined as:

t0D
a
t f ðtÞ ¼

1

Cðn� aÞ

Z t

t0

f ðnÞðsÞ
ðt � sÞaþ1�n

ds; ð1Þ

where n is a positive integer and meets n� 1\a� n, Cð�Þ
denotes the Gamma function.

Property 1 C is any constant, then t0D
a
t C ¼ 0 holds.

Property 2 There are two any constants l and m, Caputo
fractional-order derivative has the following linearity:

t0D
a
t ðlf ðtÞ þ mgðtÞÞ ¼ lt0D

a
t f ðtÞ þ mt0D

a
t gðtÞ:

Just like the role of the exponential function in the

integer-order system, Mittag-Leffler function is often used

in the solutions of fractional-order differential equations.

Definition 2 [1] The Mittag-Leffler function having two

parameters is defined as:

Ea;bðzÞ ¼
X1
k¼0

zk

Cðak þ bÞ ;

where a[ 0, b[ 0 and z 2 C. When b ¼ 1, we have:

EaðzÞ ¼
X1
k¼0

zk

Cðak þ 1Þ ¼ Ea;1ðzÞ;

Next, some relevant lemmas will be given. Consider the

following n-dimensional Caputo fractional-order dynamic

system

t0D
a
t xðtÞ ¼ f ðt; xðtÞÞ
xðt0Þ ¼ xt0 ;

�
ð2Þ

where a 2 ð0; 1Þ, x ¼ ðx1; x2; . . .; xnÞT 2 Rn, t0 � 0 is the

initial time and f : ½0;þ1Þ � Rn ! Rn is piecewise con-

tinuous on t satisfying locally Lipschitz condition on x.

Definition 3 (Mittag-Leffler stability [44]) The solution

of system (2) is said to be Mittag-Leffler stable in the case

�x ¼ 0 is an equilibrium point of system (2) if

kxðtÞk� ½mðxt0ÞEað�kðt � t0ÞaÞ�b: ð3Þ

where k[ 0, b[ 0, mð0Þ ¼ 0, k � k denotes an arbitrary

norm and mðxÞ� 0 satisfies locally Lipschitz condition on

x 2 Rn, m0 denotes the Lipschitz constant.
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Remark 1 Based on the relationship of the stability, we

can know that Mittag-Leffler stability includes asymptotic

stability i.e. kxðtÞk ! 0 with t ! þ1.

Remark 2 The common phenomenon is that �x 6¼ 0, so at

this time, the solution of system (2) is said to be Mittag-

Leffler stable if

kxðtÞ � �xk� ½mðxt0 � �xÞEað�kðt � t0ÞaÞ�b;

and xðtÞ ! �x when t ! þ1.

To analyze Mittag-Leffler stability of system (2), the

fractional-order Lyapunov direct method is introduced as

follows.

Lemma 1 (Fractional-order Lyapunov direct method

[44]) For the initial time t0 ¼ 0, the fractional-order

dynamic system (2) is Mittag-Leffler stable at the equilib-

rium point �x ¼ 0 if there exists a continuously differen-

tiable function V(t, x(t)) satisfies

a1kxka �Vðt; xðtÞÞ� a2kxkab; ð4Þ

0D
b
t Vðt; xðtÞÞ� � a3kxkab: ð5Þ

where Vðt; xðtÞÞ : ½0;1Þ � D ! R satisfies locally Lips-

chitz condition on x; D � Rn is a domain containing the

origin; t� 0, b 2 ð0; 1Þ, a1, a2, a3, a and b are arbitrary

positive constants. On the other hand, if the assumptions

hold globally on Rn, then �x ¼ 0 is globally Mittag-Leffler

stable.

Remark 3 According to Ref. [44], the conditions in

Lemma 1 can be weakened, that is if inequality (5) holds

almost everywhere, the result of Lemma 1 is also correct.

Lemma 2 [36]. If hðtÞ 2 C1ð½0;þ1Þ;RÞ is a continu-

ously differentiable function, then the following inequality

holds almost everywhere.

