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Abstract Accurate estimation of the reservoir parameters

is crucial to predict the future reservoir behavior. Well

testing is a dynamic method used to estimate the petro-

physical reservoir parameters through imposing a rate

disturbance at the wellhead and recording the pressure data

in the wellbore. However, an accurate estimation of the

reservoir parameters from well-test data is vulnerable to the

noise at the recorded data, the non-uniqueness of the

obtained match, and the accuracy of the optimization

algorithm. Different stochastic optimization methods have

been applied to this address problem in the literature. In

this study, we apply the recently developed iterative

ensemble Kalman filter in the context of well-test analysis

to infer reservoir parameters from the noisy recorded data.

Since the introduction of the ensemble Kalman filter

(EnKF) by Evensen in 1994 as a novel method for data

assimilation, it has had enormous impact in many appli-

cation domains because of its robustness and ease of

implementation, and numerical evidence of its accuracy.

While the objective of the standard EnKF approaches is to

approximate the statistical properties of geological

parameters conditioned to observation, via an ensemble,

the objective of the iterative ensemble Kalman methods is

to approximate the solution of inverse problems using a

deterministic derivative-free iterative scheme. We

conducted three case studies of the application of the

iterative ensemble Kalman methods for a well-test analysis

of a homogenous reservoir model, a dual-porosity hetero-

geneous system, and a faulted discontinuous reservoir. We

demonstrated that the convergence occurs very rapidly

almost at the first iterations contrary to the well-known

particle swarm optimization algorithm. The maximum

relative error for the simulated cases is below 15%, which

belongs to the skin factor. Low relative error, narrowed

uncertainty range over time, and excellent graphical match

obtained between the simulated derivative data and the

generated curve by using the iterative EnKF verify the

robustness of the developed algorithm even in dealing with

complex heterogeneous models.

Keywords Pressure transient � Data assimilation � Iterative
ensemble Kalman filter � Stehfest algorithm

Nomenclatures

u(k?1) State parameters of the system at the k ? 1th

iteration within the Kalman filter

uk State parameters of the system at the kth iteration

within the Kalman filter

Ak A matrix relating state parameters at the kth

iteration to the k ? 1th iteration within the

Kalman filter

B A matrix relating the inputs at the kth iteration to

the k ? 1th iteration

xk System’s input data

hk System noise at the kth iteration

vk Measurements noise at the kth iteration

yk Observational data at the kth iteration

Hk A matrix relating the state parameters at the kth

iteration to the observations at the kth iteration

F(w) Probability density of the model states
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fi Component number i of the model operator f

