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Abstract Efficient low-rank representation of data plays a

significant role in the field of computer vision and pattern

recognition. In order to obtain a more discriminant and

sparse low-dimensional representation, a novel non-nega-

tive enhanced discriminant matrix factorization method

with sparsity regularization is proposed in this paper.

Firstly, the local invariance and discriminant information

of the low-dimensional representation are incorporated into

the objective function to construct a new within-class

encouragement constraint term, and the weighted coeffi-

cients are introduced to further enhance the compactness

between the samples that belong to the same class in the

new base space. Secondly, a new between-class penalty

term is constructed to maximize the difference between

different classes of samples, and meanwhile, the weighted

coefficients are introduced to further enhance the dis-

creteness and discriminativeness between classes. Finally,

to learn the part-based representation of data better, the

sparse constraint term is further introduced, and conse-

quently, the sparseness of data representation, the local

invariance, and the discriminativeness are integrated into a

unified framework. Moreover, the optimization solution

and the convergence proof of objective function are given.

The extensive experiments demonstrate the strong robust-

ness of the proposed method to face recognition and image

classification under occlusions.

Keywords Non-negative matrix factorization � Face
recognition � Feature extraction � Data representation �
Discriminant information

1 Introduction

Data representation plays a significant role in many pattern

recognition and image processing tasks. A good represen-

tation of data should reveal the latent structure of a dataset

and therefore is used to improve performance and reduce

redundancy. The essence of data representation lies in

finding an appropriate low-rank representation, and matrix

factorization is just one of the most basic tools for this

representation. Most popular matrix factorization methods

include principal component analysis (PCA) [1], linear

discriminant analysis (LDA) [2], and so on, which have

been widely used in the fields of dimensionality reduction

[3–5] and feature extraction [6, 7]. However, the above

methods cannot guarantee the non-negativity of factoriza-

tion results even though all the input data are positive, but

negative values lack explicit physical meaning in some

practical applications. Meanwhile, the data obtained by

above methods do not possess intelligent characteristic that

the whole can be perceived by the parts. Fortunately, non-

negative matrix factorization (NMF) [8] provides a novel

technical way to solve the above problems.

NMF is a matrix decomposition method under non-

negative constraint, which has good data representation
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ability, and can significantly reduce data dimension.

Meanwhile, the factorization characteristic conforms to the

intuitive experience of human visual perception. Further,

factorization results possess strong interpretability and

explicit physical meaning. Based on the above advantages,

NMF method has been successfully used in many appli-

cations, such as dimensionality reduction [9, 10], feature

extraction [11], image processing [12, 13], and face

recognition [14, 15]. However, the sparseness of basic

NMF method is uncontrollable. Moreover, the basic NMF

method fails to take advantage of the latent geometry

structure of data and ignores the discriminant information

of data. Therefore, some improved NMF methods have

been proposed successively.

In order to make the factorization results reflect the local

feature information as much as possible, Li et al. [16]

proposed a local non-negative matrix factorization

(LNMF) method, which can maximize the sparseness of

coefficient matrix and simultaneously make the base matrix

possess more orthogonal and more localized feature rep-

resentation in a simple form. To further precisely control

the sparseness, Hoyer [17] proposed an extended NMF

method by introducing the nonlinear projection operator,

namely NMF with Sparseness Constraints (NMFSC),

which can make both base matrix and coefficient matrix

achieve the desired sparseness. In order to control the

sparseness adaptively, Yang et al. [18] proposed an adap-

tive non-smooth NMF (Ans-NMF) method to learn the

factor matrix S through an adaptive method, which makes

the sparseness of base matrix and coefficient matrix be

controlled separately, and consequently, Ans-NMF obtains

better-localized feature.

The above methods do not take the discriminant infor-

mation of data into account, and accordingly, fail to deal

with the problems of recognition and classification well. To

further introduce discriminant information, Wang et al.

[19] presented the Fisher-NMF (FNMF) by imposing fisher

constraint. Zafeiriou et al. [20] further extended the FNMF

method by adding different divergence terms into the

objective function, so as to obtain the discriminant sub-

space for dealing with the facial expression recognition

problem. Nikitidis et al. [21] utilized within-class multi-

modal distribution of data to divide the data into sub-

classes, and obtained more discriminative projection

representation by introducing the clustering-based dis-

criminant criteria into the objective function. Guan et al.

[22] developed the manifold regularized discriminative

NMF (MD-NMF) by maximizing the margins between

different classes, and successfully improved the perfor-

mance of NMF in face recognition tasks. Lu et al. [23] took

into account the incoherent information of base matrix and

coefficient matrix in basic NMF, and constructed objective

function to enhance the discriminative ability of the learned

base matrix. Meanwhile, the method combined the low-

dimensional representation with the subspace of base

matrix to regularize NMF for the learning of discriminant

subspace. Chen et al. [24] presented a novel supervised and

nonlinear approach to improve the classification perfor-

mance of NMF. By projecting the input data into a

reproducing kernel Hilbert space (RKHS), the nonlinear

relationships between data are mined. At the same time, the

discriminant analysis was utilized to assure the within-class

separation to be small and between-class separation to be

large in the RKHS.

In the above improved NMF algorithms with a certain

degree of discrimination, the relationship between sample

and mean is taken into account, and the within-class and

between-class constraint terms are constructed based on it.

In fact, the within-class constraint terms are not sufficient

to well aggregate all the within-class samples, and the

between-class constraint terms are insufficient to well

separate the similar samples between classes, which tend to

cause confusion. This is especially true when dealing with

the problems of face recognition and image classification

under occlusion. The above analyses show that all of these

methods do not make full use of the similarity between the

samples that belong to the same class and the difference

between different classes of samples.

In order to reveal and utilize the intrinsic geometry

structure of data, GNMF [25], GDNMF [26], LCGNMF

[27], and NLMF [28] methods used the low-dimensional

manifold characteristics of data as a geometric descriptor to

construct the graph Laplacian regularization term, which

improve the performance of image clustering or classifi-

cation. Spatial NMF method [29] automatically learned the

structural features of data as much as possible by intro-

ducing the divergence constraint term. Feng et al. [30]

incorporated a sparse noise term into the objective function

of original NMF, and meanwhile, constructed a locally

weighted sparse graph regularization term to exploit the

local geometric structure information of data.

On the basis of above methods, a novel non-negative

enhanced discriminant matrix factorization method with

sparsity regularization (NEDMF_SR) is presented in this

paper. The main contributions and innovations are sum-

marized as follows: (1) The local invariance and discrim-

inativeness are incorporated into the objective function to

construct a new within-class encouragement constraint

term, which enhances the within-class compactness. (2) A

new between-class penalty term is constructed to maximize

the difference between the samples of any two classes in

the new base space, which further enhances the discrimi-

nativeness. (3) The sparse constraint term is further intro-

duced into the objective function, and consequently, the

sparseness, the local invariance, and the discriminativeness
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are integrated into a unified framework. Meanwhile, the

optimization solution and convergence proof are given.

The subsequent chapters of this paper are organized as

follows. Section 2 briefly reviews the basic discriminant

NMF method. Section 3 presents the NEDMF_SR method

in detail. Section 4 shows the experimental results and

analysis. Section 5 concludes this paper with direction for

future work.

2 Basic NMF method

The basic NMF can be stated in the following manner.

