
ORIGINAL ARTICLE

Neural network-based discretization of nonlinear differential
equations

Yoshiro Suzuki1

Received: 3 October 2016 / Accepted: 14 October 2017 / Published online: 25 October 2017

� The Natural Computing Applications Forum 2017

Abstract This article presents a discretization scheme for

a nonlinear differential equation using a regression analysis

technique. As with many other numerical solvers such as

finite difference methods and finite element methods, the

presented scheme discretizes a simulation field into a finite

number of points. Although other solvers ‘‘directly and

mathematically’’ discretize a differential equation govern-

ing the field, the presented scheme ‘‘indirectly and statis-

tically’’ constructs the discretized equation using

regression analyses. The regression model learns a pre-

prepared training data including dependent-variable values

at neighboring points in the simulation field. Each trained

regression model expresses the relation between the vari-

ables and returns a variable value for a point (output)

referring to the variables for its surrounding points (input).

In other words, the regression model performs a role as the

discretized equation of the variable. The presented

approach can be applied to many kinds of nonlinear

problems. This study employs artificial neural networks

and polynomial functions as the regression models. The

main aim here is to assess whether the neural network-

based spatial discretization approach can solve a nonlinear

problem. In this work, I apply the presented scheme to

nonlinear steady-state heat conduction problems. The

computational accuracy of the presented technique was

compared with a standard finite difference method and a

homogenization method that is one of representative mul-

tiscale modeling approaches.

Keywords Nonlinear solvers � Neural network �
Regression analysis � Multiscale

1 Introduction

The first mathematical model of an artificial neural network

(NN) was developed in 1943 [13]. The use of NN

methodology in various engineering and science fields has

increased because the networks can efficiently integrate

information and extract important features from informa-

tion. The NNs have been broadly applied in pattern

recognition, image recognition [8, 14], voice recognition

and machine translation [6, 7, 17], medicine [1, 4], weather

prediction, computational finance, and applied mathemat-

ics. In spite of the progress in the field of NN techniques,

there has been limited literature that has applied the NNs to

multiscale modeling for simulation of a physical

phenomenon.

In 2010, Hambli et al. constructed a multiscale hierar-

chical model of bone structures using NN technique [10].

Hambli et al. stated ‘‘among the various multiscale mod-

eling approaches, hierarchical multiscale modeling meth-

ods are more advantageous than homogenization methods

for determining the interactions of the various levels.’’ The

approach incorporated an NN regression model and finite

element simulation to analyze multilevel bone adaptation.

The NN was used to predict and update bone material

properties and factors referring to a set of boundary con-

ditions, stress applied to the bone structure, and the pre-

vious bone parameters. Subsequently, Barkaoui et al. [3]

presented a hierarchical multiscale approach using NN

computation and a homogenization method and employed

the approach to estimate elastic properties of human cor-

tical bone structures.

& Yoshiro Suzuki

ysuzuki@ginza.mes.titech.ac.jp

1 Department of Mechanical Engineering, Tokyo Institute of

Technology, Box I1-50, 2-12-1 Ookayama, Meguro-ku,

Tokyo 152-8552, Japan

123

Neural Comput & Applic (2019) 31:3023–3038

DOI 10.1007/s00521-017-3249-4

http://orcid.org/0000-0002-6160-8779
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3249-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3249-4&domain=pdf

Asproulis and Drikakis developed a neural network-

based multiscale approach that couples a continuum fluid

dynamics and molecular dynamics [2]. In this article the

entire simulation field was analyzed using a macroscopic

numerical scheme and a microscopic simulation was

employed to obtain detailed information on its local field.

The NNs helped to transfer analytical results bi-direction-

ally between the macroscopic and microscopic analyses. A

similar NN-based coupling method is addressed in [16].

The NN approaches can be used to link different scales

quickly and easily [12, 15] and, therefore, are beneficial

especially when a target model is complicated and time

consuming to analyze [9, 19, 20].

The main difference between the above approaches and

my current work lies in usage of the NNs. Unlike the other

manuscripts, this study does not perform the NN calcula-

tions to estimate material properties, structural parameters,

boundary conditions, governing equations, or constitutive

laws. I present a spatial discretization scheme employing

the NNs for nonlinear governing equations. Instead of the

conventional ‘‘direct and mathematical’’ discretization, the

presented scheme ‘‘indirectly and statistically’’ constructs

the discretized equation (Fig. 1b). The NN is employed as

a substitute for a discretized nonlinear equation itself.

In general numerical analyses such as finite difference

method (FDM), finite element method, and finite volume

method, I spatially discretize a target simulated field into

grids, elements, and cells (Fig. 1a). The discretized field is

represented by a finite number of points: grid points and

nodes. Each point is endowed with dependent-variable

values (and variable gradients). To compute all unknown

values for the points, I discretize differential

equation(s) governing the field and construct discrete

equations that contain the unknown values. By solving the

discrete equations, I can determine the unknown values.

For instance, the spatial discretization of many finite

element solvers is done on the basis of weighted-residual

methods. In the discretization process of standard FDMs,

the governing differential equation is approximated as a

difference equation. In other words, the discrete equation is

‘‘directly and mathematically’’ derived from the governing

equation in the conventional schemes. Conversely, the

presented scheme ‘‘indirectly and statistically’’ constructs

the discretized nonlinear equation using a machine learning

approach including NNs.

In [18], the authors applied a neural network to a fluid

simulation. They solved incompressible Euler equations

using a marker-and-cell (MAC) scheme [11]. In the MAC

scheme, large-scale linear Poisson’s equations must be

solved to compute a pressure field at each time step. They

employed a convolutional neural network to solve the

equations. The network estimated a pressure profile, i.e.,

the network performed a role as the discretized equations

of pressure. Therefore, the main contribution of their work

is similar to that of this work. However, there are the fol-

lowing differences between their and my studies.

• Although Tompson et al. employed a neural network to

solve linear algebraic equations (linear Poisson’s

equations), my approach can solve nonlinear equations.

• Their target simulated field was homogeneous, but my

approach is applicable to both homogeneous fields

(Sects. 3.1 and 3.2) and heterogeneous fields (Sect. 3.3).

• They applied the NN technique only to the pressure

calculation, i.e., one of the simulation processes.