gQgT Covariance matrix for the model errors

Q Variance of the systems’ noise

R Variance of the measurement’s noise

P(h) Probability function governing the system’s noise

P(v) Probability function describing the

measurements’ noise

T Time, hr

J Number of ensembles within the EnKF algorithm

y(j) Measurements for the jth ensemble in the EnKF

algorithm

n(j) Measurements’ noise for the jth ensemble within

the EnKF

C Variance of the measurements’ noise

w
ðj;f Þ
n

Predicted state parameters in the EnKF method

for the jth ensemble within the EnKF method

G Nonlinear model operator

u
ðjÞ
n

State parameters at the nth iteration for the jth

ensemble in the EnKF method

�wf
n

Ensemble average of the predicted state

parameters in the nth iteration within the EnKF

method

�un Ensemble average of the state parameters in the

nth iteration within the EnKF method

Cuw
n The cross-covariance matrix of the state

parameters and the estimated state parameters at

the iteration n

Cww
n The autocorrelation matrix of the estimated state

parameters at the iteration n

u
ðjÞ
ðnþ1Þ

Estimated state parameters belonging to the jth

ensemble at the n ? 1th iteration after applying

the analysis step in the EnKF method

w
ðjÞ
ðnþ1Þ

Predicted state parameters belonging to the jth

ensemble at the n ? 1th iteration within the EnKF

method

�u nþ1ð Þ Ensemble average of the state parameters at the

n ? 1th iteration

tD Dimensionless time

pwd Well dimensionless pressure

s Laplace variable

�pwd sð Þ Well dimensionless pressure solution in the

Laplace domain

U Porosity fraction

rw Wellbore radius, ft

h Reservoir thickness, ft

ct Total compressibility, psi-1

q Well flow rate, STBD

pi Initial pressure, psi

l Viscosity, cp

Bo Oil Formation Volume Factor, Rbbl/STB

K Permeability, md

S Skin factor, dimensionless

K Interporosity flow coefficient, dimensionless

x Fracture storativity ratio, dimensionless

Lf Perpendicular fault distance from well, ft

f(s) Laplace function for the dual-porosity model

k0 Modified Bessel function of second kind and zero

degree

k1 Modified Bessel function of second kind and first

degree

CD Dimensionless wellbore storage coefficient,

dimensionless

dD Fault dimensionless distance, dimensionless

1 Introduction

Modern calibration methods of subsurface reservoirs can be

generally classified into two approaches, one based on the

optimization methods and the other based on the Bayesian

inference [1]. The optimization methods adjust the unknown

parameter values through an automated process to obtain

reservoir models within the allowed range of a misfit func-

tion. Various optimization techniques have been developed

in the literature, including neighborhood algorithm [2],

particle swarm optimization [3], genetics algorithm [4],

Levenberg–Marquardt [5], estimation of distribution [6], and

LBFGS [7]. Existing optimization methods can be roughly

categorized to the stochastic algorithms and the gradient-

based algorithms. The gradient-based algorithms have sev-

eral inherent limitations, including they require to compute

the gradients at each step of the optimization process.

Honoring the geological constraint is another challenging

issue for these types of algorithms [8]. A definite advantage

of the stochastic algorithms is the capability to easily

honoring the geological constraints; the main drawback of

these approaches is their inefficiency as they usually require

large number of simulations for convergence [9, 10].

Approaches based on the Bayesian inference, on the other

hand, aim at estimating the posterior probability for the

reservoir properties [11]. Existing Bayesian inference

methods broadly entail algorithms based on particle filters,

such as the ensemble Kalman filter (EnKF) [12, 13], the

sequential Monte Carlo methods [14], and the Markov

Chains Monte Carlo (MCMC) approaches [15, 16]. Since

characterization of the underground resources becomes

very important especially during the tertiary recovery per-

iod, which most of the oil is still remained beneath the

ground [17], opting a robust and efficient method during the

reservoir’s calibration is of great importance.

Although variety of data mining, artificial intelligence,

and optimization algorithms are used in the petroleum

industry for different purposes [18–30], in the context of

well-test analysis most researches are carried out over the

application of the artificial neural networks (ANN), nonlin-

ear regression, and meta-heuristic optimization algorithms.
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The first attempt to incorporate ANN in the well-testing

interpretation comes back to 1990s whenAl-Kaabi et al. [31]

used normalized pressure-derivative data in log–log plot to

train an ANN with the purpose of reservoir model recogni-

tion. Allain and Houze [32] tried to symbolically represent a

reservoir model using the ANN method. Within the next

year, Ershaghi et al. [33] employed multiple neural nets to

recognize patterns for a specific conceptual reservoir model.

They found that an activation number larger than 0.4 for a

neuron is usually sufficient to select the reservoir model

related to that neuron [33].

Athichanagorn and Horne [34] employed ANN in order to

recognize eight different mostly appeared pressure patterns in

pressure-derivative curves. Kumoluyi et al. [35] used higher-

order neural networks to recognize the reservoir model from

well-test data. Using higher-order neural networks allowed

them to elude large amounts of weights at the neural network,

which in turn leads to decreased training time [35].Alajmi and

Ertekin [36]fitted a degree-four polynomial over pressuredata

in semilog plot and used coefficients of the interpolated

polynomial as part of the input data to the ANN. Kharrat and

Razavi [37] fitted B-splines curve over pressure data and used

its analytical derivative against time to generate pressure-

derivative curves. The normalized pressure-derivative data

were then given to theANN in their study [37].Adibifard et al.

[38] introduced a new method to present the input test data to

the ANN by fitting a Chebyshev-based polynomial over the

synthesized pressure-derivative data. Their proposed method

guaranteed fitting higher degrees of polynomials without

losing precision over the polynomial coefficients [38].