0D
a
t jhðtÞj � sgnðhðtÞÞ0Da

t hðtÞ; 0\a\1: ð6Þ

3 Robust synchronization of memristor-
based fractional-order Hopfield neural
networks with parameter uncertainties

In this section, two chaotic memristor-based fractional-

order Hopfield neural networks with parameter uncertain-

ties are given firstly. The systems we introduced are ideal

models and frequently encountered in applications and in

life. Then, a suitable Lyapunov function and some suffi-

cient conditions on robust synchronization of the systems

are established by using fractional-order Lyapunov direct

method.

Consider the following two n-dimensional memristor-

based Caputo fractional-order Hopfield neural networks

with the parameter uncertainties:

0D
a
t xðtÞ ¼ � ðAþ DAðtÞÞxðtÞ þ ðBþ DBðtÞÞf ðxðtÞÞ þ w;

ai ¼
a

0
i; jxiðtÞj � T

a
00
i ; jxiðtÞj[ T :

(
bij ¼

b
0

ij; jxiðtÞj � T

b
00
ij; jxiðtÞj[ T :

(

ð7Þ

0D
a
t yðtÞ ¼ �ðAþ DAðtÞÞyðtÞ þ ðBþ DBðtÞÞf ðyðtÞÞ þ wþ uðtÞ;

ai ¼
a
0

i; jyiðtÞj � T

a
00

i ; jyiðtÞj[T :

(
bij ¼

b
0
ij; jyiðtÞj � T

b
00

ij; jyiðtÞj[ T :

(

ð8Þ

where a 2 ð0; 1Þ, xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . .; xnðtÞÞT 2 Rn,

yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; . . .; ynðtÞÞT 2 Rn, f ðxðtÞÞ ¼ ðf1ðx1Þ;
f2ðx2Þ; . . .; fnðxnÞÞT 2 Rn; f ðyðtÞÞ ¼ ðf1ðy1Þ; f2ðy2Þ; . . .;
fnðynÞÞT 2 Rn, A ¼ diagfa1; a2; . . .; ang, and B ¼ ðbijÞn�n.

For i; j ¼ 1; 2; . . .; n, xiðtÞ, yiðtÞ are the state of the ith unit

at time t of the system (7) and the system (8), respectively,

fiðxiÞ, fiðyiÞ denote the activation function of the ith neuron,

ai [ 0 denotes the charging rate for the ith neuron, and bij
is the constant connection weight of the jth neuron on the

ith neuron. DAðtÞ ¼ diagfDa1ðtÞ;Da2ðtÞ; . . .;DanðtÞg and

DBðtÞ ¼ ðDbijðtÞÞn�n are matrices with time-varying para-

metric uncertainties. w ¼ ðw1;w2; . . .;wnÞT is the constant

external input vector, uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . .; unðtÞÞT is the

control law:

uðtÞ ¼ �kðyðtÞ � xðtÞÞ:

where k is a positive constant.

In the rest of this paper, kQk denotes the 1-norm of

corresponding vector Q or matrix Q. When Q ¼
ðQ1;Q2; . . .;QmÞT 2 Rm is a vector, kQk ¼ jQ1jþ
jQ2j þ . . .þ jQmj. If Q 2 Rm�m is a matrix, kQk ¼
supfkQxk : 8x 2 Rm; kxk� 1g.

Definition 4 (Robust Synchronization). If the error sys-

tem eðtÞ ¼ yðtÞ � xðtÞ between the two systems tends to 0

as the time t ! þ1, then the two systems are said to

realize robust synchronization, that is:

lim
t!þ1

jjeðtÞjj ¼ lim
t!þ1

jjyðtÞ � xðtÞjj ¼ 0:

In order to achieve robust synchronization between the

two systems (7) and (8), the following four assumptions are

given:

(A1) There exist two constants MA;MB [ 0, the time-

varying parameter uncertainty matrices DAðtÞ and DBðtÞ
are both bounded and the inequalities hold kDAðtÞk�MA

and kDBðtÞk�MB.

