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Abstract
Grey wolf optimizer (GWO) is one of recent metaheuristics swarm intelligence methods. It has been widely tailored for a

wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods: it has

very few parameters, and no derivation information is required in the initial search. Also it is simple, easy to use, flexible,

scalable, and has a special capability to strike the right balance between the exploration and exploitation during the search

which leads to favourable convergence. Therefore, the GWO has recently gained a very big research interest with

tremendous audiences from several domains in a very short time. Thus, in this review paper, several research publications

using GWO have been overviewed and summarized. Initially, an introductory information about GWO is provided which

illustrates the natural foundation context and its related optimization conceptual framework. The main operations of GWO

are procedurally discussed, and the theoretical foundation is described. Furthermore, the recent versions of GWO are

discussed in detail which are categorized into modified, hybridized and paralleled versions. The main applications of GWO

are also thoroughly described. The applications belong to the domains of global optimization, power engineering,

bioinformatics, environmental applications, machine learning, networking and image processing, etc. The open source

software of GWO is also provided. The review paper is ended by providing a summary conclusion of the main foundation

of GWO and suggests several possible future directions that can be further investigated.

Keywords Optimization � Metaheuristics � GWO

1 Introduction

Computational intelligence (CI) [24] is a sub-field of the

artificial intelligence (AI), which consists of a variety of

mechanisms to solve complex problems in different envi-

ronments. CI concerns with solving mechanism itself to

produce acceptable solutions, while AI focuses on the

outcome of the mechanism that produces optimal solutions.

CI includes many forms such as artificial neural networks

(ANN) [40], evolutionary computation (EC) [3] and swarm

intelligence (SI) [23].

EC and related evolutionary algorithms (EAs) are con-

sidered the fastest growing algorithms that employ CI to

solve optimization problems. EC is a category of algo-

rithms inspired by biological evolution and natural selec-

tion techniques. Most of the evolutionary computation

algorithms called population-based algorithms such as the

algorithm start with a population of random solutions.

Then, the population is evolved using a set of evolution

operators such as mutation and recombination operators to

enhance the quality of the population and achieve better
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solutions at the end of the algorithm. The EAs include

genetic algorithm (GA) [11], evolutionary strategies (ES)

[37], genetic programming (GP) [59], population-based

incremental learning (PBIL) [38], biogeography-based

optimizer (BBO) [116] and differential evolution (DE)

[120].

Swarm intelligence (SI) [23] is another powerful form of

the CI used to solve the optimization problems. SI algo-

rithms simulate and imitate the natural swarms or com-

munities or systems such as fish schools, bird swarms,

bacterial growth, insects colonies and animal herds. Most

of the SI algorithms concentrate on the behavior of

swarm’s members and their life style besides the interac-

tions, and relations between the swarm’s members to locate

the food sources. SI algorithms include many algorithms

such ant colony optimization (ACO) [13], particle swarm

optimization (PSO) [15], cuckoo search (CS) [138], krill

herd optimization (KH) [29], firefly algorithm (FA) [137],

artificial bee colony (ABC) [50], multi-verse optimizer

(MVO) [82], ant lion optimizer (ALO) [76], sine cosine

algorithm (SCA) [80], dragonfly algorithm (DA) [79],

whale optimization algorithm (WOA) [81], moth-flame

optimization (MFO) [78], grey wolf optimizer (GWO) [83]

and many others.

GWO is one of the recently proposed swarm intelli-

gence-based algorithms, which is developed by Mirjalili

et al. [83] in 2014. The GWO algorithm is inspired by grey

wolves in nature that searching for the optimal way for

hunting preys. GWO algorithm applies the same mecha-

nism in nature, where it follows the pack hierarchy for

organizing the different roles in the wolves pack. In GWO,

pack’s members are divided into four groups based on the

type of the wolf’s role that help in advancing the hunting

process. The four groups are alpha, beta, delta and omega,

where the Alpha represents the best solution found for

hunting so far. The division of population to four groups is

done in the original GWO paper to comply with the

dominance hierarchy of grey wolves in nature. The

inventors of this algorithm conducted an extensive exper-

iment and observed that considering four groups results in

the best average performance on benchmark problems and

a set of low-dimensional real-world case studies. However,

considering more or less groups can be investigated as a

future work when solving large-scale challenging

problems.

The GWO search process like other SI-based algorithms

starts with creating random population of grey wolves.

After that, the four groups of wolves and their positions are

formed and the distances to the target prey are measured.

Each wolf represents a candidate solution and is updated

through the searching process. Furthermore, GWO applies

powerful operations controlled by two parameters to

maintain the exploration and exploitation to avoid the local

optima stagnation.

Despite the similarity in the way that GWO estimates

the global optimum compared to other population-based

algorithms, the mathematical model of this algorithm is

novel. It allows relocating a solution around another in an

n-dimensional search space to simulate chasing and

encircling preys by grey wolves in nature.

GWO has one vector of position, so it requires less

memory compared to PSO with position and velocity

vectors. Also, GWO saves only three best solutions, while

PSO saves one best solution for each particle as well as the

best solution obtained so far by all particles. The mathe-

matical equations of PSO and GWO are different.

GWO is considered as one of the most growing SI

algorithms. The prosperity of GWO algorithm motivates

other researchers to apply the algorithm for solving dif-

ferent types of optimization problems. The GWO is used to

solve different problems such as the global optimization

problems, electric and power engineering problems,

scheduling problems, power dispatch problems, control

engineering problems, robotics and path planning prob-

lems, environmental planing problems and many others.

The main objective of this review is to make a com-

prehensive study of all aspects of GWO algorithm, and

how the researchers are motivated to apply it in different

applications. In addition, this review will highlight the

strengths of algorithm and the improvements suggested in

the literature to overcome the algorithm weaknesses. Fur-

thermore, the review will refer to all of the previous

research that discussed the GWO by referring to the vari-

ous well-regarded publishers such as Elsevier, Springer,

IEEE, Taylor & Francis, Inderscience, Hindawi and others.

Figure 1 shows the number of publications, which are

distributed based on the publisher of the GWO-related

articles. Figure 2 shows the distribution of these publica-

tions based on the type of application.

Fig. 1 Number of publications of GWO per publisher
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This review discusses GWO algorithm based on three

classifications:

• Theoretical aspects of GWO which includes the GWO

modifications, hybridized versions of GWO, parallel

versions of GWO and multi-objective versions of

GWO. Figure 3 shows the classification of the theoret-

ical aspects of GWO.

• Applications of GWO which includes engineering

applications, networking applications, environmental

applications, medical and bioinformatics applications,

machine learning applications and image processing

application. Figure 2 shows the number of publications,

which are distributed based on the type of the

application.

• Open source softwares, libraries, frameworks and

toolboxes of GWO.

This paper is organized as follows: The preliminary

background concerning the GWO and its foundation is

presented in Sect. 2. In Sect. 3, the theoretical aspects of

GWO and improvement details are described. In Sect. 4,

applications of GWO are described and highlighted. GWO

open source libraries and frameworks are presented in

Sect. 5. Finally, in Sect. 6, the future works and possible

research directions of GWO are given.

2 Grey wolf optimizer

This section presents the GWO algorithm and describes its

main components. It also includes discussions on the

exploration, exploitation and convergence of this

algorithm.

2.1 Inspiration of GWO

GWO is a swarm intelligence technique. The inspiration of

the GWO algorithm is the social intelligence of grey wolf

packs in leadership and hunting. In each pack of grey

wolves, there is a common social hierarchy that dictates

power and domination (see Fig. 4).

The most powerful wolf is alpha, which leads the entire

pack in hunting, migration and feeding. When the alpha

wolf is not in the pack, ill, or dead, the strongest wolf from

the beta wolfs takes the lead of the pack. The power and

domination of delta and omega are less than alpha and beta

as can be seen in Fig. 4. This social intelligence is the main

inspiration of the GWO algorithm.

Another inspiration is the hunting approach of grey

wolves. When hunting a prey, gery wolves follow a set of

efficient steps: chasing, encircling, harassing and attacking.

This allows them to hunt big preys.

2.2 Mathematical models of GWO

This section briefly presents the mathematical model of the

GWO algorithm.

Fig. 2 GWO applications

Theore�cal 
Aspects of 

GWO

Modified GWO

Upda�ng 
mechanisms New operators

Encoding 
scheme of the 

individuals

Popula�on 
structure and 

hierarchy

Hybridized 
versions of 

GWO
Parallelism

Fig. 3 Classification of the theoretical aspects of GWO algorithm
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2.2.1 Encircling prey

As mentioning above the first step of hunting is to chase

and encircle. To mathematically model this, GWO con-

siders two points in a n-dimensional space and updates the

location of one of them based on that of another. The

following equation has been proposed to simulate this:

Xðt þ 1Þ ¼ XðtÞ � A � D ð1Þ

where Xðt þ 1Þ is the next location of the wolf, XðtÞ is

current location, A is a coefficient matrix and D is a vector

that depends on the location of the prey (Xp) and is cal-

culated as follows:

D ¼ C � XpðtÞ � XðtÞ
�
�

�
� ð2Þ

where

C ¼ 2 � r2

Note that r2 is a randomly generated vector from the

interval [0,1]. With these two equations, a solution is able

to relocate around another solution. Note that the equations

use vectors, so this is applied to any number of dimension.