Although there have been numerous studies, recently, to

characterize hydrocarbon reservoirs by introducing differ-

ent interpretation methods and models[39], accuracy of the

estimated parameters is usually a direct function of the

optimization technique embedded in the nonlinear regres-

sion problem. In this regard, there have been several

studies on the applications of nonlinear regression in well-

test analysis by using different sets of cost functions

including LS (least square), LAV (least absolute value),

and weighted cost function [40–42]. Nanba and Horne [43]

used a new MGC (modified Gauss–Cholesky) algorithm

and justified the superiority of their algorithm over the GM

(Gauss–Marquardt) and NB (Newton–Barua). Onur and

Kuchuk [44] employed the maximum likelihood approach

to carry out the nonlinear regression task. This method does

not require acquiring a prior knowledge about the variance

of the error data [44]. Recently, Adibifard et al. [45]

employed a meta-heuristic optimization algorithm, namely

PSO (particle swarm optimization) to carry out the non-

linear regression task for a homogenous reservoir model. A

comprehensive review of recent research activities on

subsurface flow model calibration can be found in [8, 46].

In this work, we study the application of the iterative

ensemble Kalman methods as a derivative-free type of

optimization algorithm for inverse problems arises in well-

test analysis. Ensemble Kalman-based methods use the

Kalman formula to generate an ensemble of posterior

estimates of the reservoir parameters [47]. Since its intro-

duction by Evensen in 1994, the number of publications

about EnKF has become extensive and has been applied in

various research fields entailing oceanography [48–50],

numerical weather prediction [51, 52], hydrology [53–55],

and petroleum reservoir history matching [13, 56, 57]. A

chronological list of applications of EnKF can be found at

[12]. Multiple variants of EnKF for state and parameter

estimation in dynamic systems can be found at [12, 13, 58].

In essence, all the variants of EnKF use an ensemble of

states and parameters that is sequentially updated by means

of the Kalman formula, which assimilated the available

data at a given time into the model. In this work, we are

interested in studying the application of the iterative

ensemble Kalman methods [59] for the solution of inverse

problems arise in subsurface flow. While the objective of

the standard EnKF approaches is to approximate the sta-

tistical properties of geological parameters conditioned to

observation, via an ensemble, the objective of the iterative

ensemble Kalman methods is to approximate the solution

of inverse problems 1 using a deterministic derivative-free

iterative scheme. Variants of the iterative ensemble meth-

ods have been proposed in the literature. Iglesias et al. [59]

studied the properties of the iterative EnKF algorithm for

inversion and demonstrated numerically that the method

can be effective on a wide range of applications. He studied

the convergence properties of the iterative regularized

ensemble Kalman method and its efficiency comparing to

other ensemble-based methods.

The organization of this paper is as follows: Section 2

presents the formulation of the iterative ensemble Kalman

method. Section 3 studies the results of the iterative

ensemble method for three different cases of well-test

analysis, a homogenous reservoir model, a dual-porosity

heterogeneous system, and a faulted discontinuous reser-

voir. Section 4 presents the conclusion and recommenda-

tion for future research works.

2 Iterative ensemble Kalman filter (EnKF)

The Kalman filter was developed by Kalman in 1960 in

order to estimate the current state of a system by knowing

its prior state and the current measurements [60]. This

filtering approach is used for the following discrete-time

controlled process, which is governed by the linear

stochastic difference equation [61]:
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ukþ1 ¼ Akuk þ Bxk þ hk; ð1Þ

The above equation relates the state parameters at the

kth iteration, i.e., uk, to the state of the system at the

k ? 1th iteration, i.e., uk?1. xk is also the input of the

system, and A and B are corresponding matrices, which

make a connection between input, state at the previous time

and the state at the next time. The observation data yk are

calculated using the following equation:

yk ¼ Hkuk þ vk; ð2Þ

The random variables hk and vk are, respectively, the

system and measurement noise, which are considered

independent with normal PDF (probability distribution

function). The normal PDF has the zero mean and vari-

ances of Q and R, respectively, for h and v [61]:

P hð Þ�N 0;Qð Þ
P vð Þ�N 0;Rð Þ; ð3Þ

Although EKF (extended Kalman filter) improves

applicability of the Kalman filter for the nonlinear systems

through incorporating the Jacobian of the dynamic matrix,

it fails to address the entirely nonlinear dynamics [62];

therefore, another variant of Kalman filter is introduced,

which is based on the evolution of the ensembles of the

state parameters.

The ensemble Kalman filter (EnKF), which is a

sequential data assimilation approach, was developed by

Evensen [63]. The EnKF method was developed based on

the prediction of the error statistics by using the Monte

Carlo method and eliminated the unlimited error growth

generated during the extended Kalman filter analysis [63].