Assuming that there are q non-negative p-dimensional

sample vectors bi ði ¼ 1; 2; . . .; qÞ, which form an original

non-negative matrix B 2 R
p�q
þ of size p� q, then the

approximate non-negative matrix factorization is applied to

matrix B, such that:

B � ZH ð1Þ

where Z 2 R
p�f
þ is the base matrix, and H 2 R

f�q
þ is the

coefficient matrix. f denotes the factorization dimension

and subjects to the condition of f\pq=ðpþ qÞ.
When the Generalized Kullback–Leibler Divergence

(GKLD) is taken as the objective function, NMF can be

transformed into the following constrained optimization

problem [8]:

min
Z;H

DKLðB ZHk Þ ¼
X

i;j
Bi;j log

Bi;jP
l Zi;lHl;j

� Bi;j þ ðZHÞi;j
� �

s: t: Zi;l� 0;Hl;j [ 0; 8i; j; l

8
><

>:

ð2Þ

This problem can be optimized through the multiplica-

tive update algorithm [8], which is simple and able to

achieve good performance, and accordingly, the update

rules for the elements of base matrix and coefficient matrix

can be given by Eqs. (3) and (4), respectively:

Zi;l  
Zi;l
P

j Hl;jBi;j

.
ZHð Þi;j

h i

P
s Hl;s

ð3Þ

Hl;j  
Hl;j

P
i Zi;lBi;j

.
ZHð Þi;j

h i

P
v Zv;l

ð4Þ

3 NEDMF_SR

In this section, the proposed method, i.e., NEDMF_SR, is

introduced. Firstly, the motivation of the proposed method

is given, and then, the within-class compact encouragement

term and the between-class discrete penalty term are

illustrated in detail, both of which are combined with the

sparse constraint terms and incorporated into a joint

framework to obtain the objective function of the

NEDMF_SR method. Subsequently, the update rules and

convergence analysis are presented. Finally, a framework

based on the NEDMF_SR method for joint feature

extraction is given detailedly, as shown in Fig. 1.

3.1 Motivation

NMF aims to search for a set of base vectors that are

utilized to best approximate the raw data. A natural

assumption here could be that if two points bi, bl to be

factorized are adjacent in the intrinsic geometry structure

of data distribution, then the representations of the two

points in regard to the new base space are also adjacent to

each other; similarly, if two points bi, bl are discrete in the

intrinsic geometry of data distribution, then the represen-

tations of the two points in regard to the new base space are

also far away from each other. It is universally acknowl-

edged as the local invariance assumption [31, 32], which

has a significant influence on the progress of various kinds

of algorithms for dimensionality reduction.

Therefore, the within-class compact encouragement

term and the between-class discrete penalty term are pro-

posed to introduce the discriminant information and

intrinsic geometry structure of data effectively, and then,

the two constraints are incorporated into the objective

function of NEDMF_SR, which makes the NEDMF_SR

method learn a more compact and discriminative low-di-

mensional representation.

3.2 Within-class compact encouragement term

In order to make the within-class samples more compact in

the new base space, low-dimensional cohesion degree

between any two within-class samples is fully considered

to construct the within-class constraint term. Meanwhile, to

further aggregate within-class samples, the different

within-class compact weight coefficients are imposed to

form within-class compact encouragement term. The

specific construction steps are as follows:

1. Construction of within-class constraint term

Let gðiÞj denote the representation of the j-th sample for

class i in the new base space, that is, the coefficient vector

for the j-th sample of class i. The within-class cohesion

degree si between gðiÞj is measured by using Euclidean

distance and is calculated as Eq. (5).

si ¼
1

Ni Ni � 1ð Þ
XNi

j 6¼m
gðiÞj � gðiÞm

���
���
2

2
ð5Þ
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where Ni stands for the number of samples belonging to

class i.

Furthermore, the total within-class cohesion degree Sw
of C classes is defined as the within-class constraint term,

which can be obtained by Eq. (6):

Sw ¼
XC

i¼1
si ¼

XC

i¼1

XNi

j 6¼m

1

Ni Ni � 1ð Þ gðiÞj � gðiÞm

���
���
2

2
ð6Þ

2. Construction of within-class compact encouragement

term

Due to the large within-class variation in the same class of

images, the mean of within-class cohesion degree for C

classes, i.e., mean ¼
PC

i¼1 si

.
C, is used as the criterion in

order to aggregate within-class samples better. The larger

the value of si is, the smaller the cohesion degree is.

Therefore, the within-class compact weight coefficient is

imposed on the samples with small cohesion degree, while

the samples with great cohesion degree have no constraint.

Accordingly, the within-class compact weight coefficient

rati of class i is calculated as Eq. (7).

rati ¼
mean

si
; si [ mean

1; si� mean

(
ð7Þ

Then, the proposed within-class compact encourage-

ment term S0w can be given by Eq. (8).

S0w¼
XC

i¼1

XNi

j 6¼m

rati

Ni Ni � 1ð Þ gðiÞj � gðiÞm

���
���
2

2
ð8Þ

3.3 Between-class discrete penalty term

In order to make the between-class samples more discrete

in the new base space, the low-dimensional cohesion

degree between the samples of any two classes is fully

considered to construct the between-class constraint term.

Meanwhile, to further enhance the separability of between-

class samples, the distinct between-class discrete weight

coefficients are imposed on the samples of different classes

to form the between-class discrete penalty term. The

specific construction steps are as follows:

1. Construction of between-class constraint term

Fig. 1 New framework for

joint feature extraction
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Let lðiÞ denote the sample mean for class i in the new base

space, lðiÞ ¼
PNi

j¼1 g
ðiÞ
j

.
Ni, that is, the mean vector of

coefficient vectors gðiÞj for class i. The between-class sep-

aration degree Sb between lðiÞ, namely the between-class

constraint term, is measured by Euclidean distance, and

calculated as Eq. (9).

Sb ¼
1

C C � 1ð Þ
XC

i 6¼j
lðiÞ � lðjÞ
�� ��2

2
ð9Þ

2. Construction of between-class discrete penalty term

Firstly, the similarity between sample means of any two

classes is measured by Eq. (10).

Wi;j ¼ e�
xi�xjk k2

2
r ð10Þ

where Wi;j represents the similarity between class i and

class j, and r is the heat kernel parameter. xi and xj denote

the mean vectors of class i and class j, respectively.

Then, the different between-class discrete weight coef-

ficients W 0i;j are imposed on between-class samples to fur-

ther separate the similar samples among different classes.

The mean Wmean of upper triangular elements in the matrix

W (W 2 RC�C is a symmetric matrix) is used as the cri-

terion, W 0i;j can be constructed by Eq. (11).

W 0i;j ¼
Wi;j; Wi;j�Wmean

0; Wi;j\Wmean

�
ð11Þ

It can be shown that the larger the Wi;j is, that is, the

greater the similarity between classes i and j is, and thus, a

large discrete constraint needs to be imposed on the pair-

wise classes, for simplicity, the value of W 0i;j is assigned to

Wi;j; otherwise, no constraint is imposed, and the value of

W 0i;j is assigned to 0. Finally, the between-class discrete

penalty term S0b can be given by Eq. (12).

S0b ¼
W 0i;j

C C � 1ð Þ
XC

i 6¼j
lðiÞ � lðjÞ
�� ��2

2
ð12Þ

3.4 Sparse regularization term

According to the compressed sensing and sparse coding

theory [33], the underlying assumption of sparse models is

that the input vectors can be reconstructed accurately as a

linear combination of the dictionary atoms only with a

small number of nonzero coefficients. And consequently,

the sparsity enhanced regularizer wðHÞ is used as the

sparse constraint term of coefficient matrix to improve its

ability of sparse representation, and this term can be

defined by Eq. (13).

wðHÞ ¼ k Hk k1 ð13Þ

where k is the sparse parameter, and k[ 0.

3.5 Objective function

According to the motivations presented in the previous

section, the within-class compact encouragement term and

the between-class discrete penalty term are defined, and

meanwhile, the coefficient matrix is required to possess the

ability of sparse representation. And consequently, the

objective function of the proposed NEDMF_SR method

can be given as follows:

min
ZðkÞ;HðkÞ

DNEDMF SR¼
Xn

j

Xmk

i

Bi;jðkÞ log
Bi;jðkÞ

ZðkÞHðkÞð Þi;j
�1

 !
þðZðkÞHðkÞÞi;j

 !