An example of possible positions of a grey wolf with

respect to a prey is shown in Fig. 5.

Note that the random components in the above equations

simulate different step sizes and movement speeds of grey

wolves. The equations to define their values are as follows:

A ¼ 2a � r1 � a ð3Þ

where a is a vector where its values are linearly decreased

from 2 to 0 during the course of run. r1 is a randomly

generated vector from the interval [0,1]. The equation to

update the parameter a is as follows:

a ¼ 2� t
2

T

� �

ð4Þ

where t shows the current iteration and T is the maximum

number of iterations.

2.2.2 Hunt

With the equations presented above, a wolf can relocate to

any points in a hypersphere around the prey. However, this

is not enough to simulate to social intelligence of grey

wolves. It was discussed above that social hierarchy plays a

key role in hunt and the survival of a packs. To simulate

social hierarchy, three best solutions are considered to be

alpha, beta and delta. Although in nature there might be

more than one wolf in each category, it is considered that

there is only one solution belong to each class in GWO for

the sake of simplicity.

The concepts of alpha, beta, delta and omega are illus-

trated in Fig. 6. Note that the objective is to find the

minimum in this search landscape. It may be seen in this

figure that alpha is the closet solution to the minimum,

followed by beta and delta. The rest of solutions are con-

sidered as omega wolves. There is just one omega wolf in

Fig. 6, but there can be more.

In GWO, it is assumed that alpha, beta and delta are

always the three best solutions obtained so far. The global

optimum of optimization problems is unknown, so it has

been assumed that alpha, beta and delta have good idea of

its location, which is reasonable because they are the best

solutions in the entire population. Therefore, other wolves

should be obliged to update their positions as follows:

Xðt þ 1Þ ¼ 1

3
X1 þ

1

3
X2 þ

1

3
X3 ð5Þ

where X1 and X2 and X3 are calculated with Eq. 6.

Alpha 

Beta 

Delta 

Omega 

Fig. 4 Social hierarchy of grey wolves

D 

Xp

X(t) X(t+1) 

X(t+1) X(t+1) XX(t+1) 

X(t+1) X(t+1) X(t+1)1X(t+1) 

Fig. 5 How the mathematical equations allow position updating

around a pivot point. Eq. 1 mathematically models the position

updating of a grey wolf (X(t)) around a prey (Xp). Depending on the

distance between the wolf and the prey (D), a wolf can be relocated in

a circle (in a 2D space), sphere (in a 3D space), or a hypersphere (in

an N-D space) around the prey (Xp) using Eq. 1

416 Neural Computing and Applications (2018) 30:413–435

123



X1 ¼XaðtÞ � A1 � Da

X2 ¼XbðtÞ � A2 � Db

X3 ¼XdðtÞ � A3 � Dd

ð6Þ

Da, Db and Dd are calculated using Eq. 7.

Da ¼ C1 � Xa � Xj j

Db ¼ C2 � Xb � X
�
�

�
�

Dd ¼ C3 � Xd � Xj j

ð7Þ

2.3 GWO procedure

The GWO algorithm is a swarm intelligence algorithm, so

it initiates the optimization process with a set of random

solutions; there is a vector for every solution that maintains

the values for the parameters of the problem. In each

iteration, the first step is to calculate the objective value of

each solution. Therefore, every solution is equipped with

one variable to store its objective value.

In addition to the vectors and variables mentioned so far

to save key data in memory when solving problems with

GWO, there are three more vectors and three more vari-

ables. These vectors and variables store the locations and

objective values value of alpha, beta and delta wolves in

the memory. These variables should be updated prior to

position updating process.

The GWO algorithm repeatedly updates the solutions

using Eqs. 5–7. In order to calculate these equations, the

distance between the current solution and alpha, beta and

delta should be calculated first using Eq. 7. The contribu-

tions of alpha, beta and delta in updating the position of the

solution are then calculated using Eq. 6. Regardless of th

objective value of solutions and their positions, the main

controlling parameters of GWO (A, C and a) are updated

prior to position updating.

2.4 Exploration and exploitation in GWO

Exploration and exploitation are two conflicting processes

[8] that an algorithm might show when optimizing a given

problem. In the exploration process, the algorithm tries to

discover new parts of the problem search space by

applying sudden changes in the solutions since the main

objective is to discover the promising areas of the search

landscape and prevent solutions from stagnating in a local

optimum.

In exploitation, the main objective is to improve the

estimated solutions achieved in the exploration process by

discovering the neighbourhood of each solution. Therefore,

gradual changes in the solutions should be made to con-

verge towards the global optimum. The main challenge

here is that exploration and exploitation are in conflict.

Therefore, an algorithm should be able to address and

balance these conflicting behaviour during optimization to

find an accurate estimation of the global optimum for a

given problem.

The main controlling parameter of GWO to promote

exploration is the variable C. This parameter always returns

a random value in the interval of [0, 2]. It changes the

contribution of the prey in defining the next position. This

contribution is strong when C[ 1; the solution gravitates

more towards the prey. Since this parameters provides

random values regardless of the iteration number, explo-

ration is emphasized during optimization in case of any

local optima stagnation.

Another controlling parameter that causes exploration is

A. The value of this parameter is defined based on a, which

linearly decreases from 2 to 0. Due to the random com-

ponents in this parameter, the range changes in the interval

of ½� 2; 2� for the parameter A. Exploration is promoted

when A[ 1 or A\� 1, whereas there is emphasize on

exploitation when � 1\A\1.

As mentioned above, a good balance between explo-

ration and exploitation is required to find an accurate

approximation of the global optimum using stochastic

algorithms. This balance is done in GWO with the

decreasing behavior of the parameter a in the equation for

the parameter A. This is illustrated in Fig. 7. This fig-

ure shows five line charts calculated for A. It may be seen

that although this parameter is stochastic, it results in

Xp

X(t+1)

X(t)
Alpha

Delta

Beta

Omega

Fig. 6 How alpha, beta, delta and omega are defined in GWO
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exploration in the first half of the iterations and then

exploitation in the second half.

2.5 Illustrative example

What guarantees the convergence of the GWO algorithm is

a proper balance between exploration and exploitation

using the variable A. In addition, the three best solutions

always guide other solutions towards the promising regions

of the search space. This results in a high probability of

improving the objective value of the population over the

course of optimization. To show how GWO estimates the

global optimum for optimization problems, Fig. 8 is given.

This figure shows one unimodal and one multi-modal test

functions solved by 20 solutions over 100 iterations.

This figure shows that the adaptive mechanism of the

main controlling parameter (A) causes an interesting pat-

tern in the trajectory of solutions. Inspecting the fourth

column of Fig. 8, it can be seen that solutions face gradual

changes proportional to the number of iterations. This

shows that GWO properly balances exploration and

exploitations. The result of the proper exploration and

exploitation can be seen in the search history (second

column) of Fig. 8 as well. Note that the colour of each

population is defined based on the iteration number, so the

colour changes smoothly from a light grey to black. The

global optimum estimated is also highlighted in red. It may

be seen that the solutions discover the most promising

regions of the search landscape and eventually converges

towards the global optimum.

It was mentioned above that GWO is able to improve a

random population. This can be observed in the fifth col-

umn of Fig. 8, in which the average fitness of solutions in

the population tends to decrease and show an accelerated

decline proportional to the number of iterations. Finally,

the last column of this figure shows that the estimation of

the global optimum becomes more accurate proportional to

the number of iterations. The convergence curves are also

accelerated in the last steps of optimization, which is due to

A >1

A <-1

-1<A<1

Exploration

Exploration

Exploitation

Fig. 7 Impact of A on exploration and exploitation. Note that the

value of A when running GWO five times is given in this figure. It is

evident that the parameter A fluctuates adaptively from the first to the

last iterations, while the range is always in the interval of ½� 2; 2�.
Considering Eq. 1, a wolf moves towards the prey when � 1\A\1.

However, it moves away from (outwards) the prey when A[ 1 or

A\� 1. In the former case, a grey wolf searchers (exploit) areas

around the prey. In the latter case, a wolf explores other regions that

are not in the vicinity of the prey

Fig. 8 Behaviour of GWO when solving a umimodal (F1) and a

multi-modal (F10) test function. Search history of wolves in 100

iterations, the parameter A, trajectory of the first variable of the first

wolf, average fitness history of all wolves, and the best wolf in each

iteration are visualized. The search pattern with good coverage can be

seen in the search history. The impact of A on the trajectory is evident

as well. Finally, the improvement in entire population and the best

wolf can be observed in the last two columns
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the low values of the parameter A after the first half of the

optimization.

3 Recent GWO variants

Due to the complexity nature of real-world optimization

problems, GWO have been modified to be inline with the

search space of complex domains. Some modifications are

done in the update mechanism since the GWO has some

limitation in application to real-wold problems. Other

modifications are accomplished to improve the operations

of GWO. Further improved versions apply the idea of

hybridization to empower the exploration or exploitation

sides of GWO. Other versions are formulated to handle the

parallel computing platforms. In this section, the new

versions of GWO are discussed in the following

subsections.