In the EnKF, the true model is not known and the mean of

the parameters is considered as the best estimate; thereby,

the spreading of the other ensembles around the mean of

the parameters is deemed as the error definition [64].

The EnKF acts as a suboptimal estimator in which the

error statistics are forecasted by using the Monte Carlo

simulations or ensemble integration in order to solve the

following Fokker–Planck equation [62, 64]:

oF

ot
þ
X

i

o fiFð Þ
oui

¼ 1

2

X

i;j

oF gQgTð Þij
ouiouj

; ð4Þ

where at the above equation, u is the state parameters,

F(u) is the probability density of the model states, fi is the

component number i of the model operator f, and ygQgT is

the covariance matrix for the model errors.

The Fokker–Planck equation is the fundamental equa-

tion to find the evolution of the error statistics over time.

Actually, the EnKF method employs the Monte Carlo

simulations to solve the Fokker–Planck equation, and the

PDF of the state parameters is represented by using large

ensemble models [64]. The merits of EnKF over EKF, in

addition to its capability to handle the largely nonlinear

systems, are its low computational time for cases with

small ensemble size and large iterations [62]. One of the

other advantages of the EnKF is that it does not require

derivations of the tangent linear operator or the adjoint

equations [65]. The iterative EnKF, which is adopted at this

study to tackle the pressure transient nonlinear regression

problem, is described at the following [59]:

Generate the initial ensembles of state parameters as

u
j
0

� �J

j¼1
, where J is the number of ensembles. Also,

regenerate observational data for each ensemble by per-

turbing the actual measurement data by using the following

equation:

y jð Þ ¼ yþ n jð Þ; ð5Þ

where n(j) is picked up from the Gaussian distribution with

mean zero, i.e., n jð Þ �N 0;Cð Þ.

1. Update the state parameters for n = 1 to maximum

iteration by using the following prediction and analysis

steps:

Prediction step:

w j;fð Þ
n ¼ G u jð Þ

n

� �
; j� 1; . . .; Jf g; ð6Þ

where G is the nonlinear operator which maps the unknown

state parameters u to the measurement space.

�wf
n ¼

1

J � 1

XJ

j¼1

w j;fð Þ
n ; ð7Þ

�un ¼
1

J � 1

XJ

j¼1

u jð Þ
n ; ð8Þ

Cuw
n ¼ 1

J � 1

XJ

j¼1

u jð Þ
n � �un

� �
w j;fð Þ
n � �wf

n

� �T

; ð9Þ

Cww
n ¼ 1

J � 1

XJ

j¼1

w j;fð Þ
n � �wf

n

� �
w j;fð Þ
n � �wf

n

� �T

; ð10Þ

Analysis step:

u
jð Þ

nþ1 ¼ u jð Þ
n þ Cuw

n Cww
n þ C

� ��1
y jð Þ � w j;fð Þ

n

� �
; ð11Þ

w
jð Þ

nþ1 ¼ w jð Þ
n þ Cww

n Cww
n þ C

� ��1
y jð Þ � w j;fð Þ

n

� �
; ð12Þ

�unþ1 ¼
1

J � 1

XJ

j¼1

u
jð Þ

nþ1; ð13Þ

Check for convergence at each iteration.

At this paper, the nonlinear G operator is a mathematical

model describing the wellbore pressure behavior by using
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the unknown well and reservoir parameters, known fluid and

rock properties, and the well rate history data. Because of the

complexity of the final solution, usually a Laplace inverse

algorithm is used to convert the obtained wellbore solution

from the Laplace media into the time domain. The Laplace

solutions for various reservoir models are provided at

Appendix A in the end of the paper. Stehfest algorithm and

themethod ofOkoye et al. [66, 67] are employed at this study

to regenerate the pressure derivative versus time data:

tD
dpwd

dtD

� 	

i

¼ dpwd

dlnðtDÞ

� 	

i

¼ tDi L�1 s�pwd sð Þf g

 �

tDi
: ð14Þ

3 Results and discussion

The iterative EnKF is applied to three different case studies

entailing a homogenous, a dual-porosity, and a faulted

reservoir. We present the well-test analysis using the iter-

ative EnKF for these cases at the following subsections.

3.1 Infinite acting homogenous reservoir

The field data for this experiment belongs to Horne [68].

Due to the stabilization of the pressure-derivative at the

end of the wellbore storage region, a homogenous reservoir

model is adopted for the matching purpose. Fluid and rock

are represented in Table 1. Pressure derivative against time

data are provided in the log–log plot in Fig. 1.