Conversely, I replace the whole simulation processes

with the NN-based approach in this article.

Procedure of the presented scheme The presented

approach can be summarized by the below steps (the

detailed procedure is given in Sect. 2.2):

1. Acquire training data

Training data contain dependent-variable values (and

variable gradients in some cases) at neighboring

discrete points in the target field. I then construct a

regression model that expresses the relation among

variable values at the points and train the model based

on the data. The data can be obtained from either a pre-

analysis or experiment.

• Training data obtained from numerical analyses of

local fields

I can employ conventional numerical solvers such

as FDMs, finite element methods, and finite volume

methods to simulate local fields. The local fields

are extracted from the entire simulated field (global

Fig. 1 Schematic illustration of discretization of general solvers such

as finite difference method (FDM), finite element method, and finite

volume method in (a) and that of the presented scheme using

regression analysis in (b)

3024 Neural Comput & Applic (2019) 31:3023–3038

123

field) and contain several discrete points in them-

selves. I conduct the local analysis for various

boundary conditions and acquire a variety of sets of

variable values at the neighboring points in the

local field. From a numerical point of view, the

presented modeling is regarded as multiscale when

the training data are obtained from pre-analysis of

local fields.

• Training data obtained from an experiment

Experimental data can be used as substitutes for the

numerical training data.

2. Train regression models

I train each regression model using the training data so

that the model returns a variable for a discrete point

referring to the variables for its neighboring discrete

points. Therefore, the regression models function as

discretized equations for the governing equation of the

field.

3. Construct simultaneous equations by assembling the

regression functions

This process constructs simultaneous nonlinear equa-

tions by assembling the discretized equations obtained

in step (2). The simultaneous equations include all

unknown dependent-variable values (and variable

gradients) for the discrete points in the entire field.

4. Solve the simultaneous equations

By solving the simultaneous equations constructed in

step (3), all the unknown variable values can be

determined.

5. If necessary, interpolate the variable distribution

between the discrete points

I can interpolate detailed information on the micro-

scopic (local) variable distributions by conducting the

local analysis again. I impose the local boundary

conditions (e.g., the variable profiles on the local

boundaries that are obtained in step (4)) on each local

field. The local analysis gives detailed variable profile

between the discrete points. After obtaining the

variable profiles in all local fields, I connect them to

construct the global profile.

Advantages of the presented scheme

1. Efficient modeling of a heterogeneous field

As with many multiscale modeling approaches, the

presented scheme can construct an efficient numerical

model of a heterogeneous structure. The entire model

is represented by only coarse-grained discrete points. I

need not, respectively, model all constituents when

simulating the whole structure. Therefore, the entire

model is computationally inexpensive.

2. No necessity of iterative multiscale computations

Many multiscale nonlinear solvers conduct repeated

multiscale computations that couple local and global

simulations. I need to repeat the two analyses until the

microscopic solution converges onto the macroscopic

solution, which is time consuming. In the presented

approach, once valid regression models for each

discrete point are constructed, I can quickly reveal

the behavior the whole field without repeated multi-

scale simulation for every convergence computation.

In other words, I need not conduct additional local

analysis while conducting the global analysis.

3. Possibility of analyzing a field even if there is

unknown information about the field

The presented scheme can accurately simulate a

nonlinear field as long as a sufficient amount of valid

observed data can be obtained, even if the following

information is unknown, unclear, or unavailable:

• Material property,

• Governing equation, and

• Detailed morphological feature of a microstructure

in a heterogeneous field.

When I have no information on the above items,

the regression analysis can construct a discretized

equation that determines relation between neigh-

boring discrete points in the field.

2 Computational procedure

This section illustrates the presented computational pro-

cedure to solve a nonlinear problem. Let me consider sta-

tionary heat conduction in a one-dimensional

homogeneous rod as an example. Although the problem

discussed in this section is specific, the presented solver is

applicable to many other kinds of nonlinear problems.

In this example, the dependent variable, its gradient, and

flow are the temperature, temperature gradient, and heat

flow, respectively. The rod is 1 m long. It is thermally

insulated and no heat transfers through the surface. The rod

is governed by

d

dx
k
du

dx

� �
¼ 0 for 0� x� 1; ð1Þ

where u ¼ u xð Þ and k are the temperature at point x and the

thermal conductivity, respectively. Temperature values at

both ends are fixed at u
given
1 and ugivenn ; i.e.,

u 0ð Þ ¼ u
given
1

u 1ð Þ ¼ ugivenn :
ð2Þ

The problem is linear when k is constant. However, k

changes according to temperature, u; the problem then has

material nonlinearity.

Neural Comput & Applic (2019) 31:3023–3038 3025

123

k ¼ k uð Þ: ð3Þ

In Sect. 3, I will compare the true solution of u xð Þ, a
standard FDM, and the presented scheme in terms of

accuracy when solving three nonlinear heat conduction

problems.

2.1 True solution

By integrating the governing equation in Eq. (1), I getZ
k uð Þdu ¼

Z
C1dx ¼ C1xþ C0 for 0� x� 1; ð4Þ

where C1;C0 are unknown constant values and determined

by the boundary conditions in Eq. (2). When I can integrate

the left side of Eq. (4) by u and u is expressible as a

function of x, the true solution of u xð Þ can be obtained.

Otherwise, I cannot acquire the true solution. Therefore,

whether the true solution is available depends on the

functional form of k uð Þ:

2.2 Presented scheme

2.2.1 Outline

To obtain an approximate temperature solution employing

the presented approach, I arrange n discrete points as

depicted in Fig. 2a. Note that the intervals between the

points need not necessarily be equal. Each discrete point is

endowed with a temperature value. The temperature at

point i is denoted ui. To compute all unknown tempera-

tures, u2; . . .; un�1, I need to obtain each local relation

among neighboring points (Fig. 2b). Figure 3a shows the

true relationship among temperature values at three

neighboring points, ui�1; ui; uiþ1. Unfortunately, the true

relation cannot be derived in many general cases.

Hence, in the presented approach, I express the relation

between ui and ui�1; uiþ1 using a regression model, f :

ui ¼ f ui�1; uiþ1ð Þ þ e; ð5Þ

where e is the error of ui. The function f is trained so that f

fits the observed values of ui�1; ui; uiþ1, which are shown

as black circles in Fig. 3b, as much as possible. It is

important to select f whose functional form is suitable to

approximately express the true relation. In this article I

prepare three kinds of regression models that are explained

in Sect. 2.2.2.