3.1 Modified versions of GWO

The reviewed papers that aim at improving the perfor-

mance of GWO are categorized into the following cate-

gories according to the type of modification that they

proposed in the GWO:

• Updating mechanisms

• New operators

• Encoding scheme of the individuals.

• Population structure and hierarchy.

In the following, we highlight the main contributions that

targeted each of these levels.

3.1.1 Updating mechanism

In this research direction, researchers targeted the

improvement in the balance between exploration and

exploitation processes which were described previously in

Sect 2.4. To improve this balancing, two main sub-direc-

tions are identified: the first attempted to dynamically

update the parameters of GWO, while the second proposed

different strategies for updating the individuals. The main

works of the category are discussed as follows.

In [85], the author studied the possibility of enhancing

the exploration process in GWO by decreasing the value of

a using an exponential decay function as given in Eq. 8,

instead of changing it linearly. In Eq. 8, iter denotes the

current iteration, while maxIter denotes the maximum

number of iterations. They tested their approach using 27

benchmark functions and compared it with PSO, BAT

algorithm (BA), CS and GWO. They claimed the modified

version enjoys better exploration based on the results

achieved.

a ¼ 2 1� iter2

maxIter2

� �

ð8Þ

Long et al. [59] also investigated adapting the parameter a

nonlinearly using Eq. 9 where l is nonlinear modulation

index from the interval (0, 3). Their experimental results

based on a number of constrained benchmark problems

showed that better balancing between exploration and

exploitation can be achieved using this nonlinear

adaptation.

a ¼ 1� iter

maxIter

� �

: 1� l:
iter

maxIter

� ��1

ð9Þ

Dynamic adaptation of a and C parameters was also

proposed in [105]. However, the author used fuzzy logic to

implement this dynamic adaptation.

Dudani and Chudasama [14] adopted a strategy for

updating the position of the wolves based on incorporating

a step size that is proportional to the fitness of the indi-

vidual in the search space in the current generation as given

in Eq. 10. The advantage of this strategy is that it has less

parameters and it is not required to define the initial

parameters. Based on a comparison of 21 benchmark

functions, this version of GWO showed faster convergence

and better results than the original GWO.

Xtþ1
i ¼ 1

t

� � ðbestfðtÞ�fiðtÞÞ=ðbestfðtÞ�worstfðtÞÞj j
ð10Þ

where Xtþ1
i is the step size of the ith dimension in tth

iteration; f(t) is the fitness value.

Malik et al. [73] adopted different approach for updating

the positions of the individuals. Instead of using the simple

average of the best individuals a, b and d, they used a

weighted average of these three. That is, each of the best

individuals is assigned a weight calculated by multiplying

its corresponding A and C. Their experiments showed

superiority of the algorithm for multi-modal benchmark

functions.

In [107], Rodrı́guez et al. proposed three different

methods to update the positions of the omega wolves in the

algorithm. The three methods are the weighted average,

based on the fitness, and based on fuzzy logic. Although

the performance with each method depends on the prob-

lem, they claimed a better performance for the fuzzy logic

based method in majority of the tested benchmark

functions.

3.1.2 New operators

This type of works focused on investigating the ability of

improving the performance of GWO by integrating into it

new operators like crossover or by utilizing a local search

Neural Computing and Applications (2018) 30:413–435 419
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algorithm. The main works in this direction of research are

discussed as follows.

In an attempt to increase the diversity among the pop-

ulation in GWO, in [56], the authors proposed a modified

version of the GWO that incorporates a simple crossover

operator between two randomly different individuals. The

aim of the crossover operator is to facilitate sharing

information between pack mates. A comparison between

GWO and their modified version based on six benchmark

functions showed that the crossover operator enhanced the

performance of GWO solution quality and convergence

speed. This version of GWO was later applied by Chandr

et al. [7] for selecting web services with optimal quality-of-

service requirements.

Improving GWO with another type of operators called

evolutionary population dynamics (EPD) was investigated

by Saremi et al. [111]. EPD was applied in GWO to

eliminate the worst individuals in the population and the

reposition them around the leading wolves in the popula-

tion, i.e. a. b and d. The authors reported that the advantage
of using this operator is that it improves the median of the

population over the course of the iterations and it has

positive influence of the exploration and exploitation pro-

cesses. A comparison with GWO over 13 unimodal and

multi-modal benchmark functions confirmed the advantage

of such an operator.

Zhang and Zhou [139] integrated Powell optimization

algorithm into GWO as a local search operator and called it

PGWO. Powell’s algorithm is a method for finding a

minimum of a function which does not need to be differ-

entiable, and no derivatives are taken. The algorithm per-

forms successive bidirectional search along search vectors

[98]. They tested PGWO using only seven unimodal and

multi-modal benchmark functions. A comparison with

GWO, GA, PSO, Adaptive Gbest-guided Gravitational

Search Algorithm (GGSA), ABC and CS showed a an

improvement in the performance over GWO and very

competitive results compared to the other optimizers. It

would be interesting to test the efficiency of PGWO on a

larger number of benchmark functions including more

sophisticated ones like rotated functions.

Mahdad and Srairi [72] combined GWO with pattern

search algorithm as a local search for solving the security

smart grid power system management at critical situations.

Their results showed promising for this approach compared

to many other optimization methods. However, it is still

interesting to evaluate this GWO version on standard

benchmark functions.

Zhou et al. [142] proposed combining GWO with

chaotic local search tuning the parameters of the equivalent

model of small hydro generator cluster. Their version of

GWO showed noticeable improvement compared to PSO.

Other extensions of GWO are done in [107] which pro-

posed a fuzzy hierarchical operator.

3.1.3 Different encoding schemes

In [70], a modification of GWO was proposed at the

encoding scheme of the individuals. The authors used a

complex-valued encoding method instead of the typical

real-valued one. In this encoding, the genes in the indi-

vidual have two main parts: an imaginary part and a real

one. The authors argue that this presentation can expand

the information capacity of the individual and increase the

diversity of the population. In comparison with the classic

GWO, ABC and GGSA, the complex-encoded GWO

showed very competitive results based on 16 benchmark

functions.

3.1.4 Modified population structure and hierarchy

GWO has a unique hierarchical population structure. As

explained in Sect. 2, there are four different types of

individuals; there types have only one individual and the

rest is the fourth type. This distinguished structure has

motivated some researchers to study the effect of proposing

some modifications in the hierarchy. A notable work was

carried out by Yang et al. [134], where a variant of GWO

was proposed with different leadership hierarchy. The

population in the variant is divided into two independent

subpopulations: the first is called cooperative hunting

group, while the second is called random scout group. The

task of the scout grouped is to perform wide exploration

process, while the task of the cooperative hunting group is

to perform a deep exploitation. Unlike the classical GWO,

d wolves in the new leadership hierarchy hunter are divided

into two types d1 that represent hunter wolves and d2 that

represent scout wolves [134]. The authors of this variant

applied it for tuning the parameters of interactive propor-

tional-integral controllers of doubly fed induction genera-

tor-based wind turbine. They compared their results to

those obtained by GA, PSO, GWO and MFO. Their results

showed better fitness values and higher stability compared

to the other optimizers.

3.2 Hybridized versions of GWO

Generally speaking, hybridization in the context of meta-

heuristics refers to combining between two or more algo-

rithms in order to exploit the advantages and powerful

features of each. In literature, GWO was hybridized with

other metaheuristic algorithms as well. For example,

Kamboj [48] proposed hybridizing GWO with PSO in a

sequential fashion for optimizing a single-area unit com-

mitment problem. The quality of the generated solutions
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were competitive; however, this approach suffers slower

convergence due to the long sequential execution time.

Other works proposed hybridizing GWO with DE as in

[47] and [143]. Both works showed very competitive

results compared to PSO and DE.

3.3 Parallelism

Parallelism is an approach can be effectively applied in

population-based metaheuristics where the population can

be separated and divided into a number of subpopulations

where each subpopulation can be evolved on a different

machine processor. Parallelism can effectively reduce the

execution time of the optimizer and enhance the quality of

the solutions. A parallel version of GWO was implemented

in [97]. In this implementation, the subgroups evolve

independently and exchange best individuals every prede-

fined number of iterations. A comparison with the original

GWO shows that parallelism improved the performance

significantly in terms of solution quality and running speed

time over 4 different benchmark functions.

3.4 Multi-objective GWO

The GWO algorithm is able to solve problems with single

objective. The multi-objective version of GWO

(MOGWO) has been proposed in the literature to solve

multi-objective problems. MOGWO utilizes the same

mechanism to update the position of solutions. Due to the

existence of multiple best solutions—so-called Pareto

optimal solutions—in multi-objective problems, several

modifications were made to GWO [84].