þc
XC

i¼1

XNi

j6¼m

rati

Ni Ni�1ð Þ gðiÞj ðkÞ�gðiÞm ðkÞ
���

���
2

2

�d 1

C C�1ð Þ
XC

i 6¼j
W 0i;jðkÞ lðiÞðkÞ�lðjÞðkÞ

�� ��2
2
þk HðkÞk k1

¼DKLþcS0wðkÞ�dS0bðkÞþk HðkÞk k1
s:t: BðkÞ2Rmk�n

þ ;ZðkÞ2Rmk�fk
þ ;

HðkÞ2Rfk�n
þ ;fk\\min mk;nð Þ;k2½1;K�

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð14Þ

In practice, when dealing with image recognition prob-

lems, it is usually necessary to be blocked. Where k denotes

the k-th module, k 2 ½1;K�; K represents the total number

of blocks; BðkÞ is the matrix consisting of all the k-th

modules; gðiÞj ðkÞ ¼ HsðkÞ, s ¼ Niði� 1Þ þ j, j 2 ½1;Ni�,
HsðkÞ denotes the s-th column of coefficient matrix HðkÞ, c
is the regulation parameter of within-class compact

encouragement term, d represents the regulation parameter

of between-class discrete penalty term, k denotes the

sparseness control parameter for coefficient matrix.

3.6 Update rules

The objective function of the proposed NEDMF_SR

method is non-convex with respect to both of the variables

ZðkÞ and HðkÞ together, and thus, it seems to be impossible

to search the global minimum of DNEDMF SR, and conse-

quently, the iteration rule is utilized to obtain the local

minimum. Let G be the auxiliary function for DNEDMF SR

and is defined by Eq. (15).
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GðHðkÞ;HðtÞðkÞÞ ¼
X

i;j

Bi;jðkÞ logBi;jðkÞ � Bi;jðkÞ
� �

�
X

i;j

Bi;jðkÞ
X

m

am logðZi;mðkÞHm;jðkÞÞ � log am
� �

þ
X

i;j;m

Zi;mðkÞHm;jðkÞþc
XC

i¼1

XNi

j6¼m

rati

Ni Ni � 1ð Þ gðiÞj ðkÞ � gðiÞm ðkÞ
���

���
2

2

� d
C C � 1ð Þ

XC

i6¼j
W 0i;jðkÞ lðiÞðkÞ � lðjÞðkÞ

�� ��2
2
þ k

X

i;j

Hi;jðkÞ

ð15Þ

where am ¼ Zi;mðkÞHðtÞm;jðkÞ
.P

m Zi;mðkÞHðtÞm;jðkÞ.
In order to search for the local minimum of DNEDMF SR,

the partial derivative of each term in auxiliary function G

with respect to HðkÞ is calculated, respectively, and let

oGðHðkÞ;HðtÞðkÞÞ
�
oHm;lðkÞ ¼ 0. Let Hm;lðkÞ denote the

m-th element of the q-th sample vector of class r, and thus

Hm;lðkÞ ¼ gðrÞq;mðkÞ. To simplify the calculation, the partial

derivative of the fourth term in Eq. (15) is firstly calculated

by Eq. (16).

oS0wðkÞ
ogðrÞq;mðkÞ

¼
o
PC

i¼1
PNi

j 6¼l
rati

Ni Ni�1ð Þ gðiÞj ðkÞ � gðiÞl ðkÞ
���

���
2

2

og rð Þ
q;mðkÞ

¼
o
P

n

PC
i¼1
PNi

j 6¼l
rati

Ni Ni�1ð Þ gðiÞj;nðkÞ � gðiÞl;nðkÞ
	 
2

ogðrÞq;mðkÞ

¼ �
XNr

j¼1

ratr

Nr Nr � 1ð Þ 2 gðrÞj;mðkÞ � gðrÞq;mðkÞ
	 


þ
XNr

l¼1

ratr

Nr Nr � 1ð Þ 2 gðrÞq;mðkÞ � gðrÞl;mðkÞ
	 


¼ 4
XNr

l¼1

ratr

Nr Nr � 1ð Þ g
ðrÞ
q;mðkÞ � 4

XNr

j¼1

ratr

Nr Nr � 1ð Þ g
ðrÞ
j;mðkÞ

¼ 4ratr

Nr � 1
gðrÞq;mðkÞ � lðrÞm ðkÞ
	 


ð16Þ

Then, the partial derivative of the fifth term in Eq. (15)

is calculated by Eq. (17).

oS0bðkÞ
ogðrÞq;mðkÞ

¼ d
C C � 1ð Þ

o
PC

i 6¼j
W 0i;jðkÞ lðiÞðkÞ � lðjÞðkÞ

�� ��2
2

ogðrÞq;mðkÞ

¼ d
C C � 1ð Þ

o
P
n

PC

i6¼j
lðiÞn ðkÞ � lðjÞn kð Þ
	 
2

W 0i;jðkÞ

ogðrÞq;mðkÞ

¼ d
C C � 1ð Þ

XC

i 6¼r
2 lðiÞm ðkÞ � lðrÞm ðkÞ
	 
�1

Nr

W 0i;rðkÞ
 

þ
XC

j 6¼r
2 lðrÞm ðkÞ � lðjÞm ðkÞ
	 
 1

Nr

W 0r;jðkÞ
!

¼ 4d
NrC C � 1ð Þ

XC

i 6¼r
lðrÞm ðkÞ � lðiÞm ðkÞ
	 


W 0i;rðkÞ

ð17Þ

Integrating the above two terms, Eq. (18) is derived by

setting oGðHðkÞ;HðtÞðkÞÞ
�
oHm;lðkÞ ¼ 0.

oGðHðkÞ;HðtÞðkÞÞ
oHm;lðkÞ

¼ �
X

i
Bi;lðkÞ

Zi;mðkÞHðtÞm;lðkÞ
P

n Zi;nðkÞH
ðtÞ
n;lðkÞ

1

Hm;lðkÞ

þ
X

i
Zi;mðkÞ þ

4ratrc
Nr � 1

Hm;lðkÞ � lðrÞm ðkÞ
	 


�
4dW 0i;r kð Þ

NrC C � 1ð Þ
XC

i6¼r
lðrÞm ðkÞ � lðiÞm ðkÞ
	 


þ k ¼ 0

ð18Þ

It can be seen that Eq. (18) is a quadratic equation of

Hm;lðkÞ, and then, both sides of the equation are simulta-

neously multiplied by Hm;lðkÞ to obtain the following

expanded equation.

�
X

i
B

i;l
ðkÞ

Zi;mðkÞHðtÞm;lðkÞ
P

n Zi;nðkÞH
ðtÞ
n;lðkÞ

þ kþ 1ð Þ � 4ratrc
Nr � 1

þ 4d
NrC C � 1ð Þ

XC

i6¼r
W 0i;rðkÞ

 ! 

� 1

Nr

X
a 6¼l Hm;aðkÞ

þ 4d
NrC C � 1ð Þ

XC

i 6¼r
W 0i;rðkÞlðiÞm ðkÞ

!
Hm;l kð Þ

þ 4ratrc
Nr � 1

� 4ratrc
Nr � 1

þ 4d
NrC C � 1ð Þ

XC

i6¼r
W 0i;rðkÞ

 !
1

Nr

 !

H2
m;lðkÞ ¼ 0

ð19Þ

By solving the above quadratic equation, the following

iterative rule can be derived as shown in Eq. (20).

H
ðtþ1Þ
m;l ðkÞ

¼
Tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þ16 ratrc

Nr
� d

N2
r C C�1ð Þ

PC
i6¼rW

0
i;rðkÞ
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where T ¼ 4ratrc
Nr�1 þ
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i;r kð Þl ið Þ

m kð Þ
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The iteration rule for base matrix is the same as in NMF

[8] and is shown as in Eq. (21).

Z
ðtþ1Þ
i;m ðkÞ ¼ Z

ðtÞ
i;mðkÞ

P
j H
ðtþ1Þ
m;j ðkÞBi;jðkÞ

.P
n Z
ðtÞ
i;n ðkÞH

ðtþ1Þ
n;j ðkÞ

P
j H
ðtþ1Þ
m;j ðkÞ

ð21Þ

Regarding the iteration rules of Eqs. (20) and (21), the

following Theorem 1 holds. Theorem 1 shows that the

update rules of ZðkÞ and HðkÞ will converge to the local

optimum eventually. Note: A detailed proof of Theorem 1

is given in the ‘‘Appendix’’.