The measured derivative data are perturbed with the

additive noise of 0.05 9 tdp/dt. Totally, 200 ensembles are

used for the EnKF method and the 50th iteration is used as

the stopping criteria, as discussed in Igelsias et al. [59]. The

convergence study of the iterative EnKF algorithm is not

the scope of this study as it has been rigorously addressed

in the literature. Six different perturbed versions of the

measured data are illustrated in Fig. 2 along with the non-

perturbed data.

Figure 3 shows the result of the iterative EnKF algo-

rithm to estimate the PDF (probability distribution func-

tion) of the unknown reservoir parameters. Also, the

normal function is fitted over the PDF data for each state

variable. Figure 4 demonstrates the fast convergence rate

of the algorithm. Figure 5 shows that the variance of the

results tends to decrease rapidly at the initial iterations,

which demonstrate the robustness of the iterative EnKF

technique to reach the final solution quickly. Table 2

compares the results of the iterative EnKF with those

arrived by Adibifard et al. [45] by employing the PSO

(particle swarm optimization) algorithm. Obviously, a

good agreement is observed between our results and the

results belonging to [45].

3.2 Dual-porosity fractured reservoir

For the dual-porosity model, which comprises both matrix

and fracture systems, a drawdown test is simulated by

using a commercial well-test software and the generated

derivative data are used as a reference for data analysis for

the iterative EnKF algorithm. Fluid and rock data used for

the test simulation are provided in Table 3. In addition, to

make the generated data more realistic, a quartz pressure

Table 1 Fluid and rock data

belonging to the Horne (1995)

real case

U, fraction 0.21

rw, ft 0.401

h, ft 23

ct, psi
-1 8.72 9 10-6

q, STBD 2500

pi, psi 6009

l, cp 0.92

Bo, Rbbl/STB 1.21

Fig. 1 Logarithmic plot of the pressure derivative versus time or the

field case adopted from [68]

Fig. 2 Various realizations of the derivative data generated for the

iterative EnKF method for the data taken from [68]

Neural Comput & Applic (2019) 31:3227–3243 3231

123



gauge is used as the pressure transducer with gauge reso-

lution of 0.01 psi and artificial noise of 0.15 psi is added to

the data. The distorted derivative data are shown in Fig. 6.

The vague at the trough in the derivative data would make

it very difficult for any optimization algorithm to work

because reservoir models with different fracture storativity

ratios, i.e., x, might mathematically match the data. Also,

the distorted data corresponding to the initiation of the last

radial flow from the homogenous system would make it

tedious for the algorithm to accurately adjust the

Fig. 3 PDF (probability distribution function) of the reservoir parameters and the corresponding fitted normal curves for the field data belonging

to [68]

Fig. 4 Average reservoir parameters against iterations for the data taken from [68]
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interporosity flow coefficient with the data. Therefore,

through employing the distorted derivative data the

robustness of the employed EnKF algorithm over the

ambiguous data would be verified.

The amount of the noise included at the pressure-

derivative data was proportional to each data point by the

0.05 9 tdp/dt expression. Again, 200 ensembles were used

within the algorithm and calculations were continued for

50 iterations. Different realizations of the observational

data are depicted graphically in Fig. 7.

Contrary to the homogenous model, because of the

small amounts of the C, k, and x and also the increased

complexity of the problem due to the higher number of

state parameters of the system, the log(X) of the mentioned

Fig. 5 Variance data for each reservoir variable versus iterations for data belonging to [68]

Table 2 Comparison of the results obtained by the iterative ENKF and

the PSO algroithm used by [45] for the homogeneous reservoir model

k, md C, bbl/psi S

Adibifard et al. [45] 87.16 0.0147 7.78

This study 88.4 0.0148 7.91

Table 3 Fluid and rock data for

the simulated drawdown test in

a fractured dual-porosity system

U, fraction 0.1

rw, ft 0.2

h, ft 50

ct, psi
-1 5 9 10-6

q, STBD 500

pi, psi 5000

l, cp 1.0

Bo, Rbbl/STB 1.0

K, md 50

C, bbl/psi 0.001

S - 2

k 8 9 10-6

x 0.1

Fig. 6 Logarithmic plot of derivative data versus well-test time for

the simulated drawdown test belonging to a dual-porosity system
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parameters was used for the calculations to assure spanning

the search space for those small-range parameters. Calcu-

lations were made, and the PDF distribution of the corre-

sponding state parameters is illustrated in Fig. 8.