An archive was employed to maintain Pareto optimal

solutions. The archive was not only a storage but also a

selector of alpha, beta and delta. The archive controller

selects a leader from the less populated regions of the

Pareto optimal front estimated thus far and returns them as

alpha, beta, or delta. This mechanism has been designed to

improve the distribution (coverage) of Pareto optimal

solutions stored in the archive across all objectives.

Another mechanism to improve the coverage of solu-

tions was the archive clean-up process. When the archive

becomes full, solutions should be removed to accommo-

date the new non-dominated solutions. MOGWO removes

solutions in the most populated regions of the archive. So,

the probability of improving the coverage of solutions in

the archive increases in the next iterations. A conceptual

example of selecting leaders from the least populated

regions and removal of solutions from the most population

regions (when the archive is full) are illustrated in Fig. 9.

Th convergence behaviour of the MOGWO is similar to

that of GWO due to the use of same position update

mechanisms. Solutions face abrupt changes in the first half

of the iteration and gradual fluctuations in the rest. Due to

the selection of alpha, beta and delta from the least popu-

lated regions, it is likely to have leaders from different

regions for updating the position of a given solution. This

degrades the convergence towards one best solution, yet it

is required to maintain the distribution of solutions along

the objectives.

4 Applications of GWO

Due to the impressive advantages of GWO, tremendous

research applications from various crucial research

domains have been tackled. These applications are cate-

gorized in this review paper into machine learning appli-

cations, engineering applications, wireless sensor network

applications, environmental modelling applications, medi-

cal and bioinformatics application and image processing

applications. In the following subsection, a comprehensive

and exhaustive discussion is provided.

4.1 Machine learning applications

GWO has been applied in different machine learning

applications. Most of these applications fall into main four

categories: (1) feature selection, (2) training neural net-

works, (3) optimizing support vector machines and (4)

clustering applications. These applications are in-depth

discussed as follows.

Minimize 
f2

M
in

im
iz

e 
f1

Alpha selected from the 1st

least population segment  

Beta selected from the 2nd

least population segment  

Delta selected from the 3rd

least population segment  

Most populated segment to 
remove solutions from

Minimize
2f

m
iz

e
1f

Fig. 9 Leader selection for the least populated regions and solution

removal from the most population regions. In each iteration,

MOGWO chooses leaders from the least populated region to drive

other solutions towards it. This allows MOGWO to improve the

distributions of Pareto optimal solutions estimated. By contrast,

MOGWO removes solutions from most populated regions when the

archive is full to accommodate adding new solutions in the least

populated regions of the Pareto optima front obtained
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4.1.1 Feature selection

Feature selection is one of the important processes in

machine learning and data mining. The goal of feature

selection is to reduce the number of features, select the

most representative ones and to eliminate redundant, noisy

and irrelevant features. The problem of searching for best

set of features is considered as complex and difficult

problem due to the extremely large search space when the

number of features is large. In [21], Emary developed

wrapper approach where a binary version of GWO com-

bined with k-nearest neighbour (k-NN) as a fitness function

to evaluate the candidate subsets of features. They com-

pared their approach with GA and PSO over 8 benchmark

datasets, Their GWO-based feature selection method

showed faster convergence speed and higher classification

accuracy. Later, in [22] Emary et al. extended their pre-

vious work and conducted a comprehensive study on uti-

lizing two approaches of binary GWO in feature selection

using different updating mechanisms. Following the same

wrapper design with a k-NN fitness evaluator, experiments

were conducted on 18 datasets. They compared the per-

formance of GWO selection methods with GA and PSO.

Their obtained results confirm the previous outcomes.

A different approach based on GWO for feature selec-

tion was proposed in [20]. This approach is consisted of

two main consequent stages: the first is a filtered-base that

utilizes mutual information equations as a fitness function,

while the second is a wrapper-based that incorporates a

classifier as an evaluator. Again, the k-NN algorithm was

used as a classifier in the wrapper of the second stage. The

experiments were conducted based on 8 datasets compar-

ing GWO to PSO and GA. The developed approach

showed promising results in terms of robustness and

avoiding local minima.

It was noticed that in the previously mentioned three

works, a very small population size was used ranging from

5 up to only 8.

Another binary GWO wrapper approach was applied in

[129] for cancer classification on gene expression data.

Different from the previous three works, in this one the

author deployed a C4.5 decision tree algorithm as a fitness

evaluator with k-fold cross-validation strategy and return-

ing the accuracy rate as a fitness value. It is important to

note here that their fitness depends only on the accuracy

without incorporating number of features in it. This

approach was tested based 10 micro-array cancer datasets

and compared to different classifiers including support

vector machine (SVM), self-organizing map (SOM), mul-

tilayer perceptron (MLP) networks and decision tree

(C4.5). Their classification results were very competitive.

In [133], Yamany et al. proposed a feature reduction

approach that used GWO to search the feature space for

subset of features that maximizes a rough set-based clas-

sification fitness function. Their fitness function considers

the accuracy rate along with the number of selected fea-

tures as in [22]. Yamany et al tested their approach based

on 11 datasets and compared with conditional entropy-

based attribute reduction (CEAR), discernibility matrix-

based attribute reduction(DISMAR) and GA-based attri-

bute reduction (GAAR). They used larger population size

that the mentioned works which is 25 individuals. The

proposed approach showed competitive results.

A simple modification of GWO to make it a binary

version was also adopted by Medjahed et al. [75]. Their

binary version was used for feature selection for hyper-

spectral band selection.

Another work in this direction was made by Li et al. [65]

who proposed a binary version of GWO integrated as a

component of a wrapper-based approach for feature

selection. They used Kernel Extreme Learning Machine as

a classifier for medical diagnosis problems

Medjahed et al. [75] converted the GWO to a binary

form using a simple threshold. The authors applied their

approach for hyperspectral band selection. Furthermore,

[12] introduced GWO for feature selection in intrusion

detection system.

4.1.2 Training neural networks

Artificial neural networks (ANNs) are information pro-

cessing models inspired by the biological nervous systems.

ANNs are widely applied in research and practice due to

their high capability for capturing nonlinearity and

dynamicity. However, the performance of ANNs is highly

affected by their structure and connection weights. Tradi-

tionally, the efficiency of any new metaheuristic algorithm

is investigated in optimizing the connection weights neural

networks shortly after its release. GWO is no different.

Mirjalili [77] applied GWO for training MLP, which is the

most popular types of neural network. In his work, GWO

was applied to optimize the weight and biases of a single

hidden MLP network. The proposed training approach was

compared with other well-known evolutionary trainers

including: PSO, GA, ACO, ES and PBIL. The comparison

results based on five classification and three function

approximation datasets showed superiority of GWO in

training MLP networks.

A similar approach to the previous one was conducted in

[90]. The GWO-based training method was experimented

based on three different datasets and compared to PSO,

Gravitational Search Algorithm (GSA) and PSOGSA

algorithms. The results showed very competitive perfor-

mance for GWO and a trainer for MLP networks. An

applied research of the same approach was conducted by

Mohamed et al. [86], where a modified version of GWO
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was used to train an MLP and applied to control firing

angle of Static VAR compensator Controller (SVC) based

on a high-dimensional input space. Their GWO-based

MLP showed lower error values with faster convergence

rates.

Radial basis function neural networks (RBFN) is

another popular type of neural networks. A modified ver-

sion of GWO was applied for a type of RBFNs called q-

Gaussian radial basis functional-link nets (RBFLNs) in

[92]. The authors compared the performance of GWO to

PSO, teaching-learning-based optimization algorithm

(TLBO) and GSA. The RBFLNs trained by GWO showed

higher accuracy rates for different regression and classifi-

cation problems.

4.1.3 Optimizing support vector machines (SVM)

SVM is considered as one of the powerful classifiers and

regressors. SVM was founded by Vladimir Vapnik based

on a strong mathematical foundation [126, 127]. To max-

imize the performance of SVM, two hyperparameters

should be tuned; the error penalty parameter C and the

kernel parameters. The problem is usually addressed by

using a simple or exhaustive grid search. However, this

method is not highly efficient due to the long running time

needed for evaluating all possible combinations. Therefore,

many researchers investigated optimizing these hyperpa-

rameters using metaheuristic algorithms. Recently, GWO

was applied for tuning the hyperparameters of SVM in

different publications. In [25], Eswaramoorthy et al. tuned

gamma and sigma parameters in SVM for classifying

intracranial electroencephalogram signals. The results

showed higher accuracy rates compared to another

classifier.

In [94], Mustaffa et al. applied GWO for tuning gamma

and sigma hyperparameters of one of the variation of SVM

called least squares SVM (LSSVM). In their work, GWO

was compared to ABC and grid search algorithm with

cross-validation. The GWO-LSSVM approach was exper-

imented based on a time series data for real data of gold

prices. The conducted experiments showed the results

obtained by GWO-LSSVM are statistically significant

compared to the other two approaches. Similarly, same

authors applied this approach in [93] for forecasting time

series natural gas prices. Promising results were obtained

as well.

In [19], GWO was applied for tuning the penalty cost

parameter and kernel parameters of SVM. The approach

was tested for image classification. Different kernel func-

tions were experimented in their study. However, there

were no comparison with other approaches to evaluate the

significance of the proposed approach. In [18], same

authors tuned the parameters of SVM using GWO for

classifying Electromyography (EMG) signals.