ðA2Þ The activation functions fi are continuous and

satisfy Lipschitz condition on R with Lipschitz constant

li [ 0, i.e.,
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jfiðxÞ � fiðyÞj � lijx� yj:

for all x; y 2 R and i ¼ 1; 2; . . .; n.
ðA3Þ There exist positive constants k and

biði ¼ 1; 2; . . .; nÞ, k, and the following inequality holds

ðkI þ A� LjBmaxjTÞ

b1
b2

..

.

bn

0
BBBB@

1
CCCCA�ðMAkbk þMBkLkkbk þ kÞ

1

1

..

.

1

0
BBBB@

1
CCCCA;

ð9Þ

where A ¼ diagða1; a2; . . .; anÞ, ai ¼ minfa0

i; a
00

i g.
jBmaxj ¼ ðmaxfjb0

ijj; jb
00
ijjgÞn�n, L ¼ diagðl1; l2; . . .; lnÞ and

b ¼ diagðb1; b2; . . .; bnÞ.
ðA4Þ For i, j = 1, 2,…, n

aiðyiðtÞÞyiðtÞ � aiðxiðtÞÞxiðtÞ 	 ½ai; ai�ðyiðtÞ � xiðtÞÞ;
bijðyiðtÞÞf ðyjðtÞÞ � bijðxiðtÞÞf ðxjðtÞÞ 	 ½bij; bij�ðf ðyjðtÞÞ

� f ðxjðtÞÞÞ:

ai ¼ minfa0
i; a

00
i g, ai ¼ maxfa0

i; a
00
i g, bij ¼ minfb0

ij; b
00
ijg,

bij ¼ maxfb0
ij; b

00
ijg.

Theorem 1 The robust synchronization can be realized

for the systems (7) and (8), if the assumptions (A1)–(A4)

are satisfied.

Proof Firstly, for system (7) and system (8), the error

system can be derived,

0D
a
t eiðtÞ ¼ � ðaiðyiðtÞÞyiðtÞ � aiðxiðtÞÞxiðtÞÞ � DaiðtÞðyiðtÞ

� xiðtÞÞ þ
Xn
j¼1

½ðbijðyiðtÞÞfjðyjðtÞÞ � bijðxiðtÞÞfjðxjðtÞÞÞ

þ DbijðtÞðfjðyjðtÞÞ � fjðxjðtÞÞÞ� � kðyiðtÞ � xiðtÞÞ:

by ðA4Þ, the error system can be simplified as

0D
a
t eiðtÞ 2 �½ai; ai�eiðtÞ � DaiðtÞeiðtÞ

þ
Xn
j¼1

½½bij; bij�ðfjðyjðtÞÞ � fjðxjðtÞÞÞ;

þ DbijðtÞðfjðyjðtÞÞ � fjðxjðtÞÞÞ� � keiðtÞ:

Now let hi 2 ½ai; ai�, mij 2 ½bij; bij�, we have

0D
a
t eiðtÞ ¼ � ðk þ hi þ DaiðtÞÞeiðtÞ þ

Xn
j¼1

ðmij

þ DbijðtÞÞðfjðyjðtÞÞ � fjðxjðtÞÞÞ ð10Þ

i.e.

0D
a
t eðtÞ ¼ � ðkI þ hþ DAðtÞÞeðtÞ þ ðmþ DBðtÞÞ

ðf ðyðtÞÞ � f ðxðtÞÞÞ:
ð11Þ

According to the fractional-order Lyapunov direct method,

a Lyapunov function is constructed as

Vðt; eðtÞÞ ¼
Xn
i¼1

bijeiðtÞj: ð12Þ

It is obvious that the Lyapunov functional (12) satisfies the

condition of inequality (4). Then, we are going to prove

that the Lyapunov functional (12) also satisfies the condi-

tion of inequality (5) almost everywhere.