Theorem 1 The objective function

DNEDMF SRðBðkÞjjZðkÞHðkÞÞ in Eq. (14) is nonincreasing

under the update rules in Eqs. (20) and (21).

3.7 NEDMF_SR for image classification

and recognition

In this section, the proposed NEDMF_SR method is utilized

to deal with the practical problems of occluded image clas-

sification and recognition. In fact, these problems could be

effectively handled by applying the modular representation

approach [34]. In the proposed modular schemes, the

occluded image is equally divided into many modules, each

of which is processed independently, and the information

from all the modules is further fused to make the final

determination. On this basis, a quite simple and efficient

fusion strategy is introduced, which significantly weaken the

influence of occluded modules and improve the image

recognition accuracy. This strategy constructs two kinds of

classifiers, including the local classifier and the global clas-

sifier, and the specific construction steps are as follows.

1. Construction of local classifier

(a) Modular processing of images. For the training

dataset, all the images of size 1� s are equally divided

into K non-overlapping modules and are expressed as

K corresponding matrices. Then, the k-th matrix of the

j-th image is transposed and arranged sequentially

column by column to form the mk-dimensional column

vector bjðkÞ, where mk ¼ ð1� sÞ=K and k ¼
1; 2; . . .;K.
(b) Construction of modular matrix. All the column

vectors of the k-th module corresponding to n images

are arranged by column to form the training matrix

BðkÞ ¼ ½b1ðkÞ; b2ðkÞ; . . .; bnðkÞ� of the k-th module.

The same procedure is conducted on the images in

testing set to obtain matrix VðkÞ ¼ ½v1ðkÞ;
v2ðkÞ; . . .; vgðkÞ�, where g is the number of testing

samples.

(c) Projection processing. The projection coefficient

vector ĥjðkÞ 2 R
fk
þ of vjðkÞ can be obtained by project-

ing the testing data vjðkÞ 2 Rmk
þ ; j ¼ 1; 2; . . .; g on the

base matrix ZðkÞ, and the projection way is defined as

ĥjðkÞ ¼ ZðkÞð ÞyvjðkÞ ¼ ZðkÞð ÞTZðkÞ
� ��1

ZðkÞð ÞTvjðkÞ,
where y denotes the pseudo inversion of matrix.

(d) Design of measure criteria. K nearest neighbor

(NN) classifiers are constructed as the local classifiers,

and the measure criterion of each classifier is defined

as follows:

Classifier 1 : d1jn ¼ ĥjð1Þ � hnð1Þ
�� ��

2

Classifier 2 : d2jn ¼ ĥjð2Þ � hnð2Þ
�� ��

2

..

.

Classifier K : dKjn ¼ ĥjðKÞ � hnðKÞ
�� ��

2

ð22Þ

where dijn denotes the low-dimensional Euclidean dis-

tance between the i-th module of testing sample vj and

of the training sample vn.

2. Construction of global classifier

In fact, the contribution degree of each local feature to

global recognition is different, and the complementary

information among all local features is neglected in the

training process of each local classifier. It is inevitable to

get low recognition accuracy if the local classifiers are

directly used for image classification. Therefore, it is

indispensable to further construct the global classifier. The

different contribution degree of each module feature to

recognition is fully considered, and then, the local classi-

fiers are combined in the linearly weighted way and

assigned to the different weight coefficients based on dis-

criminability, which weakens the role of occluded modules

effectively, and consequently, the classification accuracy is

improved. The linear weight coefficient ak of the k - th

local classifier can be calculated by Eq. (23).

ak ¼
nkPK
j¼1 nj

ð23Þ

where nk denotes the recognition accuracy of the k - th

local classifier. The discriminability of classifier can be

measured by ak. The greater the ak is, the better the dis-

criminability is.

The measure criterion of global classifier is defined as

Eq. (24).
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djn ¼ a1 ĥjð1Þ � hnð1Þ
�� ��

2
þa2 ĥjð2Þ � hnð2Þ

�� ��
2

þ � � � þ aK ĥjðKÞ � hnðKÞ
�� ��

2

¼

a1ĥjð1Þ

a2ĥjð2Þ

..

.

aK ĥjðKÞ

0

BBBBBBB@

1

CCCCCCCA

�

a1hnð1Þ

a2hnð2Þ

..

.

aKhnðKÞ

0

BBBBBB@

1

CCCCCCA

�������������

�������������
2

¼ ĥj � hn
�� ��

2

s:t: a1; a2; . . .; aK 2 0; 1½ �;
XK

i¼1 ai ¼ 1

ð24Þ

where djn denotes the low-dimensional Euclidean distance

between the testing sample vj and the training sample vn. It

is observed that the global classifier takes full advantage of

the correlation and information complementarity among all

modules, which weakens the adverse effects of continuous

occlusions on fusion recognition, and makes the

NEDMF_SR possess better adaptability and strong

robustness to the occluded image classification and

recognition.

3. Algorithm 1 Image recognition based on NEDMF_SR

4 Experiments and analysis

In this section, by comparing with nine representative

algorithms on six different types of image databases, the

effectiveness of the proposed NEDMF_SR method is

evaluated. And five experiments including parameter

selection, weight coefficient selection, convergence study,

basis image visualization, and occluded image recognition

Algorithm 1 Image recognition based on NEDMF_SR

Input: Training modular matrices ( ) km nk RB ×
+∈ , testing modular matrices ( )kV , 1,2, ,k K= .

1 Factorize ( )kB to obtain ( ) k km fk R+Z ×∈ and ( ) kf nk R+H ×∈ by NEDMF_SR.

2 Calculate the projection coefficient vector ( )( ) ( )
1ˆ ( ) ( ) ( ) ( ) ( )TT

jj k k k k kh Z Z Z v
−

= .

3 Calculate the recognition accuracies of local classifiers.

4 for 1:k K=

5 for 1:j g=

6 1) Calculate the distances between ( )j kv and the -thk module of any training sample: 1,..., ,...,k k k
j j jnd d dξ , and 

compose vector 1=[ ,..., ,..., ]k k k k
j j jnd d dξd .

7 2) Search for the subscript ξ of training sample corresponding to the minimum in kd : = arg min k
ξξ d .

8 3) Determine the label of testing sample jv : identity( ) identity( )jv bξ= .

9 end.

10 4) Obtain the recognition accuracy kn of the -thk local classifier.

11 end.

12 Obtain the recognition accuracy vector 1 2[ , ,..., ]Kn n nn = and the normalized vector 1 2[ , ,..., ]norm Kn α α α= .

13 Determine the final class label of jv .

14 1) Calculate the distances between ( )j kv and any training sample: 1,..., ,...,j j jnd d dξ , and compose vector 

1=[ ,..., ,..., ]j j jnd d dξd .

15 2) Search for the subscript ξ of training sample corresponding to the minimum in d : = arg minξξ d .

Output: Labels of testing samples jv : identity( ) identity( )j ξ=v b , 1,2, ,j g= .
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are conducted. Firstly, the database introduction is given as

follows, and then, the experimental results are presented.

4.1 Databases introduction

Six common databases selected for our experiments

include AR [35], ORL [36], Yale [37], CMU PIE [38],

COIL20 [25], and MNIST databases (http://www.cad.zju.

edu.cn/home/dengcai/Data/MLData.html). Figure 2 shows

the example images of these databases.

1. AR face image database: The database includes over

4000 facial images with the resolution of 768� 576,

corresponding to 126 individuals (70 males and 56

females). All these images feature frontal view faces

with no restriction on facial expressions, illuminations,

facial disguises (sun glasses or scarf), make up, hair

styles, etc. In the experiments of this paper, a subset of

AR face image database provided by Martinez is

chosen, which consists of 2600 images corresponding

to the faces of 100 individuals (50 men and 50

women). For each subject, 26 images were taken with

different illuminations, facial expressions, and occlu-

sions, as shown in Fig. 2a.