Convergence of the mean of the parameters is also shown

in Fig. 9. Figures 8 and 9 clearly show that the conver-

gence occurs very fast despite the higher complexity of the

system with the increased number of unknown parameters.

Most notably, the stabilization of the mean happens before

the tenth iteration almost for all of the state parameters

which unveils both the speed and robustness of the

algorithm.

The estimated reservoir parameters that are the mean

parameters at the last iteration are presented in Table 4

along with their corresponding relative error. Accordingly,

the best reservoir model using the distorted derivative data

is illustrated in Fig. 10. The maximum relative error is

below six percent for the estimated parameters, which

ultimately proves the robustness of the developed algo-

rithm at this study in dealing with moderately distorted

noisy data.

Additionally, the meta-heuristic PSO (particle swarm

optimization) algorithm was applied over the tested data

and average of the unknown reservoir parameters and their

variances are plotted versus the iterations in Fig. 11. The

population size and number of iterations for the PSO

algorithm remained the same as the iterative EnKF algo-

rithm for comparison purpose. Evolution of the average

and variance data over time for the PSO algorithm unveils

that this algorithm fails to achieve convergence in the

initial iterations contrary to the iterative EnKF algorithm.

This indeed reveals the high convergence of the iterative

Fig. 7 Different realizations of the measurements by inclusion of the

Gaussian noise for the simulated dual-porosity model

Fig. 8 PDF (probability

distribution function) data

and the corresponding fitted

normal curve for the simulated

dual-porosity model
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EnKF algorithm in comparison with one of the well-known

meta-heuristic optimization algorithms.

3.3 Homogenous reservoir with a single linear fault

To verify the accuracy of the iterative EnKF model over

the faulted reservoirs, another test data are simulated using

a commercial well-test software for an infinite acting

homogenous reservoir with a single linear fault. To make

the data more realistic, an additive noise with an amplitude

of 2.5 psi is added to the simulated data and also the drift

factors of 0.2 psi/day were included into the pressure data.

Fluid and rock data are given in Table 5, and the distorted

pressure-derivative data are plotted in Fig. 12. It clearly

shows that the derivative data are distorted in a manner that

matching process becomes very difficult, especially for a

faulted reservoir model. Hence, this is interesting to study

the accuracy of the iterative EnKF for this challenging

model. For this model, unknown reservoir parameters

include reservoir permeability, wellbore storage coeffi-

cient, skin factor, and the perpendicular distance of the

fault from the well.

The iterative EnKF method is applied over the deriva-

tive data, and the outcomes are provided in Figs. 13, 14

and 15. PDF results at the last iteration are plotted in

Fig. 13, and the results approximately show a normal dis-

tribution for the unknown reservoir parameters. The mean

of the unknown random parameters is provided in Table 6

Fig. 9 Mean of the state

parameters against iterations for

the simulated dual-porosity

model

Table 4 Mean of the reservoir parameters obtained through iterative

EnKF at the last iteration with corresponding relative error values

Parameter EnKF estimation Relative error, %

K, md 49.98 0.04

C, bbl/psi 9.48 9 10-4 5.2

S -1.97 1.5

k 7.56 9 10-6 5.5

x 0.099 1.0

Fig. 10 Obtained graphical match between the best outcome of

the iterative EnKF and real noisy data (dual-porosity system)
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Fig. 11 a Evolution of the

average of the reservoir

parameters and b variance of the

estimated parameters over time

for the simulated dual-porosity

model using the PSO (particle

swarm optimization) algorithm
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along with their corresponding relative error, compared to

the input values provided to the simulator. From the rela-

tive error prospective, the skin factor has the largest esti-

mation error, while the estimation error of the wellbore

storage is approximately zero. The second largest estima-

tion error is the estimation of the well distance from the

fault, i.e., Lf. The reason behind this might be related to the

fact that the skin and Lf are usually highly sensitive to the

level of the noise in the observed well-test data.

The convergence and variance plots in Fig. 14 show that

the method converges very fast. The variance of the esti-

mated unknown parameters rapidly moves toward zero for

all the reservoir parameters. Figure 15 illustrates the esti-

mation of the P10, P50, and P90 for the state parameters of

the system for each iteration. Figure 16 demonstrates the

high-quality match of the estimated reservoir parameters

response to the distorted data and proves the efficiency of

the iterative EnKF method to solve the inverse problems

for the well-test analysis of the reservoirs with linear

discontinuities.