The temperature values that are computed using the

presented scheme are denoted

upre ¼ u
pre
2 � � � upren�1

� �T
: ð6Þ

I formulate Eq. (5) for i ¼ 2; . . .; n� 1 and construct the

below simultaneous equations:

u
pre
2 ¼ f u

given
1 ; upre3

� �
..
.

u
pre
i ¼ f u

pre
i�1; u

pre
iþ1

� �
..
.

u
pre
n�1 ¼ f u

pre
n�2; u

given
n

� �
: ð7Þ

The above simultaneous equations are repeatedly com-

puted to determine upre:

2.2.2 Regression models

Standard polynomial function

I prepare four kinds of full polynomial regression

models: 2nd-, 3rd-, 4th-, and 5th-order polynomial func-

tions. The lth order of full polynomial function is as

follows.

ui ¼ f ui�1; uiþ1ð Þ ¼
X

0�mþn� l

am;nu
m
i�1u

n
iþ1; ð8Þ

where am;n (m; n are nonnegative integers) are regression

coefficients that are determined by the least squares method

so that f fits training data.

Locally weighted scatterplot smoothing (LOESS)

LOESS is a nonparametric regression model that uses

locally weighted linear regression to smooth data. The

model divides data into multiple intervals (25 intervals in

this paper) and calculates a data point in interval j referring

to its surrounding data points within interval j. LOESS uses

a second-order polynomial interpolation for each interval. I

determine regression weights in interval j by the formula,

vi;j ¼ 1� s� si;j

d sð Þ

� �3
 !3

; ð9Þ
Fig. 2 Example of a one-dimensional stationary heat conduction

problem: an entire global field (a) and a local field that is partially

extracted from the global field (b)

3026 Neural Comput & Applic (2019) 31:3023–3038

123

where vi;j is the ith weight, s is a predictor value related to

output parameter, si;j are the adjacent data points of s as

defined by interval j, d sð Þ is the distance from s to the

farthest estimator value within the interval. The weight for

data points outside the interval is zero, which means no

influence on the fit.

Neural network (NN)

The detailed information on the NNs used in this

manuscript is shown in Table 1 and Fig. 4. I employ feed-

forward hierarchical NNs that are composed of multiple

layers such as input, output, and intermediate hidden lay-

ers. The layers have simple elements called neurons, which

are depicted as white circles in Fig. 4. The networks are

fully connected, i.e., each neuron in a layer is connected to

all neurons in its adjacent layer. Input signals (ui�1 and uiþ1

in this manuscript) are transmitted from the input layer to

the output layer through the hidden layers. The output layer

finally gives ui:

Figure 5 describes output values of neurons and those of

biases in three neighboring layers of an example NN. The

ith neuron in the lth layer receives the input value, v
lð Þ
i ,

which is a sum of weighted outputs of neurons in the

previous layer, y
l�1ð Þ
j , and the bias, b

l�1ð Þ
i :

v
lð Þ
i ¼ b

l�1ð Þ
i þ

X
1� j�Rl�1

w
l�1ð Þ
i;j y

l�1ð Þ
j ; ð10Þ

where w
lð Þ
i;j are the weights and Rl�1 is the number of

neurons in the l� 1ð Þth layer. v
lð Þ
i is activated by an acti-

vation function a
lð Þ
i to produce output y

lð Þ
i . I employ

Fig. 3 Relationship between

dependent-variable values at

points i–1, i, and i ? 1: the

curved surface of the true

relation (a) and a regression

model that is statistically

identified from the training data,

i.e., the observed values of ui–1,

ui, and ui?1 (b)

Table 1 Configurations of neural network models used to solve numerical examples

Number of hidden layers 1, 2 Maximum number of

epochs

1000

Number of neurons in the first hidden layer 5, 10, 15, 20, 25, 30 Training algorithm Gradient descent back propagation

Number of neurons in the second hidden layer

compared with

the first layer

50% (half), 75%, 100%

(same)

Learning rate 0.01

Activation function of hidden layer Hyperbolic tangent

sigmoid

Momentum

coefficient

0

Transfer function of output layer Linear Notes No convolution, no dropout, no input delay,

no layer delay

Fig. 4 Example of feed-forward hierarchical neural network that has

input layer, two hidden layers, and output layer

Neural Comput & Applic (2019) 31:3023–3038 3027

123

hyperbolic tangent sigmoid function that is commonly used

for the activation. It is given by

y
lð Þ
i ¼ a

lð Þ
i v

lð Þ
i

� �
¼ 2

1þ exp �2v
lð Þ
i

� �� 1: ð11Þ

I train the NN to perform a particular function by

optimizing the weights and biases on the basis of training

data, i.e., various sets of known inputs (ui�1 and uiþ1) and

known output (ui). This process is called supervised

learning. Several algorithms have been proposed for the

supervised learning. This article uses the gradient descent

back propagation method. The method is an iterative gra-

dient algorithm that adjusts the weight and bias values to

minimize the difference between the network output and

the given output according to the gradient descent. The

detailed procedure of the back propagation is explained in

(Demuth and Beale).

2.3 Finite difference method (FDM)

This subsection illustrates the procedure of a standard

FDM. In similar way to the presented technique explained

in the previous subsection, I arrange n grid points at equal

intervals in the rod. The interval is h. In the FDM, I

approximate the governing differential equation in Eq. (1)

as the following difference equation.