4.1.4 Clustering applications

Clustering is a common machine learning and data mining

task where the goal is to divide data instances into a

number of groups that have similar characteristics in some

sense [4]. Metaheuristic algorithms have been widely used

and applied for clustering tasks. In the literature, most of

the metaheuristic approaches for clustering are proposed as

an alternative to the classical k-means algorithm which is

one of the most famous clustering approaches. K-means

algorithm highly depends on its initial selection of its

centroids and it is highly probable that it will be trapped in

a local minima. In this context, Kumar et al. [61] developed

a clustering algorithm based on GWO in attempt to over-

come the shortcomings of k-means algorithm. The basic

idea is that each individual in GWO represents a sequence

of a fixed number of centroids. For fitness evaluation, they

used the sum of squared euclidean distance between each

data point and the centroid of the cluster of the point. Their

conducted experiments based on 8 datasets showed supe-

rior results of GWO compared to k-means algorithm and

other metaheuristic algorithms.

Zhang and Zhou [139] proposed a GWO with Powell

local optimization for clustering. They used same objective

function and as the previously mentioned study. They

compared their method with different metaheuristics

including CS, ABC, PSO and GWO, and in addition to the

classical k-means algorithm. The experiments based on 9

different datasets showed their modified GWO-based

clustering approach outperformed the other algorithms in

majority of the datasets. In a similar approach, Korayem

et al. [58] also combined GWO for with k-means algo-

rithms using same fitness function

Another approach was proposed by Yang and Lui [136]

where GWO and K-means algorithms were hybridized in

way that GWO’s task was to select the initial centroids for

the k-mean to overcome the dependency of the initial

starting points.

4.2 Engineering applications

A very critical domain in the real-world optimization is

engineering. It has a plethora of crucial applications that

have directly influence the quality life of human beings.

Interestingly, GWO has various adaptation to a wide

variety of engineering applications. These applications are

exhaustively and extensively discussed in this section

which include design and tuning controllers, power dis-

patch problems, robotics and path planning, and many

others as described below.
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4.2.1 Design and tuning controllers

In control engineering, we have noticed an increased

number of publications that investigate the application of

GWO in tuning the parameters of controllers such as

integral (I), proportional-integral (PI), proportional-inte-

gral-derivative (PID).

Li and Wang [66] used GWO for optimizing the

parameters of a PI controller of a closed-loop condenser

pressure control system. Their experimental results showed

the effectiveness of GWO in comparison with other opti-

mizers like GA and PSO.

Yada et al. [132] tuned the parameters of a conventional

PID controller to levitate the metal ball of the magnetic

levitation system. Compared to the classical Ziegler–Ni-

chols (ZN) engineering tuning method, GWO showed

better results.

Das et al. [10] experimented GWO for optimizing the

parameters of a PID controller used for speed control of in

a second order DC motor system. Better values of transient

response specifications were obtained in comparison with

PSO, ABC and ZN methods.

Tuning the parameters of PID controller parameters in

DC motors was also investigated by Madadi and Motlagh

[71]. In comparison with PSO, they showed that GWO can

improve the dynamic performance of the system.

Sharma and Saikia [115] applied GWO for the opti-

mizing secondary controller gains in automatic generation

control. Their work showed better performance of GWO

optimized PID controllers in terms of settling time, peak

overshoot and magnitude of oscillations.

Gupta and Saxena [32] used GWO for tuning the

parameters of automatic generation control for two area

interconnected power system. For this problem, they

compared the performance of GWO with GA, PSO, and

GSA. Their experiments showed the superiority of GWO

over the other optimizers with Integral Time Absolute

Error as an objective function.

The parameters of automatic generation control (AGC)

of interconnected three unequal area thermal system

parameters were also tuned using GWO by Mallick et al.

[74]. They compared the performance of GWO with bac-

teria foraging algorithm. GWO showed promising results.

In [101], Precup et al. tuned the parameters of Takagi–

Sugeno proportional-integral-fuzzy controller for nonlinear

servo systems. A comparison with PSO and GSA showed

that no optimizer had clearly outperformed the other

algorithms, but GWO has the advantage of simplicity and

lower number of parameters to adjust. In same research are,

similar approaches were followed also in [100, 101].

Noshadi et al. [96] also used GWO for finding the best

design parameters of a PID fuzzy controller with some

alternative proposed time-domain objective functions.

GWO showed very competitive results to PSO and better

results than GA and imperialist competitive algorithm

(ICA). Lal and Tripathy [62] utilized GWO for tuning a

fuzzy PID controller for the automatic generation control

study of two area nonlinear hydrothermal power system

with a Thyristor controlled phase shifter. Their experiments

showed that the developed system had higher effectiveness

compared to DE, PSO and GWO PI-based controllers.

In [33], Gupta et al. conducted a comparison study on

the performance of metaheuristics for tuning fuzzy PI

controller for step set-point and trajectory tracking of

reactor temperature in jacketed continuous stirred tank

reactor. They compared the performance of GWO with

backtracking search algorithm (BSA), DE and BAT algo-

rithm (BA). GWO outperformed the other algorithms for

both cases.

Razmjooy et al. [104] used GWO to design an optimized

linear quadratic regulator controller to control a single-link

flexible manipulator. Compared to PSO, the authors

showed in their experiments that GWO can improve the

stability and performance of the manipulator.

For power point tracking, Yang et al. [134] proposed a

new variant of GWO called group GWO for tuning the

parameters of proportional-integral controllers of doubly

fed induction generator-based wind turbine to achieve the

highest power point tracking can be achieved along with

improving fault-through capability. Mohanty et al. [87]

described the design of a maximum power extraction

algorithm using GWO for photovoltaic systems to work

under partial shading conditions. Mohanty et al. another

work in [88] proposed a hybridization between GWO and

perturb and observe technique for extraction of maximum

power from a photovoltaic with different possible patterns.

Other design and tuning controllers applications are done

in [128].

4.2.2 Power dispatch problems

The economic load dispatch (ELD) is a class of non-con-

vex and highly nonlinear constrained optimization problem

concern with finding an optimal load dispatch in order to

operate and plan the current resources. This problem is a

kind of optimization problem in which its complexity is

increased based on the number of system units to be

planned. It is concern with distributing the required elec-

tricity among the generating units in optimum way in order

to minimize the fuel consumptions of each unit in accor-

dance with a power balance equality constraints and power

output inequality constraints. It is important to recall that a

considerable amount of cost will be minimized if there is

an optimum load dispatch is achieved. The application of

ELD problem using grey wolf optimizer is initially pro-

posed in [131]. Four classes of grey wolves such as alpha,
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beta, delta and omega are used where the three main

hunting operators (i.e. searching for prey, encircling prey

and attacking prey) are adapted for such a problem. The

GWO is evaluated using 20 generating units in economic

dispatch, and the results show that the GWO is able to

outperform those yielded by BBO optimizer, lambda iter-

ation method (LI), Hopfield model-based approach (HM),

CS, FA, ABC, neural networks training by ABC

(ABCNN), quadratic programming (QP) and general

algebraic modeling system (GAMS).

In the same year, another application for ELD combined

with emission dispatch (EMD) using GWO is adapted in

[118]. The main aim of this problem is to minimize the fuel

cost and emission at the same time to determine the opti-

mum power generation. Their system is tested using two

systems containing 6 and 11 generating units of various

constraints and load demand. Again, the comparative

evaluation showed the superiority and the effectiveness of

GWO. In [122], the reactive ELD problem is addressed by

GWO where it used to determine the optimal combination

of control variables such as voltages, tap changing trans-

formers’ ratios as well as the amount of reactive compen-

sation devices. In order to evaluate their GWO, two power

systems are used to show the convergence impacts: IEEE

30-bus system and IEEE118-bus system. Again, the results

produced by GWO are recognized as a superior in com-

parison with those produced by comparative techniques.

The ELD problem with ramp rate limits, valve point dis-

continuities and prohibited operating zones constraints was

also proposed in [99]. Their system was implemented on

four test systems having 10, 40, 80 and 140 units. Once

again, the results of GWO were a very promising and

proved that the GWO is a powerful technique for solving

various ELD problems.

The non-convex and dynamic ELD problem version is

tacked by GWO in [49]. Three kinds of power systems

based on the system size are used for evaluation process.

Their proposed system was compared with lambda itera-

tion method, PSO, GA, BBO, DE, pattern search algorithm,

hybrid of neural network (NN) and efficient particle swarm

optimization (EPSO) method (NN-EPSO), fast evolution-

ary programming (FEP), classical EP (CEP), improved

FEP (IFEP) and mutation FEP (MFEP). Comparative

evaluation showed the superiority of GWO.

A combined heat and power dispatch (CHPD) problem

was also tackled using GWO in [42, 43] and [44]. In

addition to the normal constraints of ELD, the practical

operational constraints like feasible operating regions of

cogenerators, prohibited operating zones of thermal gen-

erators are also took in consideration. The main aim of

GWO is to provide fuel cost savings and lesser pollutant

emissions. Their proposed method was tested using 3

system types: 7-unit system, 24-unit system, and 11-unit

system. The simulation results showed that GWO performs

better than the state-of-the-art methods in terms of solution

quality.