In order to make a comparison between the employed

iterative EnKF method and the PSO optimization algo-

rithm, the PSO algorithm is used to estimate the reservoir

parameters for this case, and evolution of the average

reservoir parameters and their variances are plotted in

Fig. 17. As shown in Fig. 17, the variance of the reservoir

parameters does not exhibit any stabilization toward the

zero horizontal line even after the twentieth iteration. In

Table 5 Fluid and rock data

used to generate the pressure

data for the homogeneous

reservoir with a single fault

U, fraction 0.15

rw, ft 0.25

h, ft 30

ct, psi
-1 5 9 10-6

q, STBD 800

pi, psi 5000

l, cp 1.0

Bo, Rbbl/STB 1.1

K, md 40

C, bbl/psi 0.001

S ? 2

Lf, ft 200

Fig. 12 Generated pressure-derivative data for the homogenous

reservoir with a linear fault discontinuity

Fig. 13 Obtained PDF for the

ensembles at the last

iteration with corresponding

normal curve for the

synthesized homogenous

reservoir with a single fault
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addition, the average of the reservoir parameters shows

some oscillations even after the stabilizations.

4 Conclusion

In this work, we studied the application of the iterative

EnKF as a derivative-free type of optimization algorithm

for inverse problems arises in the well-test analysis. We

used the iterative EnKF method coupled with the Stehfest

numerical Laplace inverse algorithm to estimate the

unknown reservoir parameters. We conducted three dif-

ferent experiments for a homogenous reservoir model,

dual-porosity reservoir model, and a faulted reservoir

model to study the accuracy of the proposed algorithm. For

all these test cases, the iterative EnKF method gives

excellent matches with the true case with a few numbers of

iterations. The key findings of this paper are as follows:

• The convergence behavior of the iterative EnKF for

three different case studies conducted in this work

illustrates a very fast and robust solution to the inverse

problems in the well test. The general convergence

properties of the iterative EnKF have been previously

studied in the literature, both numerically and

analytically.

• In high-dimensional cases, that the complexity of the

inverse problem increases drastically, the iterative

EnKF can give reasonably accurate results with a few

numbers of iterations.

• The variances of the state parameters decrease rapidly

as the number of iterations increases. This holds for

even considerably distorted derivative data, that a large

amount of noise is added to the simulated data. In

contrast, the well-known PSO (particle swarm opti-

mization) algorithm has very low convergence based on

the variance data when it is applied over the simulated

tested data.

• The only drawbacks of the iterative EnKF method may

be the selection of the tuning parameters, i.e., the

variance of the additive noise or the size of ensembles.

Fig. 14 a Average of the

reservoir parameters versus

iteration and b variance of each

parameter against the iteration

3238 Neural Comput & Applic (2019) 31:3227–3243

123



This could be the one possible criterion for future

research to effectively apply this method to solve the

inverse problems in the well-test analysis.

Fig. 15 Evolution of the uncertainty parameters over iterations for the unknown reservoir parameters

Table 6 Estimated reservoir parameters for the homogenous model

with a linear fault and corresponding relative error values

Parameter EnKF estimation Relative error, %

K, md 39.18 2.05

C, bbl/psi 0.001 0

S 1.78 11

Lf, ft 218.23 9.1

Fig. 16 Final match obtained over the derivative data for the

synthesized homogeneous fault model
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Fig. 17 a Evolution of the

average of the reservoir

parameters and b variance of the

estimated parameters over time

for the simulated linear fault

model using the PSO (particle

swarm optimization) algorithm
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Appendix: Well pressure behavior at the Laplace
domain

Solution for the well pressure at the Laplace medium is

provided at this section for different reservoir systems

studied at this paper.

Infinite acting homogenous reservoir [69]

�pwD sð Þ ¼ k0
ffiffi
s

pð Þ þ S
ffiffi
s

p
k1

ffiffi
s

pð Þ
s

ffiffi
s

p
k1

ffiffi
s

pð Þ þ sCD k0
ffiffi
s

pð Þ þ S
ffiffi
s

p
k1

ffiffi
s

pð Þ½ �f g ;

ð15Þ

where S and CD are, respectively, skin factor and the

dimensionless wellbore storage coefficient; s is the Laplace

parameter; k0 and k1 are, respectively, modified Bessel

functions of second type with orders zero and one.