0 ¼ d

dx
k
du

dx

� �
�

k du
dx

��
iþ1=2

�k du
dx

��
i�1=2

h

�
k uiþ1=2

� �
uiþ1�ui

h
� k ui�1=2

� �
ui�ui�1

h

h
; therefore; ui

¼
k uiþ1=2

� �
uiþ1 þ k ui�1=2

� �
ui�1

k uiþ1=2

� �
þ k ui�1=2

� �
for i ¼ 2; . . .; n� 1

ð12Þ

where uFDMi is temperature at point i computed employing

the FDM. It is said that the above relational expression is

derived ‘‘directly and mathematically’’ from the governing

equation. In this paper, I use the below approximations:

k uiþ1=2

� �
� k uiþ1ð Þ þ k uið Þ

2

k ui�1=2

� �
� k uið Þ þ k ui�1ð Þ

2
:

ð13Þ

Finally, I formulate Eq. (12) for i ¼ 2; . . .; n� 1 and

solve them to obtain the solution, uFDM,

uFDM ¼ uFDM2 � � � uFDMn�1

� �T
: ð14Þ

3 Numerical example problems

To compare the computational precision and robustness, I

solve three nonlinear stationary heat conduction problems

of one-dimensional rods using the presented scheme and

the standard FDM. The 1-m-long rod is divided into n� 1

parts and represented by n discrete points. The locations of

the points are denoted x1; . . .; xn and the temperature at xi is

denoted ui. In all the problems, temperatures at both the

ends of the rod are fixed at 0� and 1�; i.e.,

u1 ¼ u 0ð Þ ¼ 0

un ¼ u 1ð Þ ¼ 1:
ð15Þ

3.1 Example 1: homogeneous rod (k uð Þ ¼ k0 þ k1u)

3.1.1 Problem statement

Let me consider a case that the rod has 21 points (i.e.,

n ¼ 21) and its thermal conductivity, k, is a linear function

of temperature, u:

k uð Þ ¼ k0 þ k1u; ð16Þ

where

k0 ¼ 0:1

k1 ¼ 1;
ð17Þ

therefore,

k uð Þ ¼ 0:1þ u: ð18Þ

3.1.2 Computational procedure

3.1.2.1 True solution I can derive the true solution of

u xð Þ for this example directly from the governing equation

in Eq. (4) based on Eq. (16). Integrating the left side of

Eq. (4), I get

Fig. 5 Output values of neurons and those of biases in three

neighboring layers of an example neural network

3028 Neural Comput & Applic (2019) 31:3023–3038

123

k0uþ
k1u

2

2
¼ C1xþ C0

0 for 0� x� 1 ð19Þ

when k0; k1 are constant values, k1 6¼ 0, and k0 þ k1u[0

for 0� u� 1, I obtain the below equation by substituting

the boundary conditions (Eq. (15)) into Eq. (19)

u xð Þ ¼ � k0

k1
þ

ffi
1� xð Þ u 0ð Þ þ k0

k1

� �2

þx u 1ð Þ þ k0

k1

� �2
s

:

ð20Þ

It follows from the above equation and Eq. (17) that

u xð Þ ¼ �0:1þ
ffi
0:01þ 1:2x

p
: ð21Þ

Therefore, the true temperature at each point, utrue, is

computed from the above equation,

utrue ¼ utrue2 � � � utruen�1

� �T
; ð22Þ

where

utruei ¼ �0:1þ
ffi
0:06i� 0:05

p
for i ¼ 2; . . .; n� 1:

ð23Þ

I compare utrue with the solution of the FDM, uFDM in

Eq. (14), and the solution of the presented scheme, upre in

Eq. (6).

In a similar way to derive the true temperature, I can

obtain the true relational expression among ui�1; ui; uiþ1 in

the below form from Eqs. (4) and (17)

ui ¼ �0:1þ
ffiffiffiffiffiffiffi
0:5

p ffi
ui�1 þ 0:1ð Þ2þ uiþ1 þ 0:1ð Þ2

q
for

i ¼ 2; . . .; n� 1:

ð24Þ

It is noted that the functional form of Eq. (24) is different

from any of the regression models illustrated in Sect. 2.2.2.

The main objective of this example problem is to investigate

whether a regression model can accurately express the true

relation between neighboring points even if the functional

form of the regression model is different from the true one.

3.1.2.2 Presented scheme To prepare training data, I first

sample various sets of ui�1 and uiþ1. I substitute each set

into Eq. (24) and obtain accurate ui. I use the obtained sets

of ui�1; ui; uiþ1 to train the three kinds of regression

models that are illustrated in subsection Sect. 2.2.2.

In general, training data have a strong influence on the

computational precision of a regression model. The

detailed illustration of the sampling method is as follows.

Number of training points

First of all, you have to prepare a sufficient number of data.

In this manuscript, I prepare ml sets of ui�1; ui; uiþ1

(ml ¼ 200; 400; 600).

Sampling technique

I use Latin hypercube sampling to generate well-balanced

sets of ui�1 and uiþ1:

Sampling range

I test two kinds of sampling ranges: (1) unbiased data and

(2) biased data.

1. Unbiased data

As shown in Fig. 6a, I sample sets of ui�1 and uiþ1

within a range of:

0� ui�1; uiþ1 � 1: ð25Þ

Since the minimum and maximum temperatures in the

rod are 0 and 1 degree, Inequality (25) covers the entire

range of possible values of ui�1 and uiþ1. The

inequality indicates that I uniformly sample sets of ui�1

and uiþ1 so that

�1� uiþ1 � ui�1 � 1: ð26Þ

Although samples collections of explanatory variables

where u1 is close to u3 (markers in the white area near

the straight line ui�1 ¼ uiþ1 in Fig. 6a) are meaningful,

samples where ui�1 is far from uiþ1 are worthless to the

accuracy of the regression model. This is because point

i� 1 is located near point iþ 1; therefore, ui�1 would

be close to uiþ1 in general. The regression model does

not have to learn the worthless samples.

2. Biased data

As depicted in Fig. 6b, I sample sets of ui�1 and uiþ1

within a range of:

0 � ui�1; uiþ1 � 1

0� uiþ1 � ui�1 � a
un � u1

n� 1
; ð27Þ

where a is a constant value and set to 5 in this article

(a ¼ 5). The right side of the second inequality is the

product of a and the average temperature difference

between two neighboring points in the rod. Inequalities

(27) enable me to sample only meaningful sets where

ui�1 is close to uiþ1 and ui�1 is smaller than uiþ1:

3.1.2.3 FDM By substituting Eqs. (13) and (18) into

Eq. (12), it follows that

ui ¼
u2i�1 þ u2iþ1 þ ui þ 0:2ð Þ ui�1 þ uiþ1ð Þ

ui�1 þ 2ui þ uiþ1 þ 0:4
: ð28Þ

To obtain the FDM solution, uFDM in Eq. (14), I for-

mulate Eq. (28) for i ¼ 2; . . .; n� 1 and solve them by

iterative computation. Number of the iterative cycles is

500.