In [41], the ELD problem is also addressed using a

hybridized version of GWO. It hybridized with effective

GA operators such as crossover and mutation for better

performance. The proposed method was tested using four

dispatch systems: 6, 15, 40 and 80 generators with valve

point loading effect, prohibited operating zones and ramp

rate limit constraints, with and without transmission losses.

The comparative evaluation revealed that the hybrid GWO

was either matches or outperforms the other comparative

methods.

Another problem similar to ELD called pre-dispatch of

thermal power generating units with cost, emission and

reserve pondered was tackled by adapted GWO [103]. The

main aim of this problem is to minimize the total operating

cost, emission level and maximize reliability under various

prevailing constraints. The performance of the adapted

GWO was verified using standard 10, 20, 40, 60, 80 and

100 unit systems. The results showed that the proposed

GWO is very promising in solving the targeted problem in

comparison with other state-of-the-art methods. Other

power engineering problems solved by GWO include

[2, 27, 130, 135].

4.2.3 Robotics and path planning

In robotics technologies, a multi-objective GWO approach

was proposed by Tsai et al. for optimizing robot path

planning [125]. Two objectives were used as minimization

which handle the distance and path smoothness. They

performed a number of simulations in different static

environments. Simulation results showed that the proposed

approach succeeded in providing the robot with the optimal

path to reach its target without colliding with obstacles.

An interested work was made by Zhang et al. [141]

when they proposed GWO for solving the Unmanned

Combat Aerial Vehicle (UCAV) path planning problem.

They addressed three cases of different dimension path

planning problems. The goal is to find a safe path while

avoiding the threats areas and minimizing fuel cost. The

experiments and results showed the efficiency of GWO

compared to many other metaheuristic algorithms.

In another work conducted by Korayem et al. in the field

of vehicle routing [58], they combined GWO with k-means

algorithm for solving the capacitated vehicle routing

(CVR) problem which is a type of the vehicle routing

problems. The proposed hybrid approach is utilized in the

clustering phase of the cluster-first route-second method for

solving the targeted CVR problem. Their results showed

higher efficiency of the hybrid approach compared to the

k-means algorithm.
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4.2.4 Scheduling

In welding production, Lu et al. [69] proposed a multi-

objective discrete GWO for optimizing a real-world

scheduling case from a welding process. They considered

as objectives to minimize makespan and the total penalty

of machine load. The experiment and the statistical tests

showed the significance of the obtained results compared to

other multi-objective evolutionary algorithms like non-

dominated sorting-based genetic algorithm (NSGA-II) and

improving the strength Pareto evolutionary algorithm

(SPEA2).

Later on, same authors proposed a hybrid multi-objec-

tive approach based on GWO and GA for optimizing a

multi-objective dynamic welding scheduling problem [68].

They considered three objectives which are minimizing the

makespan, machine load and instability. Their approach

was applied for a real welding scheduling problem from a

company in China. A comparison with NSGA-II, SPEA2

and MOGWO showed better results in terms of the three

objectives.

Another notable work in this type of applications was

carried out by Komakia and Kayvanfar [57]. They pro-

posed the application of GWO for scheduling a two-stage

assembly flow shop problem. The goal was to find the

optimal jobs sequence such that completion time of the last

processed job is minimized. They compared GWO to PSO

and cloud theory-based simulated annealing (CSA). GWO

showed very promising results.

Rameshkumar et al. [102] proposed a real-coded GWO

for optimizing short-term power system unit commitment

schedule of a thermal power plant. In their work, the real-

coded implementation of problem variables used to easily

handle the operational constraints. Their approach showed

a consistency for finding good unit commitment schedule

within reasonable execution time. They conducted a com-

parison study and showed that the proposed GWO-based

approach can outperform many existing methods. The

author mentioned that their approach will be applied for

long-term thermal power scheduling problems as well. In

addition, optimal scheduling workflows in cloud comput-

ing environment using Pareto-based GWO have been

investigated in [54].

4.2.5 Other engineering applications

Other engineering applications of GWO covers wide

spectrum of different problems. More power and energy

applications include the following main works: Hadidian–

Moghaddam et al. [36] used GWO for optimizing the siz-

ing of a hybrid photovoltaic/Wind system considering the

reliability model. The objective function was set to mini-

mize the system total annual cost. Sharma et al. [114]

proposed GWO to minimize the operation cost of micro-

grid considering optimum size of battery energy storage.

GWO showed high efficiency compared to other

optimizers.

Sangwan et al. [109] used GWO for optimizing battery

parameters for charging and discharging characteristics

based on a model of single resistance-capacitance electrical

circuit. In their work, GWO showed higher consistency and

accurate estimation compared to GA and PSO. Mahdad and

Srairi [72] proposed a combination of GWO with pattern

search algorithm for solving the security smart grid power

system management at critical situations.

Shakarami and Davoudkhani [113] optimized wide-area

power system stabilizer parameters using GWO as a multi-

objective problem with inequality constraints.

Zhou et al. [142] proposed combining GWO with

chaotic local search tuning the parameters of the equivalent

model of small hydro generator cluster. Their version of

GWO showed noticeable improvement compared to PSO.

Sultana et al. [123] applied GWO for optimizing mul-

tiple distributed generation allocation in a 69-bus radial

distribution system. The problem was tackled a multi-ob-

jective with a goal to minimize the reactive power losses

and voltage deviation with a set of power system con-

straints. GWO was competitive compared to BA and GSA.

However, they noted that GWO is slower than BA in terms

of computational time.

For partial discharge modeling, Dudani and Chudasama

[14] applied an adaptive version of GWO for localization

of PD source using acoustic emission technique.

In power systems, El-Gaafary et al. [17] applied GWO

for optimizing the allocation of STATCOM devices on a

power system grid with a objective functions to minimize

load buses voltage deviations and power system loss. Their

experiments were conducted for IEEE 30-bus power

systems.

In power flow problems, El-Fergany and Hasanien [16]

applied GWO for solving the optimal power flow problem.

They experimented four objective functions based on the

standard IEEE 30-bus system. They reported competitive

results for GWO compared to DE.

In photonics technologies, Chaman–Motlagh [6] pro-

posed GWO for designing photonic crystal filters in

attempt for finding high-performance designs. They han-

dled the problem as an optimization problem of single-

objective function.

Another work in the field, Karnavas et al. utilized GWO

for optimizing the design of a radial flux surface permanent

magnet synchronous motors. According to their conducted

experiments and obtained results, GWO showed more

efficient results and faster convergence speed.

In direct current (DC) motors, Karnavas and Chasiotis

[51] optimized the parameters of an unknown permanent
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magnet DC coreless micro-motor using GWO. They

compared the performance of GWO for this problem with

GA. They claimed that GWO could be faster than GA in

estimating the parameters of the motor. The ensemble

decision-based multi-focus image fusion using binary

genetic GWO in camera sensor networks is also studied in

[121].

In chemical engineering, Sodeifian et al. [117] used

GWO for finding the optimal operating conditions as a part

of a proposed methodology for the application of super-

critical carbon dioxide to extract essential oil from Cleome

coluteoides Boiss.

In quality and reliability engineering, Kumar and Pant

[60] applied GWO for optimizing two complex reliability

optimization problems: complex bridge and life-support

system in a space capsule. They compared their results

with other metaheuristics such as CS, PSO, ACO, and

simulated annealing. GWO showed very competitive

results.

In machined and manufacturing, Khalilpourazari et al.

[55] applied GWO for tuning the parameters of a mathe-

matical model of a multi-pass milling process which is a

nonlinear multi-constrained problem. The GWO approach

showed excellent results in terms of minimizing production

time when compared to other approaches from literature

and to other new metaheuristics.

In cellular networks, Ghazzai et al. [30] proposed

approach based on GWO for solving the cell planning

problem for the fourth-generation and long-term evolution

(4G-LTE) cellular networks. The task of GWO is to find

the optimal base station locations that satisfy problem

constraints. However, their experiments showed that PSO

outperformed GWO for this investigated problem.

In structural optimization, GWO was used by Bhens-

dadia and Tejani [5] for optimizing planer frame design.

Their objective was to produce minimum weight planer

frame while maintaining the material strength require-

ments. Their conducted experiments showed that GWO can

find higher-quality designs than other metaheuristics.

In the field of antennas and electromagnetics, Saxena

and Kothari [112] introduced different examples for the

application of GWO for linear antenna array optimization

for optimal pattern synthesis. The results showed that

GWO was able to achieve good improvement compared to

other metaheuristics.

In civil engineering, Gholizadeh [31] proposed a mod-

ified version of GWO named as Sequential GWO (SGWO)

for optimizing the design of double layer grids considering

nonlinear behaviour. Experiments based on two illustrative

examples show the efficiency of the (SGWO) compared to

GWO, Harmony Search (HS) and FA.