2. ORL face image database: The database contains 400

facial images of 40 individuals (10 samples per

subject). The facial images of some individuals vary

in times, lighting, facial expressions (open or closed

eyes and smiling or not smiling) and facial disguises

(with or without glasses), as shown in Fig. 2b.

3. Yale face image database: The database is composed

of 165 gray scale images corresponding to 15 adults.

For each individual, 11 images were taken with

varying illumination conditions and facial expressions

(normal, happy, sad, surprised, sleepy, and winking),

as shown in Fig. 2c.

4. CMU PIE face image database: The database is

composed of 41,368 color, face images of 640� 480

pixels in size captured from 68 subjects across 13

different head poses, under 43 varying illumination

conditions, and with four distinct expressions. Since

the experiment aims to demonstrate the effects of

illumination changes, frontal images chosen from the

illumination subset in the CMU PIE dataset are utilized

for further analyses. This subset consists of 49 images

per individual taken under different illuminations,

which is shown in Fig. 2d.

5. COIL20 image database: The database contains 20

objects and each object contains 72 images, which

were taken at different degrees with intervals of 5	, as
shown in Fig. 2e.

6. MNIST image database: The database is comprised of

totally 4000 digit images from 0 to 9 and is equally

divided into training set and testing set. Each image is

28� 28 pixels in size, as shown in Fig. 2f.

In order to decrease the memory consumption, and

improve the computational efficiency, each image in AR,

ORL, Yale, CMU PIE, and COIL20 databases is uniformly

resized to obtain a 256 gray-level image of size 60� 60

pixels before experiments, while images in MNIST data-

base are resized to 256 gray-level images of size 30� 30

pixels because of the relatively low resolution. In the

experiments, the nearest neighbor (NN) classifiers are

adopted for both the local classifier and the global classi-

fier, and the image recognition accuracy is calculated by

Eq. (25). Moreover, image classification accuracies are

also calculated with different proportions of the labeled

data and modular schemes.

RecAccuracy ¼ Cor

g
� 100% ð25Þ

where Cor denotes the number of correctly classified testing

samples, and g denotes the total number of testing samples.

In the following experiments of Sects. 4.2 to 4.5, for the

sake of facilitating understanding, only the case that each

image is equally divided into three blocks is used as an

example to show the experimental results for the optimal

selection of the parameters c, d, and k. In fact, the exper-

iments with multiple image modular schemes and a sub-

sequent series of experiments on occluded recognition fully

show that optimal parameter selection results with the tri-

section partition scheme could be applied to other modular

schemes as well. Moreover, the experimental results for

Fig. 2 Example images of 6 databases

Neural Comput & Applic (2019) 31:3117–3140 3125

123

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html


five kinds of modular schemes are shown in the following

Sects. 4.6 and 4.7. All the experiments of this paper are

repeated 10 times independently, and the corresponding

average values are recorded as the final results. Besides, the

software environment of experiments is Matlab R2012a.

4.2 Experiments on parameter selection

In this section, the selections of c, d, and k are investigated

to indicate their importance for image recognition. The

setting of relevant experiment parameters is as follows: c
and d are set by searching the grid f10�3; 10�2; 10�1;
1 ; 10g, k searches the grid f10�3; 10�2; 10�1; 1 ;
10 ; 102g. The dimension of non-negative matrix factor-

ization for AR and CMU PIE databases is set as f ¼ 60,

while f ¼ 15 for the three databases ORL, Yale, and

COIL20, and f ¼ 10 for MNIST database. One of the

modular schemes, that is, each image is equally divided

into three non-overlapping modules from top to bottom, is

used as an example to show the optimization results of

parameters.

The partitions of relative experiment databases are as

follows. (1) AR database: For each subject, 6 non-occluded

images are randomly selected as the training set; 6 images

occluded by sunglasses are taken as the eye testing set,

which is recorded as AR eye, as shown in Fig. 3a; and 6

images occluded by scarves are taken as the mouth testing

set, which is recorded as AR mouth, as shown in Fig. 3b;

(2) ORL, Yale, and COIL20 databases: 6 images of each

subject are randomly chosen as the training set, and the rest

images with 30% occlusions added artificially are taken as

the testing set, as shown in Fig. 3c–e, respectively; (3)

CMU PIE database: 24 images of each subject are ran-

domly selected as the training set, and the rest images with

30% occlusions added artificially are taken as the testing

set, as shown in Fig. 3f; (4) MNIST database: 40 images of

each class are randomly selected as the training set, and the

images with 30% occlusions added artificially in the

original testing set are taken as the testing set, as shown in

Fig. 3g.

4.2.1 Parameter selection for c and d

In this section, the selections of c and d used in Sect. 3.4

are investigated to indicate their importance for image

recognition. Specifically, k is set as 0.1, while d and c are

set by searching the grid f10�3; 10�2; 10�1; 1 ; 10g. Fig-
ure 4 shows the occluded image classification accuracy of

the proposed NEDMF_SR on different databases.

It can be seen from Fig. 4 that the image recognition

accuracies with the proposed NEDMF_SR remain to be

comparatively stable in regard to d 2 ½0:001 ; 0:1� and
c 2 ½0:1 ; 10�. Furthermore, the ranges of d and c are

slightly different among various databases and could be

optimized according to actual situation.

4.2.2 Parameter selection for k

In this section, the selection of k used in Sect. 3.4 is

evaluated to indicate its importance for image recognition.

Specifically, d and c are fixed at 0.001 and 0.1, and k is

set by searching the grid f10�3; 10�2; 10�1; 1; 10; 102g.
Figure 5 shows the occluded image classification accura-

cies of the proposed NEDMF_SR method on different

databases.

It can be observed from Fig. 5 that the image recogni-

tion accuracies of the proposed NEDMF_SR are relatively

stable with respect to k 2 ½0:001 ; 1�, and consequently, k
is fixed at 0.1 in all the subsequent experiments of this

paper.

4.3 Experiments on convergence study

In this paper, the iterative update rules are adopted to

determine the local optimum of objective function for the

NEDMF_SR, and the convergence proof of iteration rules

is given in the ‘‘Appendix’’. Here, the convergence of the

Fig. 3 Examples of testing sets for 6 databases
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proposed NEDMF_SR method is shown through experi-

ment, and the convergence speed comparison between the

original NMF and the proposed NEDMF_SR is given.

Figure 6 shows the convergence of each module

obtained by trisecting the original image, where the x-axis

denotes the iteration number and the y-axis denotes the

value of objective function.

It can be seen from Fig. 6 that the proposed

NEDMF_SR method has already converged within 20

iterations on ORL, COIL20, and MNNIST databases and

40 iterations on AR database. However, the original NMF

will not converge until 200 iterations on all the four data-

bases. In conclusion, the convergence speed of the

NEDMF_SR method is superior to that of NMF method.

4.4 Experiments on base visualization

The training set is used to learn base applied for base

visualization, and the setting of which is the same as in

Sect. 4.2. Figures 7, 8, 9 and 10 present the resulting fea-

ture base components of NMF [8], DNMF [20], NDMF

[23], SKNMF [24], GDNMF [26], LWSG_NMF [30],

Fig. 4 Recognition accuracies of NEDMF_SR versus d and c on different databases

Fig. 5 Recognition accuracy of

NEDMF_SR versus k
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RPCA_OM [39], Ans-NMF [18], and the proposed

NEDMF_SR for 24-dimensional subspace. Here, the con-

trastive method RPCA_OM introduces ‘2;1-norm and mean

matrix into the objective function, which enhances the

robustness to occlusion and improves the face recognition

rate. In this experiment, the parameter c is suggested with

the scale of m1=2 (m is the dimension of matrix Z).

Meanwhile, RPCA_OM is firstly utilized to reduce the

dimension by keeping 95% data energy, and then, the first

24 basis images are selected to conduct visualization.