Neural Comput & Applic (2019) 31:3023–3038 3029

123

Solving Eq. (28) for ui, the relation between ui and

ui�1; uiþ1 is expressed in the form,

ui ¼ �0:1þ
ffiffiffiffiffiffiffi
0:5

p ffi
ui�1 þ 0:1ð Þ2þ uiþ1 þ 0:1ð Þ2

q
for

i ¼ 2; . . .; n� 1:

ð29Þ

The above relation is completely equivalent with the

true one in Eq. (24). Therefore, in general, when stationary

heat conduction in a one-dimensional rod whose thermal

conductivity is linearly proportional to temperature, the

standard nonlinear FDM can construct the exact relation

between neighboring three grid points and solve the

problem completely accurately.

3.1.3 Results

In the following, I compare the solutions of the presented

scheme with the true solution in terms of a root-mean-

squared error of temperature values over all discrete points.

Type of polynomial function

The five types of polynomial regression models are com-

pared in Table 2. By and large, the higher-order polyno-

mial models generate smaller errors than the lower-order

models. However, the LOESS, which uses a second-order

polynomial interpolation for each of 25 divided spans,

gives the most accurate solution regardless of the number

of training samples, ml. A similar tendency is recognized

on example problems 2 and 3, in part because a regression

model with a larger number of terms can represent complex

relational expression of variables more flexibly in general.

Number of neurons in the single-hidden-layer NN

An overview of the errors of the single-hidden-layer NNs

listed in Table 3 reveals that the NNs consisting of more

neurons are superior. However, some NNs having many

neurons generated large errors when the training data are

insufficient. For instance, the NN, which has more than 20

neurons and is trained by 200 biased sample sets, causes a

larger error than the NN with 20 neurons. Therefore, an

increase in the number of neurons does not necessarily

improve the precision, which makes it difficult to optimize

the number of the neurons.

Number of hidden layers of the NN regression models

In general, addition of hidden layer(s) into an NN structure

is often effective to express complex nonlinear relation, but

an unnecessary hidden layer would lead to a reduction in

the generalization performance of the NN.

The NNs with one hidden layer and those with two

hidden layers are compared in Table 4. All the NNs are

trained by 600 unbiased samples. For the two-hidden-layer

NNs, I test three cases that the number of neurons in the

second hidden layer is 50, 75, and 100% of that of the first

layer (round-up after the decimal point). However, the

Fig. 6 Sample collections of

explanatory variables (ui–1 and

ui?1) used to train the regression

models: a unbiased sets that are

uniformly sampled and b biased

sets where ui�1 is close to uiþ1

3030 Neural Comput & Applic (2019) 31:3023–3038

123

number of neurons in the second layer does not have a

significant effect on the temperature error.

Interestingly, the fewer the number of neurons in the

first layer is, the more accurate all the two-hidden-layer

NNs become except for a case that the first layer has only

five neurons. Conversely, the error of the single-hidden-

layer NN decreases with an increase of neurons. When the

total number of parameters in an NN architecture including

weights and biases in all layers is too large, the NN would

not be able to allow for a good description of nonlinear

relation between input and output parameters in general.

Training and test errors of the NN regression models

during training process

Figure 7 shows example learning curves, i.e., training and

test errors of two example neural networks during the

training process. The two networks have a single hidden

layer that consists of 25 neurons. The left figure presents

the case where 200 biased sample sets are used to train the

network (ml ¼ 200) and the right figure gives another case

where ml ¼ 600. The vertical and horizontal axes show the

mean-squared error of the network response and the

number of epochs, respectively.

Two hundred sample sets would be insufficient and

there is a large difference between the training and test

errors, which is called the overfitting problem (left figure of

Fig. 7). There is almost no reduction in the test error since

approximately 50 epochs. Conversely, both the training

and test errors decrease simultaneously in the case where

ml ¼ 600 (right figure of Fig. 7). Therefore, 600 sample

sets are regarded as sufficient to train the network and to

prevent overfitting.

Number of training data, ml

Tables 2 and 3 show that the regression models trained by

a larger number of sample sets generate a temperature error

equal to or smaller than those trained by a smaller number

of sets. Note that additional training data are not highly

Table 2 Root-mean-squared

temperature error of the

polynomial regression model

when analyzing example 1

Type of training data Number of training

data, ml

Order (or type) of polynomial model

2nd 3rd 4th 5th LOESS

Unbiased (Eq. (25)) 200 0.071 0.13 0.027 0.012 0.0060

400 0.074 0.21 0.026 0.014 0.0060

600 0.072 0.43 0.027 0.014 0.0053

Biased (Eq. (27), a ¼ 5) 200 0.065 0.014 0.0046 0.0036 0.00047

400 0.060 0.013 0.0050 0.0021 0.00040

600 0.061 0.015 0.0038 0.0015 0.00042

Table 3 Root-mean-squared temperature error of the neural networks with a single hidden layer when analyzing example problem 1

Type of training data Number of training

data, ml

Number of neurons in the hidden layer

5 10 15 20 25 30

Unbiased (Eq. (25)) 200 0.025 0.0070 0.0088 0.0030 0.0021 0.11

400 0.027 0.011 0.0060 0.0061 0.0012 0.0017

600 0.023 0.0056 0.0018 0.0018 0.0012 0.00088

Biased (Eq. (27), a ¼ 5) 200 0.013 0.0024 0.0026 0.00091 0.040 0.0037

400 0.032 0.0022 0.00039 0.00035 0.00022 0.00061

600 0.0023 0.0036 0.00032 0.00047 0.00081 0.00055

Table 4 Comparison of root-mean-squared temperature error between the neural networks with a single hidden layer and the neural networks

with two hidden layers when analyzing example problem 1. 600 UNBIASED sample sets are used to train the networks (ml ¼ 600)

Number of hidden

layers

Number of neurons in second hidden

layer compared with first layer

Number of neurons in first hidden layer

5 10 15 20 25 30

One This NN does not have 2nd layer 0.023 0.0056 0.0018 0.0018 0.0012 0.00088

Two 50% (half) 0.0026 0.00032 0.00098 0.0039 0.0055 0.014

75% 0.0017 0.00062 0.0020 0.0085 0.0071 0.021

100% (same) 0.0021 0.00032 0.0013 0.0034 0.012 0.031

Neural Comput & Applic (2019) 31:3023–3038 3031

123

effective in cases where a sufficient amount of data is

already provided. For instance, Table 2 indicates that the

polynomial models trained by 200 sets are almost full

grown and the additional data are not so effective to

enhance the accuracy. Conversely, the NN models trained

by 200 sets require more training data to be completely

sophisticated as shown in Table 3. By and large, 200

sample sets are necessary to sufficiently train the polyno-

mial models and 400 sets are required for the single-hid-

den-layer NN models.