From Definition 1 and eiðtÞ 2 C1ð½0;þ1Þ;RÞ, by (A1)–

(A3) and Lemma 2, the following inequality holds almost

everywhere:

0D
a
t Vðt; eðtÞÞ ¼

Xn
i¼1

bi0D
a
t jeiðtÞj �

Xn
i¼1

bisgnðeiðtÞÞ0Da
t eiðtÞ

¼
Xn
i¼1

bisgnðeiðtÞÞ½�ðk þ hi þ DaiðtÞÞeiðtÞ

þ
Xn
j¼1

ðmij þ DbijðtÞÞðfjðyjðtÞÞ � fjðxjðtÞÞÞ�

�
Xn
i¼1

bi½�kjeiðtÞj � hijeiðtÞj þ jDaiðtÞjjeiðtÞj

þ
Xn
j¼1

ljðjmijj þ jDbijðtÞjÞjejðtÞj�

¼
Xn
i¼1

bið�kjeiðtÞj � hijeiðtÞj þ jDaiðtÞjjeiðtÞjÞ

þ
Xn
i¼1

Xn
j¼1

bjliðjmjij þ jDbjiðtÞjÞjeiðtÞj

¼ �
Xn
i¼1

kbi þ hibi �
Xn
j¼1

jmjijbjli � jDaiðtÞjbi

 

�
Xn
j¼1

jDbjiðtÞjbjli

!
jeiðtÞj

� �
Xn
i¼1

kbi þ hibi �
Xn
j¼1

jmjijbjli � kDAðtÞbk
 

�kbDBðtÞLk
!
jeiðtÞj

� �
Xn
i¼1

kbi þ hibi �
Xn
j¼1

jmjijbjli �MAkbk
 

�MBkLkkbk
!
jeiðtÞj:

According to the assumption ðA3Þ, we have

kbi þ aibi �
Xn
j¼1

jbjijmaxlibi �ðMAkbk þMBkLkkbk þ kÞ:

Then
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kbi þ hibi �
Xn
j¼1

lijmjijbj � kbi þ aibj �
Xn
j¼1

lijbjijmaxbj

�MAkbk þMBkLkkbk þ k:

Thus

0D
a
t Vðt; eðtÞÞ� �

Xn
i¼1

kbi þ hibi �
Xn
j¼1

jmjijbjli

 

�MAkbk �MBkLkkbkÞjeiðtÞj

� � kkeðtÞk:

By the Lemma 1, the error system (10) is Mittag-Leffler

stable, that is

keðtÞk�Vð0; eð0ÞÞEað�ktaÞ: ð13Þ

Then, the equilibrium point of the error system, e ¼ 0 is

Mittag-Leffler stable, which imply asymptotic stability, so

lim
t!þ1

jjeðtÞjj ¼ 0: ð14Þ

To sum up, according the definition 4, the robust syn-

chronization between the systems (7) and (8) is achieved.

The proof completes. h

4 Numerical simulations

In this section, two examples are given to demonstrate the

above results.

4.1 Chaos numerical simulation

The first example is given to display that the memristor-

based fractional-order Hopfield neural networks with

parameter uncertainties are the chaotic systems.

For system (7) and system (8), n ¼ 3, w ¼ ð0; 0; 0ÞT ,
f ðxÞ ¼ ðtanhðx1Þ; tanhðx2Þ; tanhðx3ÞÞT ,
A ¼ diagða1; a2; a3Þ, B ¼ ðbijÞn�n, DA ¼ DB ¼ 0:1e�tI,

and

a1 ¼
1:00; jx1ðtÞj�1

1:05; jx1ðtÞj[1:

�
a2 ¼

1:0; jx2ðtÞj�1

0:95; jx2ðtÞj[1:

�

a3 ¼
1:00; jx3ðtÞj�1

0:95; jx3ðtÞj[1:

�
b11 ¼

2:00; jx1ðtÞj�1

2:05; jx1ðtÞj[1:

�

b12 ¼
�1:2; jx1ðtÞj�1

�1:1; jx1ðtÞj[1:

�
b13 ¼

0; jx1ðtÞj�1

0; jx1ðtÞj[1:

�

b21 ¼
1:80; jx2ðtÞj�1

1:75; jx2ðtÞj[1:

�
b22 ¼

1:710; jx2ðtÞj�1

1:715; jx2ðtÞj[1:

�

b23 ¼
1:15; jx2ðtÞj�1

1:10; jx2ðtÞj[1:

�
b31 ¼

�4:75; jx3ðtÞj�1

�4:70; jx3ðtÞj[1:

�

b32 ¼
0; jx3ðtÞj�1

0; jx3ðtÞj[1:

�
b33 ¼

1:10; jx3ðtÞj�1

1:05; jx3ðtÞj[1:

�

The corresponding master-slave systems can be obtained:

0D
a
t x1 ¼ �ða1 þ 0:1e�tÞx1 þ ðb11 þ 0:1e�tÞtanhðx1Þ

þ b12tanhðx2Þ;

0D
a
t x2 ¼ �ða2 þ 0:1e�tÞx2 þ b21tanhðx1Þ þ ðb22
þ 0:1e�tÞtanhðx2Þ þ b23tanhðx3Þ;

0D
a
t x3 ¼ �ða3 þ 0:1e�tÞx3 þ b31tanhðx1Þ þ ðb33
þ 0:1e�tÞtanhðx3Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

−4
−2

0
2

4

−2−1.5−1−0.500.511.52
−6

−4

−2

0

2

4

6

y1

the chaos of  the system

y2

y3

Fig. 1 The states of systems (15) and (16) with chaotic behaviors
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Fig. 2 The state of the master system (15)
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Fig. 3 The state of the slave system (16)
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Fig. 4 The state of the error system between (15) and (16)
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Fig. 5 The state of the master system (17)
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Fig. 6 The state of the slave system (18)
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Fig. 7 The state of the error system between (17) and (18)
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0D
a
t y1 ¼ �ða1 þ 0:1e�tÞy1 þ ðb11 þ 0:1e�tÞtanhðy1Þ

þ b12tanhðy2Þ � kðy1 � x1Þ;

0D
a
t y2 ¼ �ða2 þ 0:1e�tÞy2 þ b21tanhðy1Þ þ ðb22
þ 0:1e�tÞtanhðy2Þ þ b23tanhðy3Þ � kðy2 � x2Þ;

0D
a
t y3 ¼ �ða3 þ 0:1e�tÞy3 þ b31tanhðy1Þ þ ðb33
þ 0:1e�tÞtanhðy3Þ � kðy3 � x3Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

Choose the initial value xð0Þ ¼ ð2;� 5; 3ÞT ,
yð0Þ ¼ ð10; 8;� 9ÞT , L ¼ diagð1; 1; 1Þ, kLk ¼ 1,

b ¼ diagð3; 1; 1Þ, kbk ¼ 3, k ¼ 5, k ¼ 1:7, a ¼ 0:98 to get

Figs. 1, 2, 3, 4.

Figure 1 displays that the memristor-based fractional-

order Hopfield neural networks with parameter uncertain-

ties are chaotic, which means that it is significant to study

the synchronization between the systems. And the next

three figures show that the synchronization is realized

(Figs. 5, 6, 7).

4.2 Synchronization numerical simulation

Next, this example can further prove that the robust syn-

chronization is realized for the two memristor-based frac-

tional-order Hopfield neural networks with parameter

uncertainties.

For system (7) and system (8), n ¼ 3, w ¼ ð0; 0; 0ÞT ,
f ðxÞ ¼ ðtanhðx1Þ, tanhðx2Þ; tanhðx3ÞÞT ,

ai ¼
1:0; jxiðtÞj � 1

1:1; jxiðtÞj[ 1:

�
A ¼ diagða1; a2; a3Þ:

b11 ¼
2:0; jx1ðtÞj � 1

1:9; jx1ðtÞj[ 1:

�
b12 ¼

� 1:1; jx1ðtÞj � 1

� 1:2; jx1ðtÞj[ 1:

�

b13 ¼
0; jx1ðtÞj � 1

0; jx1ðtÞj[ 1:

�
b21 ¼

1:80; jx2ðtÞj � 1

1:75; jx2ðtÞj[ 1:

�

b22 ¼
1:71; jx2ðtÞj � 1

1:70; jx2ðtÞj[ 1:

�
b23 ¼

1:15; jx2ðtÞj � 1

1:10; jx2ðtÞj[ 1:

�

b31 ¼
� 4:75; jx3ðtÞj � 1

� 4:70; jx3ðtÞj[ 1:

�
b32 ¼

0; jx3ðtÞj � 1

0; jx3ðtÞj[ 1:

�

b33 ¼
1:0; jx3ðtÞj � 1

1:1; jx3ðtÞj[ 1:

�

DAðtÞ ¼ diagð0:5 sinðtÞ; 0; 0:2 cosðtÞÞ;

DB ¼
0 0:2 cosðtÞ 0

0:1 sinðtÞ 0 0

0 0 0:3 cosðtÞ

2
64

3
75:

The master-slave system are also obtained:

0D
a
t x1 ¼ �ða1 þ 0:5 sinðtÞÞx1 þ b11tanhðx1Þ
þ ðb12 þ 0:2 cosðtÞÞtanhðx2Þ;

0D
a
t x2 ¼ �a2x2 þ ðb21 þ 0:1 sinðtÞÞtanhðx1Þ
þ b22 þ tanhðx2Þ þ b23tanhðx3Þ;

0D
a
t x3 ¼ �ða3 þ 0:2 sinðtÞÞx3 þ b31tanhðx1Þ
þ ðb33 þ 0:3 cosðtÞÞtanhðx3Þ:

8>>>>>>>><
>>>>>>>>:

ð17Þ

0D
a
t y1 ¼ �ða1 þ 0:5 sinðtÞÞy1 þ b11tanhðy1Þ
þ ðb12 � 0:2 cosðtÞÞtanhðy2Þ � ke1;

0D
a
t y2 ¼ �a2y2 þ ðb21 þ 0:1 sinðtÞÞtanhðy1Þ
þ b22tanhðy2Þ þ b23tanhðy3Þ � ke2;

0D
a
t y3 ¼ �ða3 þ 0:2 sinðtÞÞy3 þ b31tanhðy1Þ
þ ðb33 þ 0:3 cosðtÞÞtanhðy3Þ � ke3:

8>>>>>>>><
>>>>>>>>:

ð18Þ

Choose the initial value xð0Þ ¼ ð3;� 4; 2ÞT ,
yð0Þ ¼ ð� 4; 1;� 1ÞT , L ¼ diagð1; 1; 1Þ, kLk ¼ 1,

a ¼ 0:98, b ¼ diagð3; 1; 1Þ, kbk ¼ 3, for the control law,

k ¼ 5, k ¼ 0:69, it is obvious that the assumptions (A1)–

(A3) hold, then get the following figures:

From the figures above, we can further know that the

robust synchronization is truly realized for two memristor-

based fractional-order Hopfield neural networks with

parameter uncertainties and the control law is effective.

5 Conclusion

The memristor, as a new fourth electrical element, is a hot

topic in the science since its the real implementation. Many

scientists focus much attention on it and try to build the

relevant model with memristor. Fractional calculus and

neural networks both enjoy high popularity because of their

widespread applications in various fields. The dynamics

behaviors of the memristor-based neural networks and the

fractional-order neural networks are both the hot topic in

the scientific community. So in this paper, it is necessary

for us to analysis the dynamics of the memristor-based

fractional-order neural networks which can accurately

emulate the human brain. Moreover, the fractional-order

Lyapunov direct method is employed to achieve the robust

synchronization between the two memristor-based frac-

tional-order Hopfield neural networks with parameter

uncertainties which needs less calculation, and finally, the

numerical simulations show the systems we argued are

chaotic and the control law in the slave system is effective.

The memristor-based fractional-order neural networks

are meaningful. It is necessary for us to do more future

work about it and explore better method to handle the error

system, to make it more accurate, which is an ongoing

topic in research area.
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