From the basis images learned from different methods, it

can be found that: (1) The bases of NMF, DNMF, NDMF,

SKNMF, GDNMF, LWSG_NMF, RPCA_OM, and Ans-

NMF are all less sparse than those of the proposed

NEDMF_SR; (2) The NEDMF_SR is capable of learning

localized regions and possesses higher parts-based learning

ability. The main reason lies in that NEDMF_SR applies

modular representation approach and adds ‘1-norm into the

objective function, which can obtain stronger parts-based

representation ability, and meanwhile learn discriminant

characteristics of each image region (such as hairline and

eyes) independently.

4.5 Experiments of weight coefficient learning

The theoretical analysis of weight coefficients for global

classifier is conducted in Sect. 3.6, and the optimization

analysis of them is mainly presented in this section. The

experiments are performed on six databases, respectively,

and the experiment setups are the same as those in

Sect. 4.1. Taking one of the modular schemes that each

image is equally divided into three non-overlapping local

Fig. 6 Convergence of NEDMF_SR-1, NEDMF_SR-2, NEDMF_SR-3, and NMF on different databases. NEDMF_SR-i denotes that the

proposed NEDMF_SR algorithm is applied on the i-th module
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Fig. 7 Base vectors learned from AR database

Fig. 8 Base vectors learned from ORL database

Fig. 9 Base vectors learned from COIL20 database
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modules from top to bottom as an example, Tables 1, 2, 3,

and 4 show the learning results.

Actually, for frontal face recognition, the hairline, facial

outline, and mouth are more important than nose among

the salient facial features; moreover, features of the upper

part are more useful than those of the lower part. As a

consequence, in the case of eyes occlusion, larger weights

should be assigned to the first and third modules, and the

weight of the first module should be slightly larger than

that of the third module, that is a1 and a3 should be larger

than a2; furthermore, a1 should be slightly larger than a3.
Meanwhile, Table 1 shows that the best combination of

weight coefficients is a1¼ 0:46, a2¼ 0:13, and a3¼ 0:41,

which is completely in accordance with the analysis.

Therefore, the optimization result is reasonable. The above

experimental results demonstrate that the proposed method

can automatically assign smaller weights to occlusion

regions and greater weights to occlusion-free regions,

which reduces the effects of occlusion region on image

classification, and consequently, the method has strong

robustness to occlusion. Likewise, the optimization analy-

ses with mouth occlusion and random occlusion are able to

be analyzed. In addition, from Tables 1, 2, 3, and 4, it can

be seen that the global classification results of the proposed

NEDMF_SR method in six databases all have different

degrees of improvement compared with the best local ones,

which validates that the proposed global classifier makes

full use of the discriminative features of each module,

Fig. 10 Base vectors learned from MNIST database

Table 1 Results of weight coefficient learning with NEDMF_SR on AR database (%)

The k-th module,

k ¼ 1; 2; 3
Sunglasses occlusion Scarf occlusion

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

1 96.00 0.46 98.50 87.00 0.58 93.83

2 27.83 0.13 61.67 0.41

3 84.33 0.41 2.17 0.01

Table 2 Results of weight coefficient learning with NEDMF_SR on ORL and Yale databases (%)

The k-th module,

k ¼ 1; 2; 3
ORL database Yale database

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

1 84.37 0.52 91.87 81.33 0.46 86.67

2 76.87 0.47 85.33 0.48

3 1.87 0.01 10.67 0.06
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assigns corresponding weight according to its contribution,

and consequently, becomes an enhanced discriminant

classifier.

4.6 Experiments on occluded face recognition

In many actual face recognition circumstances, the testing

image may suffer from partial corruption or occlusions.

Thus, the robustness of the proposed NEDMF_SR method

to different kinds of occlusions, such as real disguise and

varying degrees of random block occlusion, is tested in this

section.

4.6.1 Real-world malicious occlusion

The face recognition experiments under real-world mali-

cious occlusion are conducted using the proposed

NEDMF_SR method in this part. A subset chosen from the

AR database is utilized to conduct this experiment. The

subset includes 2600 images from 100 individuals (26

samples per class), namely 50 men and 50 women.

Experiments are carried out in two cases: image with scarf

or sunglasses occlusions.

1. Sunglasses occlusion

In this experiment, for each subject, 4, 5, 6, and 7 non-

occluded frontal view facial expression images are ran-

domly selected as the training set, and 600 images (6

samples per person) with sunglasses occlusion are used as

the testing set. One of the modular schemes, that is, each

facial image is equally divided into three non-overlapping

modules from top to bottom, is taken as an example. Here,

RPCA_OM is firstly utilized to reduce the dimension by

keeping 95% data energy, and the dimensionality of RSSL

[40] is f ¼ 5� ðt� 1Þ=5b c, where f is the number of

concepts. Each experiment is, respectively, repeated 10

times, and the average accuracy is reported. Figure 11

Table 3 Results of weight coefficient learning with NEDMF_SR on CMU PIE and COIL20 databases (%)

The k-th module,

k ¼ 1; 2; 3
CMU PIE database COIL20 database

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

Local recognition

accuracy

Weight coefficient

ak 2 ½0; 1�
Global

recognition

accuracy

1 58.45 0.49 62.68 80.38 0.48 82.96

2 57.47 0.48 78.18 0.46

3 2.57 0.03 9.09 0.06

Table 4 Results of weight coefficient learning with NEDMF_SR on MNIST database (%)

The k-th module, k ¼ 1; 2; 3 MNIST database

Local recognition accuracy Weight coefficient ak 2 ½0; 1� Global recognition accuracy

1 54.7 0.43 66.5

2 61.0 0.49

3 10.0 0.08

Fig. 11 Recognition rates under sunglasses occlusion versus dimensions on AR database with N images per individual randomly selected for

training
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shows the variations of average accuracies with the

reduction of subspace dimensions.

It can be observed that the face recognition performance

of the proposed NEDMF_SR method outperforms all the

contrastive methods, which indicates that NEDMF_SR is

able to learn a more effective data representation, and

therefore shows stronger robustness to occlusion. Further-

more, it can also be seen that the recognition accuracy of

the proposed NEDMF_SR method steadily improves as the

proportion of the labeled data increases.

In order to further analyze the influence of different

modular schemes on the recognition accuracy of the pro-

posed NEDMF_SR method, the corresponding experi-

mental results are given below, respectively. For different

values of K, the maximum of feature dimensions is kept at

about 240. Figure 12 shows the average recognition accu-

racies versus the feature dimensions with respect to dif-

ferent values of K.

It can be seen that: (1) The image recognition accuracy

of the proposed NEDMF_SR method improves stably with

increasing number of modules. Through analysis, the rea-

sons are that the more the number of modules is, the finer

the block division is, and the more discriminative local

feature the proposed method can capture. Meanwhile, the

increase of module number is beneficial to the separation of

occlusion regions, and the occlusion regions are assigned to

the smaller weights, which alleviates the passive impacts of

occlusion on face recognition and improves the robustness

to occlusion. In addition, the information complementarity

among different modules is utilized. All of these improve

the recognition accuracy. (2) When N ¼ 7, the recognition

accuracy reaches the highest value with the proposed

method, that is, the recognition accuracy steadily improves

as the number of training samples increases, which is

consistent with the conclusion drawn from Fig. 12.

2. Scarf occlusion

The experiments of this part aim to conduct the face

recognition experiments with more complex and larger

area of occlusion. For each individual, 4, 5, 6, and 7 non-

occluded frontal view facial expression images are ran-

domly chosen as the training set, and 600 images (6 sam-

ples per subject) under scarf occlusion (more complex and

larger area of occlusion) are used for testing. The same

trisection partition scheme is taken as an example. Fig-

ure 13 shows the variations of average accuracies with the

feature dimensions.

It can be seen that the proposed NEDMF_SR method

achieves the best performance, and the average recognition

accuracy reaches up to 87.98% and the highest up to

93.83% when N ¼ 7, which further demonstrates the

robustness of our method to large area of occlusion. In

addition, the performance of the proposed method steadily

improves as the number of training samples increases,

which is entirely consistent with the experiment conclusion

in Sect. 4.6.1.