Comparison between unbiased and biased training data

As expected, Tables 2 and 3 indicate that the biased

training data greatly improve the precisions of all the

regression models including the polynomials and NNs in

comparison with the unbiased data. The biased data have

many meaningful sets where ui�1 is close to uiþ1, which are

important to construct valid regression models having a

high generalization performance.

Let me illustrate the K-fold cross-validation that eval-

uates generalization performance of a regression model. In

the validation method, ml samples sets are divided into K-

folds equally. Each of folds 1; . . .;K has ml=K sets. For

i ¼ 1; . . .;K:

• Fold i forms a validation set and the other K � 1-folds

form a training set.

• I train a regression model using the K � 1-folds and test

the model on fold i:

• Difference between the true and estimated output

parameters is computed.

Subsequently, I calculate the root-mean-squared differ-

ence, which could be an index of the generalization ability.

The results of the K-fold cross-validation (K ¼ 10) for

the regression models are depicted in Fig. 8. In all the

regression models, the biased data are more helpful to

enhance the generalization ability than the unbiased data.

Temperature profiles

Figure 10 depicts the true and estimated temperature pro-

files for example problem 1 when 600 sample sets are used

to train each regression model. The red curve shows the

true temperature profile and the circles show the estimated

temperature values. As stated above, the biased training

data greatly reduce the temperature error. In addition, the

higher-order polynomial models generate more accurate

solutions than the lower-order models for both the biased

and unbiased data.

Summary of subsection 3.1.3

The calculation accuracies for example 1 are summarized

in Fig. 9. The following findings are taken from the

obtained results.

Fig. 7 Example learning curves, i.e., training and test errors of two example neural networks during the training process. The two networks have

a single hidden layer that consists of 25 neurons

Fig. 8 K-fold cross-validation results in the case where K ¼ 10 and

ml ¼ 600. The NN model has a single hidden layer consisting of 25

neurons

3032 Neural Comput & Applic (2019) 31:3023–3038

123

• When comparing Figs. 8 and 9, the generalization

performance of the regression models has a lot in

common with their ability to solve the nonlinear

problem.

• The biased training data (ui�1 is close to uiþ1) greatly

enhance the generalization performance of many

regression models and reduce the temperature errors.

• Figure 9 indicates that the FDM solution is the most

accurate of all the results because the FDM’s dis-

cretized equation is exactly precise as illustrated in

Sect. 3.1.2.3.

• The high-order polynomial models are superior to low-

order polynomial models in terms of precision.

• The LOESS model is the most accurate of all the

polynomial models.

• The single-hidden-layer NN models with 20 or more

neurons give solutions at the same or higher level of

accuracy as the solution obtained from the LOESS

model.

• Additional training data are often effective to improve

the regression accuracy but would be worthless if a

sufficient amount of data is already provided.

• The NN models require more training data to be fully

grown than the polynomial models.

The above results demonstrates that the following

regression models can sufficiently correctly solve

example problem 1 and generate a root-mean-squared

temperature error smaller than 0.005 degrees even if the

functional form of the true relation is different from

those of the regression models.

• The fourth- and fifth-order polynomial models and the

LOESS model trained by 200 or more biased sample

sets, and

• The single-hidden-layer NNs with 20 or more neurons

that are trained by 600 unbiased sets, 400 biased sets, or

600 biased sets.

3.2 Example 2: Homogeneous rod (k uð Þ ¼ k0 þ k1u

þ k2u
2)

3.2.1 Problem statement

Let me consider a homogeneous rod having 21 points

(n ¼ 21). The thermal conductivity is expressed in the

below quadratic function of u.

k uð Þ ¼ k0 þ k1uþ k2u
2; ð30Þ

where

k0 ¼ 0:1

k1 ¼ k2 ¼ 1;
ð31Þ

therefore,

k uð Þ ¼ 0:1þ uþ u2: ð32Þ

3.2.2 Computational procedure

3.2.2.1 True solution In a similar way to example prob-

lem 1, the analytical solution of u xð Þ for example 2 can be

obtained in the below form,

u xð Þ¼ 1:4x�0:05þ
ffi
1:4x�0:05ð Þ2�0:153

q� �1=3

þ 1:4x�0:05�
ffi
1:4x� 0:05ð Þ2�0:153

q� �1=3
�0:5:

ð33Þ

The true temperature for point i, utruei , is computed from

the above equation,

utruei ¼ 0:07i�0:12þ
ffi
0:07i�0:12ð Þ2�0:153

q� �1=3

þ 0:07i�0:12�
ffi
0:07i�0:12ð Þ2�0:153

q� �1=3
�0:5;

for i¼ 2; . . .;n�1:

ð34Þ

Additionally, from Eq. (30) and the governing equation

in Eq. (4), the relational expression among ui�1; ui; uiþ1 is

derived:

ui ¼ �qþ
ffi
q2 � 0:153

p� �1=3
þ �q�

ffi
q2 � 0:153

p� �1=3
�0:5;

ð35Þ

where

q ¼ �0:25 u3i�1 þ u3iþ1

� �
� 0:375 u2i�1 þ u2iþ1

� �
� 0:075 ui�1 þ uiþ1ð Þ þ 0:05: ð36Þ

Fig. 9 Root-mean-squared temperature errors compared with the true

solution when solving example problem 1. 600 sample sets are used to

train each regression model (ml ¼ 600)

Neural Comput & Applic (2019) 31:3023–3038 3033

123

3.2.2.2 Presented scheme Except for the relational

expression among ui�1; ui; uiþ1, the way to acquire train-

ing data is the same to that discussed in Sect. 3.1.2.2. I

solve Eq. (35) for various sets of ui�1 and uiþ1 to get ui.