4.3 Wireless sensor network

Tackling the coverage problem in WSN, Shieh et al. [9]

proposed a variation of GWO called Herds GWO (HGWO)

for optimizing sensor coverage WSNs. The objective

function of their approach considers coverage overlaps and

holes of deploying WSN. Compared to GA and the clas-

sical GWO, the HGWO showed higher capability in find-

ing quality solutions in terms of good coverage within

reasonable computational time.

In WSN routing, Al-Aboody and Al-Raweshidy [1]

proposed a three-level hybrid clustering routing protocol

algorithm (MLHP) based on GWO for wireless sensor

networks. The goal of the algorithm is to extend the net-

work lifetime. The task of GWO in their implementation is

the probabilistic selection of cluster heads in level two of

the network. Their experiments showed that the throughput

of the proposed approach is higher than for the other

known algorithms.

In [28], Fouad et al. targeted the localization problem in

WSNs. The authors proposed a sink node localization

approach based on GWO. The objective function was set to

find the nodes with high number of neighbours, and their

total residual energies are high. Their GWO-based

approach was evaluated under different scenarios of dif-

ferent networks’ capacities. Their simulation results also

confirmed the efficiency of GWO in terms of time com-

plexity and energy cost.

Localization was also investigated by Nguyen et al. [39].

The authors proposed a multi-objective GWO for solving

the node localization problem. The author pointed out that

the multi-objective approach can be more efficient in

solving the problem than the single-objective approach.

They utilized two objective functions which are the dis-

tance of nodes and the geometric topology. They showed

that the proposed approach can effectively reduce the

average localization error.

4.4 Environmental modeling applications

In environmental modeling, several studies have deployed

GWO in optimizing forecasting and quality models;

Sweidan et al. [124] proposed a hybrid classification model

based on cased-based reasoning (CBR) and GWO for water

pollution assessment based on fish gills microscopic ima-

ges. The role of GWO was to select CBR suitable matching

and similarity measures along with performing feature

selection.

Malik et al. [89] proposed a constrained mathematical

model and integrated a weighted distance-GWO for

reducing the amount of pollutants generated by thermal

power plants in Delhi, India. The proposed approach
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showed high efficiency compared to the classical GWO

and genetic programming.

Niu et al. [95] proposed a model for short-term daily

PM2.5 concentration forecasting for Harbin and Chongq-

ing cities in China. Their model was based on a decom-

position-ensemble methodology. In this method, GWO was

applied for optimizing the parameters of support vector

regressor (SVR). The performance of the SVR optimizer

by GWO had lower error rates for both cities compared to

other optimizers including CS, DE, PSO and grid search.

A different application was conducted by Song et al.

[119] who proposed a surface wave dispersion curve

inversion scheme based on GWO. GWO showed very

competitive results when compared to other optimizers like

GA and PSOGSA. The authors recommended the appli-

cation of GWO for parameter estimation in surface waves.

4.5 Medical and bioinformatics application

GWO has been deployed in different approaches for vari-

ous medical and bioinformatic applications. For example in

[65], Li et al. used a binary GWO for feature selection with

extreme learning machine (ELM) classifier for two medical

diagnosis problems: Parkinson’s disease diagnosis and

breast cancer diagnosis. High-quality solutions were

obtained.

In Bioinformatics, Jayapriya and Arock [45] utilized a

parallel version of GWO for multiple sequences aligning

problem. Their approach showed efficiency in terms of

time complexity. In the same research area, the same

authors proposed a variation of GWO for pairwise

molecular sequence alignment. They deployed a new fit-

ness function that returns maximum matched counts for

new possible molecular sequences [46].

In medical diagnosis systems, Mostafa et al. [91] pro-

posed a combination between GWO and statistical image

of liver and simple region growing for liver segmentation

in CT images. Their approach showed high accuracy rates.

Other medical-based GWO problems are tackled in [108].

In [18], Elhariri combined GWO with SVM for EMG

signal classification which has a wide range of clinical and

biomedical applications. GWO was utilized to tune the

hyperparameters of the SVM. The proposed approach

showed promising results compared to other metaheuristics

like GA, ACO, ES and PSO.

4.6 Image processing

In the field of image thresholding, Li et al. [64] addressed

the problem of multi-level image thresholding problem.

The authors proposed a modified discrete variation of

GWO for optimizing fuzzy Kapur’s entropy as an objective

function to obtain a set of thresholds. Based on experiments

using a set of benchmark images, the proposed approach

showed a capability of improving image segmentation

quality.

For template matching problems, Zhang and Zhou [140]

proposed a hybridization between GWO and lateral inhi-

bition for solving complex template matching problems. In

this context, the problems concern recognizing predefined

template images in a source image. The comparative

experiments showed that better solutions for template

matching can be obtained compared to other recent

metaheuristics.

For hyperspectral image classification, Medjahed et al.

[75] proposed a GWO-based framework for band selection

and to reduce the dimensionality of hyperspectral images

with a goal not to reduce the classification accuracy of the

image. The authors formulated the problem as a combi-

natorial optimization problem. Their objective function

combined between classification accuracy and class sepa-

rability measures. Evaluation results based on three

hyperspectral images showed satisfactory results compared

to other feature selection methods. Other GWO-based

image processing problems were presented in [53, 63]

where multi-level image thresholding was tackled and

segmented.

5 Open source software of GWO

As mentioned in [133], the GWO algorithm is based on a

very simple concept. GWO can be implemented in a few

lines of code using simple mathematical operators which

makes the algorithm computationally efficient. This helped

in promoting the algorithm and made its popularity exceeds

many other metaheuristics proposed in the same period.

Directly after the publishing the main paper of GWO

[83], S. Mirjalili released a demo Matlab version of GWO.

Another implementation of GWO was presented by

Gupta et al. [34]. The authors described their implemen-

tation of GWO as a toolkit in LabVIEW. LabVIEW is an

integrated development environment for designing mea-

surements, tests and control systems and applications. They

compared the performance of their implementation with

DE which is provided by the environment. Their compar-

ison study was conducted based on 9 benchmark functions.

The results showed faster convergence for GWO and better

solutions compared to DE. Their results encourages engi-

neers to apply GWO in different optimization problems in

LabVIEW environment.

In an attempt to reach more researchers from the open

source community, Faris et al. implemented GWO as part

of EvoloPy [26]. EvoloPy is an open source optimization

framework written in Python. The framework contained a

number of recent metaheuristic algorithms. In their paper,
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the authors showed that the running time of the imple-

mented metaheuristics including GWO is faster than their

implementation in Matlab for large-scale problems.

6 Assessment and evaluation of GWO

As discussed above, the GWO algorithm has been widely

used to solve a variety of problems since proposal. The

simple inspiration, little controlling parameter and adaptive

exploratory behaviour are the main reasons of the success

of this algorithm. Similarity to other stochastic optimiza-

tion algorithms, however, it has a number of limitations

and suffers from inevitable drawbacks.

The main limitation comes from the NFL theorem,

which states that no optimization algorithm is able to solve

all optimization problems. This means that GWO might

require modification when solving some real-world prob-

lems. Another limitation is the single-objective nature of

this algorithm that allows it to solve only single-objective

problems. It should be equipped with special operators and

mechanism to solve binary (combinatorial), continuous,

dynamic, multi-objective and many-objective problems.

The main drawback of GWO is the low capability to

handle the difficulties of a multi-modal search landscape,

as it seems that all three alpha, beta and gamma wolves

tend to converge to the same solution. Adding more ran-

dom components to mutate the solutions during optimiza-

tion will increase the chance of finding a global optimum

when solving challenging multi-model problems.

The performance of the GWO algorithm degrades

noticeably proportional to the number of variables. This is

perhaps due to the entrapment of the initial population in a

local solution when solving such problems. At the moment,

there is not special operator to resolve such local optima

stagnations in the literature.

The inventors of GWO conducted an extensive experi-

ment and observed that considering four groups results in

the best average performance on benchmark problems and

a set of low-dimensional real-world case studies. However,

considering more or less groups is required when solving

medium- or large-scale challenging problems.

Last but not least, the fast convergence speed and

accelerated exploitation leads to local solutions when

solving problems with a large number of variables and

local solutions. Mechanisms should be devised to decel-

erate the convergences and exploitations if the algorithm is

trapped in local solutions. Adaptive mechanisms are good

tools in this regard to tune the convergence speed propor-

tional to the number of iterations of the quality of the best

solution obtained so far.

7 Conclusions and possible research
directions

This work provided the first literature review of the

recently proposed GWO algorithm. The main inspiration,

mathematical model, and analyses of this algorithm were

discussed first. The performance of this algorithm was then

investigated in terms of exploration and exploitation. The

multi-objective version of this algorithm was presented

briefly as well.

After the presentation and analysis, current works on

parameter tuning, new operators, different encoding

schemes and hybrids were reviewed and criticized. The

applications of GWO in different fields were discussed as

well: feature selection, training ANNs, classification,

clustering, controller design, power dispatch problem,

robotics and path planning, scheduling, wireless sensor

network, environmental modeling, bioinformatics and

image processing. This work also considered analysis of

open source software for the GWO algorithm. Tables 1, 2,

3 and 4 show the review summaries of the related studies

on GWO algorithm.