To further analyze the impact of different modular

schemes on the recognition accuracy of the proposed

Fig. 12 Recognition accuracies under sunglasses occlusion versus dimensions on AR database with K modules

Fig. 13 Recognition accuracies under scarf occlusion versus dimensions on AR database with N images per individual randomly selected for

training
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NEDMF_SR method, similar to the experiment under

sunglasses occlusion, the average recognition accuracies

versus the feature dimensions are given, respectively, for

different K, as shown in Fig. 14. It can be seen that the

recognition accuracy of the proposed NEDMF_SR method

presents a growth tendency with the increase of K, which is

the same as the conclusion drawn from the experiment

under sunglasses occlusion.

4.6.2 Contiguous occlusions of random block

This experiment aims to evaluate the robustness of the

NEDMF_SR method to random occlusion. Experimental

data are, respectively, chosen from ORL, Yale, and CMU

PIE databases. In the first setting, 10–70% areas of face

images are partially occluded, as illustrated in Fig. 15(1).

In the second setting, the face images are randomly

occluded by a pixel block of size 6� 6 to 42� 42, at

intervals of 6� 6 pixels, as illustrated in Fig. 15(2). The

database partitions in relevant experiments: (1) ORL

database: 4, 5, 6, and 7 non-occluded images are randomly

chosen as the training set for each individual, and the rest

with artificially added occlusions are used for testing; (2)

Yale database: 5, 6, 7, and 8 non-occluded images are

taken as the training set, and the rest are for testing; (3)

CMU PIE database: 12, 16, 20, and 24 non-occluded

images are used as the training set for each individual, and

the rest are for testing.

Fig. 14 Recognition accuracies under scarf occlusion versus dimensions on AR database with K modules

Fig. 15 Examples of partial occlusion. (1) Facial images with 10–70% partial occlusion areas. (2) Facial images with 6� 6 to 42� 42 pixels of

random block occlusion areas

Fig. 16 Recognition comparison with different occlusion degree and N on ORL database
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1. Faces with 10–70% partial occlusion areas

Figure 16 compares the average recognition accuracies of

different methods with varying degrees of partial occlusion

on ORL database. Meanwhile, the face recognition results

of NEDMF_SR with five different modular schemes

(K ¼ 3; 4; 9; 16; 25) are given simultaneously. Specifically,

the variation range of feature dimension is set as [8:2:32]

when K ¼ 3; subsequently, [3:2:25] when K ¼ 4; [2:2:11]

when K ¼ 9; [2:1:6] when K ¼ 16; and [2:1:4] when

K ¼ 25. In order to make fair comparison, the variation

ranges of feature dimension for other methods are all set as

[24:6:96]. Besides the feature dimension of RPCA_OM is

set to 50.

It can be observed from Fig. 16 that: (1) The perfor-

mance decreases slowly in a large range of 10–60%

occlusion using the proposed NEDMF_SR method while

drops dramatically in a slight range of 10–20% occlusion

using other NMF methods. (2) To our relief, when 50% of

faces are maliciously occluded, the face recognition accu-

racies of NEDMF_SR are always maintained at 80% or

more under different modular schemes. (3) When K is 16

and 25, respectively, even with more than 50–70% occlu-

sion, the recognition accuracies still keeps the accuracies

over 80% with the NEDMF_SR, while basically in the

range of 5–20% with other contrastive methods. In

summary, the above experimental results show that the

recognition accuracy of this paper is superior to those of all

the contrastive methods under large area of occlusion, that

is, the proposed method has strong robustness to the large

area of continuous occlusion. Figures 17 and 18 compare

the average recognition accuracies of different methods

with varying degrees of partial occlusion on Yale and

CMU PIE databases, respectively, and the same conclu-

sions can be drawn.

2. Faces with random block occlusion

Under random block occlusion, the face recognition

accuracies of the NEDMF_SR method and other con-

trastive methods are also, respectively, calculated to

demonstrate the robustness of NEDMF_SR, where the

block size is n� n, and n ¼ 6 to 42. The setup is chal-

lenging as the locations of occluded regions from two faces

remained to be recognized have some certain differences.

Thus, images of one individual would seem to be quite

different in terms of pixel distances.

Figure 19 shows the average recognition accuracies of

different methods with varying degrees of partial occlusion

on ORL database. The experiment setting is the same as

that of the first kind of occlusion. It can be observed that

the proposed method has stronger robustness to random

occlusion than other methods. Furthermore, when K is 16

Fig. 17 Recognition comparison with different occlusion degree and N on Yale database

Fig. 18 Recognition comparison with different occlusion degree and N on CMU PIE database
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and 25, respectively, even with size of 30� 30 block

occlusion, the NEDMF_SR still keeps an accuracy over

90%. However, when the block size is greater than 24� 24

and K is equals to 4, similar to other contrastive methods,

the performance of the proposed method begins to decrease

quickly. Obviously, this modular scheme is not suitable for

Fig. 19 Recognition comparison with different random occlusion degree and N on ORL database

Fig. 20 Recognition comparison with different random occlusion degree and N on Yale database

Fig. 21 Recognition comparison with different random occlusion degree and N on CMU PIE database

Fig. 22 Example images with occlusions. (1) Images with 10–70% partial occlusion areas; (2) Images with 6� 6 to 42� 42 pixels of random

block occlusion areas in COIL20 database and 6� 6 to 42� 42 pixels in MNIST database
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processing the face recognition under occlusion and is not

advised to be adopted in practice. Figures 20 and 21 show

the curves of average recognition accuracies with the

proposed method and other contrastive methods versus

varying degrees of partial occlusion on Yale and CMU PIE

databases, respectively, and the similar conclusions can be

drawn.

Based on the results presented in the previous series of

experiments, the following conclusions can be obtained:

(1) Compared with other methods, the proposed method is

more robust to the real-world occlusion and contiguous

occlusions of random block; (2) As the number of labeled

samples increases, the recognition accuracy of the pro-

posed method and other contrastive methods all have a

certain degree of improvement, but our method signifi-

cantly outperforms other methods, which indicates that the

NEDMF_SR method can learn a more effective data rep-

resentation; (3) Compared with other modular schemes, the

recognition accuracy of NEDMF_SR decreases rapidly

when K is 4 and the occlusion ratio is larger than 40%,

which shows that this modular scheme is not suitable for

processing the face recognition with large area of occlu-

sion; (4) The recognition accuracies of other methods begin

to decrease rapidly when the occlusion ratio is larger than

20%.

4.7 Experiments on occluded non-face recognition

In order to demonstrate the effectiveness of this paper on

the non-face databases, the non-face image classification

experiments under occlusions are conducted on COIL20

and MNIST databases. The occlusion schemes are also

divided into two types. Specifically, one setting is that

images are partially occluded by 10–70% areas, as illus-

trated in Fig. 22(1); and the other is that images in COIL20

database are occluded by random blocks of 6� 6 to 42�
42 pixels in size, at intervals of 6� 6, while images in

MNIST database are occluded by random blocks of 6� 6

to 21� 21 pixels in size, at intervals of 3� 3, as illustrated

in Fig. 22(2).

The partitions of training set and testing set in relevant

experiments: (1) COIL20 database: 4, 5, 6, and 7 non-

occluded images per subject are randomly chosen as the

training set, and the rest with artificially added occlusions

are used for testing; (2) MNIST database: 20, 30, 40, and

50 non-occluded images per subject are randomly chosen

as the training set, and the original 2000 test images with

artificially added occlusions are used for testing.

1. Non-faces with 10–70% partial occlusion areas

Figures 23 and 24 show the curves of average recognition

accuracies with the proposed method and other contrastive

Fig. 23 Recognition comparison with different occlusion degree and N on COIL20 database

Fig. 24 Recognition comparison with different occlusion degree and N on MNIST database
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methods versus varying degrees of partial occlusion on

COIL20 and MNIST databases, respectively. It can be seen

that the proposed method has better classification perfor-

mance than others, but when K is 4 and the occlusion ratio

is larger than 50%, the recognition accuracy of it decreases

rapidly.