The thus obtained sets of ui�1; ui; uiþ1 are used to train the

regression models.

3.2.2.3 FDM Substituting Eqs. (13) and (32) into

Eq. (12), it follows that

ui ¼
u3i�1 þ u3iþ1 þ u2i�1 þ u2iþ1 þ u2i þ ui þ 0:2

� �
ui�1 þ uiþ1ð Þ

u2i�1 þ 2u2i þ u2iþ1 þ ui�1 þ 2ui þ uiþ1 þ 0:4
:

ð37Þ

To obtain the FDM solution, uFDM in Eq. (14), I con-

struct Eq. (37) for i ¼ 2; . . .; n� 1 and solve them by

repeated calculation. Number of the cycles is 500.

By solving Eq. (37) for ui, the true relation between ui
and ui�1; uiþ1 is obtained in the following form

ui ¼ �sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ r3

p� �1=3
þ �s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ r3

p� �1=3

þ uiþ1 þ ui�1 � 2

6
;

ð38Þ

where

Fig. 10 True and estimated temperature profiles for example problem 1. 600 sample sets are used to train each regression model (ml ¼ 600)

3034 Neural Comput & Applic (2019) 31:3023–3038

123

The functional form of Eq. (38) is greatly different from

that of the true relation in Eq. (35); there is no guarantee

that the FDM can generate true solution for this problem.

The main aim of this example problem is to investigate

whether the presented scheme can generate an accurate

solution for a nonlinear problem that the standard FDM

cannot exactly solve.

3.2.3 Results

The root-mean-squared temperature errors for example

problem 2 are summarized in Fig. 11. A similar tendency is

seen between Figs. 9 and 11 that shows the results for

example 1. That is why I do not discuss the results for

example 2 in detail.

Unlike example problem 1, the FDM’s discrete equation

is not perfectly the same as the true one in example 2 as

explained in Sect. 3.2.2.3. Therefore, the FDM solution for

example 2 generates a temperature error larger than 0.001�.
Similar to example 1, both the LOESS model trained by

the biased data and the single-hidden-layer NN model can

accurately solve example 2 and cause errors smaller than

0.001�.

3.3 Example 3: composite rod

3.3.1 Problem statement

Let me consider a composite rod having a periodic unit cell

consisting of two materials (materials A and B) as shown in

Fig. 12. The thermal conductivities of materials A and B

are:

kA ¼ uþ 0:1

kB ¼ 0:5
: ð40Þ

I simulate four types of composite rods that have 2, 5,

10, 20 unit cells and 3, 6, 11, 21 discrete points (i.e.,

n ¼ 3; 6; 11; 21), respectively.

Instead of the FDM analysis, I apply the homogenization

method to this problem. The homogenization is one of

typical multiscale modeling techniques and will be illus-

trated in Sect. 3.3.2.4.

The objectives of this example problem are as follows:

• To assess the applicability of the presented scheme to a

heterogeneous field,

• To compare the presented scheme with the homoge-

nization method when simulating various heteroge-

neous fields that have different numbers of unit cells,

and

• To investigate whether a regression model can approx-

imately express the true function ui ¼ f ui�1; uiþ1ð Þ for a
problem whose true function in closed form does not

exist (see Sect. 3.3.2.1).

Fig. 11 Root-mean-squared temperature errors compared with the

true solution when solving example problem 2. 600 sample sets are

used to train each regression model (ml ¼ 600)

Fig. 12 Example problem 3: a composite rod constructing of two

kinds of materials

r ¼
25 u2i�1 þ u2iþ1

� �
þ 20 ui�1 þ uiþ1ð Þ � 10ui�1uiþ1 � 8

180

s ¼
�115 u3i�1 þ u3iþ1

� �
� 165 u2i�1 þ u2iþ1

� �
� 48 ui�1 þ uiþ1ð Þ þ 15 ui�1u

2
iþ1 þ uiþ1u

2
i�1

� �
þ 30ui�1uiþ1 þ 2

540
:

ð39Þ

Neural Comput & Applic (2019) 31:3023–3038 3035

123

3.3.2 Computational procedure

3.3.2.1 True solution Because the analytical solution of

utruei cannot be obtained for this example, I numerically

obtain the approximate solution of utruei . By taking equi-

librium of heat flow rate at the interface between materials

A and B into consideration, I derive the relational

expression of ui�1; ui; uiþ1:

ui ¼
ffi
0:35þ ui�1 þ 0:1ð Þ2þui

q

�
ffi
0:35þ ui þ 0:1ð Þ2þuiþ1

q
þ uiþ1: ð41Þ

ui remains in both sides of the equation, which means that

ui is not available in closed form. Therefore, I cannot

completely solve Eq. (41) for ui and ui is not expressible as

a function of only ui�1 and uiþ1. To determine utruei , I

formulate Eq. (41) for i ¼ 2; . . .; n� 1 and solve them

using a nonlinear system solver (fsolve command,

MATLAB software, R2014a).

3.3.2.2 Proposed scheme Even when the rod is com-

posed of multiple kinds of materials, I do not have to

separately model the materials. In other words, I need not

arrange discrete points at every material interface in the

presented model. I only have to arrange points at ends of

the unit cells as shown in Fig. 12. Therefore, I can decrease

the total number of points in the simulated field. This is one

of the main advantages of the presented scheme.

When preparing sample sets of ui�1; ui; uiþ1, I numer-

ically solve Eq. (41) for various kinds of sets of ui�1 and

uiþ1 to obtain ui. The rest of the computational procedure is

excluded here because it is exactly the same as that illus-

trated in Sect. 3.1.2.2.

3.3.2.3 FDM I do not apply the FDM to this numerical

example.