The search was done from five well-regarded scientific

databases: Science Direct, SpringerLink, Scopus, IEEE and

Google Scholar. The main keywords to find papers were

‘‘grey wolf optimizer’’, ‘‘grey wolf optimiser’’, ‘‘grey wolf

optimization’’ and ‘‘GWO’’. Figure 1 shows that the

majority of publications on GWO were published by IEEE

and Elsevier. It was also observed that more than 60% of

GWO applications have been in the field of engineering.

Despite the popularity of GWO and recent advances,

there are still several areas that need new or further works

as follows:

• The GWO algorithm’s ability to handle a large number

of variables and escaping local solutions when solving

large-scale problems can be improved as the main

drawbacks.

• A variety of memetic algorithms can be designed with

hybridizing GWO and other current algorithms. The

exploration and/or exploitation ofGWOcan be improved

with employing operators from other algorithms.

• GWO divides the population into four groups, which

has been proved to be an efficient mechanism to solve

benchmark problems. Considering more or less groups

with a diverse number of wolves in each can be

considered as an interesting research area to improve

the performance of GWO when solving challenging

real-world problems.

• Dynamic optimization: there is currently no work in the

literature to modify or use the GWO algorithm to solve

dynamic problems. In a dynamic search space, the

global optimum changes over time, so GWO should be
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equipped with suitable operators (e.g. multi-swarm,

repository, or performance measure) to solve such

problems.

• Dynamic multi-objective optimization: there is no work

in the literature to estimate a dynamically changing

Pareto optimal front using the MOGWO algorithms.

Table 1 Different modified versions of GWO algorithm

Modification level Studies

Population structure and

hierarchy

Mahdad et al. [72], Zhou et al. [142], Yang et al. [134]

Encoding scheme of the

individuals

Luo et al. [70]

Updating mechanisms Mittal et al. [85], Long et al. [67], Rodriguez et al. [105], Dudani et al. [14], Malik et al. [73], Rodrı́guez et al.

[107]

New operators Kishor et al. [56], Chandra et al. [7], Saremi et al. [111], Zhang et al. [139], Powell et al. [98]

Table 2 Hybrid, multi-objective

and parallel versions of GWO

algorithm

GWO Version Studies

Hybrid GWO with PSO Zhu et al. [143]

Hybrid GWO with DE Jitkongchuen et al. [47], Kamboj et al. [48]

Parallel GWO Pan et al. [97]

Multi-objective GWO Mirjalili et al. [84], Emary et al. [20]

Table 3 Applications of GWO algorithm

Domain Sub-domain Studies

Machine learning Feature selection Emary et al. [20–22], Vosooghifard et al. [129], Yamany et al. [133], Medjahed et al. [75], Li

et al. [65]

Training neural

networks

Mosavi et al. [90], Mohamed et al. [86], Muangkote et al. [92]

Optimizing support

vector machines

Eswaramoorthy et al. [25], Mustaffa et al. [93, 94], Elhariri et al. [19]

Clustering Kumar et al. [61], et al. Zhang [139], Yang et al. [136]

Engineering Design and tuning

controllers

Li et al. [66] Yadav et al. [132], Das et al. [10], Madadi et al. [71], Sharma et al. [115], Gupta

et al. [32], Mallick et al. [74], Precup et al. [100, 101], Noshadi et al. [96], Lal et al. [62], Gupta

et al. [33], Razmjooy et al. [104], Yang et al. [134], Mohanty et al. [87, 88], Precup et al. [100]

Power dispatch

problems

Jayabarathi et al. [41], Pradhan et al. [99], Jayakumar et al. [42–44], Wong et al. [131],

Rameshkumar et al. [103], Sulaiman et al. [122], Song et al. [118], Kamboj et al. [49]

Robotics and path

planning

Tsai et al. [125], Zhang et al. [141], Korayem et al. [58]

Scheduling Lu et al. [68, 69], Komaki et al. [57], Rameshkumar et al. [102], Lu et al. [68]

Other engineering

applications

Hadidian et al. [36], Sharma et al. [114], Sangwan et al. [109], Mahdad et al. [72], Shakarami

et al. [113], Zhou et al. [142], Sultana et al. [123], El-Gaafary et al. [17], El-Fergany et al. [16],

Chaman et al. [6], Karnavas and Chasiotis [51], Karnavas et al. [52], Sodeifian et al. [117],

Kumar et al. [60], Khalilpourazari et al. [55], Ghazzai et al. [30], Bhensdadia et al. [5], Saxena

et al. [112], Gholizadeh et al. [31] Sanjay et al. [110]

Networking Wireless sensor network Dao et al. [9], Al-Aboody et al. [1], Fouad et al. [28], Universty et al. [39]

Environmental

applications

Modeling Sweidan et al. [124], Mohideen et al. [89], Niu et al. [95], Song et al. [119]

Medical and

bioinformatics

Lie et al. [65], Jayapriya et al. [45, 46], Mostafa et al. [91], Elhariri et al. [18]

Image processing Li et al. [64], Zhang et al. [140], Medjahed et al. [75]
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Dynamic optimization in a multi-objective search space

is very challenging and requires special consideration.

High exploration of MOGWO makes it potentially able

to discover different regions of a search space, but it

needs modification to update the non-dominated

solutions.

• Tuning the parameters of GWO has not been investi-

gated well in the literature. Parameter tuning is

important for all optimization algorithms when solving

real-world problems. A valuable contribution would be

to investigate alternative equations for the parameters

a, A and C. Also, there is little work to define the

weighting of alpha, beta and delta in Eq. 5. These

parameters define the contribution of each leader in the

final solution and worth of investigation. Assigning

priorities or weights to these solutions can be consid-

ered in this regard.

• Robust optimization: considering different uncertain-

ties during optimization allows us to find reliable

solutions. This is important when solving real problems

with several uncertainties involved in inputs, outputs,

objective functions and constraints. There is no work in

the literature to investigate the performance of GWO in

considering such perturbations and finding reliable

solutions.

• Constrained optimization: despite a significant number

of real-worlds problems that have been solved by

GWO, there is no systematic work in the literature to

investigate the best constraint handling methods for this

algorithm. The majority of the current works use death

penalty function, which is not effective when the search

space has a large number of infeasible regions.

Therefore, a good research direction is to equip GWO

with different constraints handling techniques and

investigate their performance.

• Binary optimization: there are several attempts in the

literature to solve binary problems (mostly for feature

selection). However, there is no systematic attempt to

propose a general binary model for this algorithms. The

investigating and integrating transfer functions or other

operators to solve a wide range of binary problems

(including combinatorial problems) are recommended.

The s-shaped and v-shaped transfer functions are

worthy of investigation.

• Multi-objective optimization: although the MOGWO

algorithm has been developed to solve multi-objective

problems using the GWO algorithm, there are several

gaps here that can be targeted. MOGWO uses an

archive, but there are other mechanisms to solve multi-

objective problems in the literature. Therefore, it is

recommend to using different operators (e.g. non-

dominated sorting, niching, archive, aggregation meth-

ods) to solve multi-objective optimization problems.

• Many-objective optimization: the current multi-objec-

tive variants of GWO use Pareto optimal dominance to

compare solutions. As mentioned above, an archive

stores non-dominated solutions. The archive is reason-

ably efficient for problems with up to four objectives.

However, for many-objective problems, the archive

becomes full quickly due to the large number of non-

dominated solutions. Therefore, there should be spacial

operators to solve such problems (e.g. hyper volume,

modified Pareto optimal dominance and niching); a

promising research avenue.

• Other means of opening venues for large-scale opti-

mization problems [35] can be further investigated. The

GWO also lacks of publications related to the theoret-

ical analysis of its optimization framework. This should

be addressed to provide more solid and in-depth

understanding to the current GWO version and to

answer the question of why GWO performs better than

others. Therefore, a detailed and comprehensive theo-

retical analysis of the main properties of the GWO

algorithm is highly recommended. Such analysis

includes the study of the population structure, param-

eters, fitness landscapes. For example, why there are

only three leaders in the algorithm? And how the

performance will be affected if this number is increased

or decreased.

• Other possible venue for interested audience is the

parameter-free GWO. As aforementioned, GWO has

two main parameters that control the search to achieve

the correct trade-off between exploration and exploita-

tion search aspects. These two parameters are set in

advance and remain constant during the search. For

naive users who are not familiars of using GWO in a

proper way, the parameter setting is a very big

dilemma. Therefore, parameter tuning of GWO can

be urgently addressed in future as a very crucial need

[106].

All the aforementioned reasons make GWO a possible and

powerful candidate for utilization in different types of

applications. In addition, this paper will draw a map for the

researchers and practitioners who are currently working or

Table 4 Open source software of GWO algorithm

Development framework Studies

Matlab Mirjalili et al. [83]

LabVIEW Gupta et al. [34]

Python Faris et al. [26]
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will work in this area by guiding them on how the GWO

algorithm can be applied to different problems. Therefore,

solving important complex problems through the utiliza-

tion of GWO could be more possible.
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