2. Non-faces with random block occlusion

The non-face image recognition accuracies of different

methods with random block occlusion are also evaluated to

verify the robustness of the NEDMF_SR method, and the

block size is n� n, where n ¼ 6 to 42 for COIL20 database

and n ¼ 6 to 21 for MNIST database, respectively. Fig-

ures 25 and 26 show the curves of average recognition

accuracies with the proposed method and other contrastive

methods versus varying random block occlusion on

COIL20 and MNIST databases, respectively. From the

results, it can be clearly observed that the proposed method

shows the optimal performance and is more robust to

random occlusion.

From Sects. 4.6 and 4.7, it can be seen that the proposed

NEDMF_SR method has significantly better performance

than other methods and is the only one that achieves uni-

formly good performance on all of the six databases, which

demonstrates that ours is able to learn a more effective

information representation. Intuitively, the experiments

above show that it is indispensable and very useful to learn

the local invariance, discriminativeness, and sparse repre-

sentation for mining the discriminative and compact rep-

resentation of data, which is beneficial to image

recognition.

5 Conclusion

In this paper, a novel NEDMF_SR method called non-

negative enhanced discriminant matrix factorization with

sparsity regularization is proposed. Different from other

discriminant analysis methods based on NMF, not only

does the proposed method introduce the sparsity of coef-

ficient matrix into NMF, but it also combines the within-

class and between-class discriminant information of coef-

ficient matrix as the regularized term to enhance the dis-

criminant ability of low-dimensional representation. This

method maximizes the between-class discrete penalty term,

and at the same time, minimizes the within-class compact

encouragement term and the sparse constraint term of low-

dimensional representation. Moreover, the update rules and

convergence proof of NEDMF_SR are also presented.

When the proposed method is applied to the image

recognition under occlusions, by means of modular

scheme, the local classifier based on NEDMF_SR is con-

structed to identify the contribution degree of different

modules to image recognition. And on this basis, the global

Fig. 25 Recognition comparison with different random occlusion degree and N on COIL20 database

Fig. 26 Recognition comparison with different random occlusion degree and N on MNIST database
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classifier is further constructed to fuse the discriminant

information from each module in a weighted way, which

better overcomes the performance degradation caused by

serious occlusions.

The extensive experiments demonstrate that the pro-

posed NEDMF_SR method has strong robustness to vari-

ous image damage: real disguise and random block

occlusion, and possesses better performances than con-

trastive methods on six standard image databases.

Since the deep learning for data representation is getting

popularity, it has many successful applications. In the

future, we will dedicate ourselves to studying the NMF

method with new characteristics. On this basis, we will

further focus on the combination of deep learning and

NMF method and import the pre-trained deep learning

representations into an additional NMF layer to construct a

deep network architecture with local invariance, discrimi-

nativeness, and so on, which will improve the performance

of face recognition under large area of occlusion.
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Appendix: Proof of Theorem 1

To prove Theorem 1, it is necessary to show the nonin-

creasing property of objective function in Eq. (14) under

the iteration rules in Eqs. (20) and (21). As the iteration

rule of Eq. (20) is identical to original NMF, the conver-

gence proof of NMF can be adopted to manifest that

objective function is nonincreasing under the iteration rule

in Eq. (20), and it is only needed to prove that the objective

function is nonincreasing under Eq. (21). An auxiliary

function approximate to that utilized in the Expectation

Maximization (EM) algorithm is adopted in the proof

process.

Definition 1 If the conditions GðM;MðtÞÞ �FðMÞ;
GðM;MÞ ¼ FðMÞ hold, then GðM;MðtÞÞ is an auxiliary

function of FðMÞ.

Lemma 1 If GðM;MðtÞÞ is an auxiliary function of FðMÞ,
then FðMÞ is nonincreasing under the following update

condition.

Mðtþ1Þ ¼ argmin
M

GðM;MðtÞÞ ð26Þ

Proof FðMðtþ1ÞÞ �GðMðtþ1Þ;MðtÞÞ
�GðMðtÞ;MðtÞÞ ¼ FðMðtÞÞ.

Lemma 2 Function GðHðkÞ;HðtÞðkÞÞ, namely an auxiliary

function of FðHðkÞÞ, and FðHðkÞÞ are given by Eqs. (27)

and (28), respectively:

GðHðkÞ;HðtÞðkÞÞ ¼
X

i;j

Bi;jðkÞ logBi;jðkÞ �Bi;jðkÞ
� �

�
X

i;j

Bi;jðkÞ
X

m

Zi;mðkÞHðtÞm;jðkÞ
P
m

Zi:mðkÞHðtÞm;jðkÞ

0
B@

� logðZi;mðkÞHm;jðkÞÞ � log
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P
m
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0
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1

CA

1
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þ
X
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XNi

j 6¼m

rati

NiðNi� 1Þ gðiÞj ðkÞ � gðiÞm ðkÞ
���

���
2

2
þ k

X

i;j

Hi;jðkÞ

� d
CðC� 1Þ

XC

i6¼j
W 0i;jðkÞ lðiÞðkÞ � lðjÞðkÞ

�� ��2
2

ð27Þ

F HðkÞð Þ ¼ DNEDMF SR

¼
X

i;j

Bi;jðkÞ log
Bi;jðkÞ

ZðkÞHðkÞð Þi;j
� Bi;jðkÞ þ ðZðkÞHðkÞÞi;j

 !

þ c
XC

i¼1
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�� ��2
2

þ k
X
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Proof It is easy to find that GðHðkÞ;HðkÞÞ ¼ FðHðkÞÞ.
According to Lemma 1, it is only need to show

GðHðkÞ;HðtÞðkÞÞ�FðHðkÞÞ to prove that GðHðkÞ;HðtÞðkÞÞ
is an auxiliary function of FðHðkÞÞ.
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Due to the convexity of log
P

m Zi;mðkÞHm;jðkÞ
� �

, the

following inequality holds for each non-negative element

am, all of which subject to the condition of
P

m am ¼ 1.

� log
X

m

Zi;mðkÞHm;jðkÞ
 !

� �
X

m

am log
Zi;mðkÞHm;jðkÞ

am

ð29Þ

Assume am ¼ Zi;mðkÞHðtÞm;jðkÞ
.P

m Zi;mðkÞHðtÞm;jðkÞ,
Eq. (29) can be transformed as follows:

� log
X

m

Zi;mðkÞHm;jðkÞ
 !

� �
X

k
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P
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P
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 !

ð30Þ

From Eq. (30), it is easily observed that

GðHðkÞ;HðtÞðkÞÞ�FðHðkÞÞ. Consequently, GðHðkÞ;
HðtÞðkÞÞ can be viewed as an auxiliary function of FðHðkÞÞ.

Proof of Theorem 1 The minimum of GðHðkÞ;HðtÞðkÞÞ in
regard to Hm;lðkÞ is obtained by setting the gradient to zero:

oGðHðkÞ;HðtÞðkÞÞ
oHm;lðkÞ

¼ �
X

i
Bi;lðkÞ

Zi;mðkÞHðtÞm;lðkÞ
P

n Zi;nðkÞH
ðtÞ
n;lðkÞ

1

Hm;lðkÞ

þ
X

i
Zi;mðkÞ þ

4ratrc
Nr � 1

Hm;lðkÞ � lðrÞm ðkÞ
	 


�
4dW 0i;r kð Þ

NrC C � 1ð Þ
XC

i6¼r
lðrÞm ðkÞ � lðiÞm ðkÞ
	 


þ k

¼ 0

ð31Þ

The above equation is a quadratic equation of Hm;lðkÞ,
and by solving it, the iterative rule of Eq. (20) can be

obtained. According to Lemma 1, now that

GðHðkÞ;HðtÞðkÞÞ is an auxiliary function, and then, the

function FðHðkÞÞ, i.e., DNEDMF SR, is nonincreasing under

the iterative rule in Eq. (20).
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