Infinite acting dual-porosity reservoir with PSS

interporosity flow [70, 71]

�pwD sð Þ ¼
k0

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
þ S

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
k1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �

s
ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
k1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
þ sCD½k0

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
þ S

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
k1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
�

� � ;

ð16Þ

where f(s) is defined by the following equation:

f sð Þ ¼ x 1� xð Þsþ k
1� xð Þsþ k

; ð17Þ

x is the fracture storativity ratio and k stands for the

interporosity flow coefficient representing how strong is the

communication between the matrix and the fracture sys-

tem. Other parameters are the same as for Eq. 15.

Infinite acting homogenous reservoir with a linear

fault [72]

�pwD sð Þ ¼ k0
ffiffi
s

pð Þ þ S
ffiffi
s

p
k1

ffiffi
s

pð Þ þ k0 2dD
ffiffi
s

pð Þ
s

ffiffi
s

p
k1

ffiffi
s

pð Þ þ sCD k0
ffiffi
s

pð Þ þ S
ffiffi
s

p
k1

ffiffi
s

pð Þ½ �f g ;

ð18Þ

where dD is the fault dimensionless distance defined by

dD ¼ Lf
rw
.

References

1. Bazargan H, Christie M, Elsheikh AH, Ahmadi M (2015) Sur-

rogate accelerated sampling of reservoir models with complex

structures using sparse polynomial chaos expansion. Adv Water

Resour 86:385–399

2. Sambridge M (1999) Geophysical inversion with a neighbour-

hood algorithm—II. Appraising the ensemble. Geophys J Int

138(3):727–746

3. Poli R, Kennedy J, Blackwell T (2007) Particle swarm opti-

mization. Swarm Intell 1(1):33–57

4. Carter JN, Ballester PJ (2004) A real parameter genetic algorithm

for cluster identification in history matching. In: ECMOR IX-9th

European conference on the mathematics of oil recovery

5. Li R, Reynolds AC, Oliver DS (2001) History matching of three-

phase flow production data. In: SPE reservoir simulation sym-

posium, 2001. Society of Petroleum Engineers

6. Petrovska I, Carter J (2006) Estimation of distribution algorithms

for history matching. In: ECMOR X-10th European conference

on the mathematics of oil recovery

7. Zhang F, Reynolds AC (2002) Optimization algorithms for

automatic history matching of production data. In: ECMOR VIII-

8th European conference on the mathematics of oil recovery

8. Oliver DS, Chen Y (2011) Recent progress on reservoir history

matching: a review. Comput Geosci 15(1):185–221

9. Wu Z (2000) A Newton-Raphson iterative scheme for integrating

multiphase production data into reservoir models. In: SPE/AAPG

Western Regional Meeting, 2000. Society of Petroleum

Engineers

10. Liu N, Oliver DS (2003) Automatic history matching of geologic

facies. In: SPE annual technical conference and exhibition, 2003.

Society of Petroleum Engineers

11. Jaynes ET (2003) Probability theory: the logic of science. Cam-

bridge University Press, Cambridge

12. Evensen G (2009) Data assimilation: the ensemble Kalman filter.

Springer, New York

13. Aanonsen SI, Nævdal G, Oliver DS, Reynolds AC, Vallès B

(2009) The ensemble Kalman filter in reservoir engineering—a

review. Spe J 14(03):393–412

14. De Freitas N, Doucet A, Gordon N (2001) An introduction to

sequential Monte Carlo methods. SMC Practice Springer, New

York

15. Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte

Carlo methods for conditioning a permeability field to pressure

data. Math Geol 29(1):61–91

16. Ma X, Datta-Gupta A, Efendiev Y (2008) A multistage MCMC

method with nonparametric error model for efficient uncertainty

quantification in history matching. In: SPE annual technical

conference and exhibition, 2008. Society of Petroleum Engineers

17. Rahimi Kh, Adibifard M (2014) Experimental study of the

nanoparticles effect on surfactant absorption and oil recovery in

one of the iranian oil reservoirs. Petrol Sci Technol 33(1):79–85

18. Sahimi M (2000) Fractal-wavelet neural-network approach to

characterization and upscaling of fractured reservoirs. Comput

Geosci 26(8):877–905
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