3.3.2.4 Homogenization method The homogenized ther-

mal conductivity of the rod, khomo, can be obtained without

numerical analysis. This is because khomo is expressed as a

harmonic mean of kA and kB, i.e.,

khomo ¼
2kAkB

kA þ kB
¼ uþ 0:1

uþ 0:6
: ð42Þ

Substituting k ¼ khomo into Eq. (4), it follows that,

u� 0:5 ln uþ 0:6ð Þ ¼ C1xþ C
00

0 for 0� x� 1:

By imposing the boundary conditions, Eq. (15), I obtain

u� 0:5 ln uþ 0:6ð Þ � 1þ 0:5 ln 0:375ð Þxþ 0:5 ln 0:6 ¼ 0

for 0� x� 1:

ð43Þ

Subsequently, I substitute x ¼ xi (i.e., the location of

discrete point i) and solve the above equation employing

the nonlinear solver, the temperature at point i, uhomo
i , can

be determined. I compare the solution of the homoge-

nization method, uhomo, with utrue and upre.

uhomo ¼ uhomo
2 � � � uhomo

n�1

� �T
: ð44Þ

3.3.3 Results

Figure 13 presents the root-mean-squared temperature

errors for example problem 3. The regression models using

the LOESS and the NN stably perform and provide valid

solutions even though the unbiased training data are used.

When the length ratio of the unit cell to the entire rod is

sufficiently small (i.e., the rod has many unit cells), the

composite rod is more likely to behave as a homogeneous

rod. If the ratio is infinitely close to zero, it becomes a

complete homogeneous rod whose conductivity is equiva-

lent to khomo in Eq. (42). That is why the error of the

homogenized model increases with the reduction in the

number of unit cells (i.e., n� 1). Especially when the rod is

composed of only two units (i.e., n ¼ 3), the homogenized

model causes a temperature error greater than 0.01�.
Conversely, when n is smaller, the presented regression

models tend to generate a smaller error. The reasons are as

follows. The temperature difference between the two ends

of the rod is fixed at 1�. When the rod has a small number

of units, the interval between the discrete points is long and

temperature difference between neighboring points is large.

Additionally, all the regression models used in this problem

are trained by unbiased data, which are uniformly sampled

within a range of 0� ui�1; uiþ1 � 1. Consequently, when n

is small, even the unbiased data cover the wide range of

temperature difference and train the regression models

sufficiently thoroughly. However, when n is large, the

unbiased data would include many worthless sets (ui�1 is

far from uiþ1) and may not be effective to enhance the

regression accuracy. In this case, the biased data would be

more appropriate than the unbiased data. That is why all

the regression models trained by the unbiased data cause

non-negligible errors in the case that n ¼ 21.

Because the presented approach simulates the composite

rod without homogenization, the approach does not gen-

erate error due to the size effect. Therefore, the presented

model using a proper regression function would be able to

generate an accurate solution as long as a sufficient amount

of valid training sample sets are provided.

3036 Neural Comput & Applic (2019) 31:3023–3038

123

4 Conclusions

This manuscript proposed a rapid and low-cost nonlinear

numerical solver based on a regression analysis approach.

Because the solver requires no interactive and coupled

multiscale computation, it can solve a nonlinear problem

without iterative multiscale simulation for each conver-

gence computation.

In the proposed solver, a simulation field is spatially

discretized and represented by a finite number of points. On

the basis of training data that are obtained from either pre-

analyses or experiments, I construct and train regression

models that express nonlinear relationships among neigh-

boring points. Each regression model functions as a dis-

cretized equation for nonlinear differential

equation(s) governing the field. This manuscript employed

artificial NNs and standard polynomial functions as the

regression models. By constructing the ‘‘regression discrete

equations’’ for all points in the field and solving them, all

dependent-variable values can be obtained.

I applied the presented solver to nonlinear one-dimen-

sional steady-state heat conduction fields. As a result, as

long as a sufficient amount of valid training data was

prepared, the presented numerical models (which were

constructed by assembling the regression functions based

on the high-order polynomials, LOESS, and NNs) provided

sufficiently precise solutions for the following example

problems:

• A problem where functional form of the true relation

among temperature values at neighboring three points

(ui�1; ui; uiþ1) is different from those of the regression

models (Sect. 3.1),

• A problem that the standard FDM cannot exactly solve

(Sect. 3.2), and.

• A problem where ui is not expressible as a function of

ui�1 and uiþ1 (Sect. 3.3).

However, to put it the other way around, the above-

presented models were invalid and generated a non-negli-

gible computational error when training data were insuffi-

cient or included many worthless sample sets.

When analyzing a heterogeneous field having a periodic

microstructure, the homogenization approach generally

causes an error related to the scale size effect. However,

even if the scale size ratio of the microstructure to the

entire field is not negligible, the solutions of the presented

scheme are not affected by the ratio. This is because the

presented technique simulates the entire field without

homogenization.

Note that the current work is only a first attempt at

presenting neural network-based discretization scheme for

nonlinear differential equations. This article focuses on

Fig. 13 Root-mean-squared

temperature errors compared

with the true solution when

solving example problem 3. 600

unbiased sample sets are used to

train each regression model

(ml ¼ 600). ‘‘Homo’’ means the

result of the homogenization

method. All the NN models

have a single hidden layer

consisting of 25 neurons

Neural Comput & Applic (2019) 31:3023–3038 3037

123

only quite simple nonlinear problems; there is no guarantee

that it would generate an accurate solution for any non-

linear problem.

By combining the presented scheme with deep learning

techniques (i.e., a neural network consisting of many hid-

den layers), I may be able to solve highly complicated

problems related to elastoplasticity, fracture, and multi-

physics at low computational cost. Nonlinear solver using

deep learning methodology can be developed as a future

task.

Acknowledgements This work was supported by JSPS KAKENHI

Grant Number 17K14144.

References

1. Alkım E, Gürbüz E, Kılıç E (2012) A fast and adaptive automated

disease diagnosis method with an innovative neural network

model. Neural Netw 33:88–96

2. Asproulis N, Drikakis D (2013) An artificial neural network-

based multiscale method for hybrid atomistic-continuum simu-

lations. Microfluid Nanofluid 15:559–574

3. Barkaoui A, Chamekh A, Merzouki T, Hambli R, Mkaddem A

(2014) Multiscale approach including microfibril scale to assess

elastic constants of cortical bone based on neural network com-

putation and homogenization method. Int J Num Methods

Biomed Eng 30(3):318–338

4. Chyzhyk D, Savio A, Graña M (2015) Computer aided diagnosis

of schizophrenia on resting state fMRI data by ensembles of

ELM. Neural Netw 68:23–33

5. Demuth H, Beale M (2017) Neural network toolbox for use with

MATLAB, User’s Guide Version 4, Section 14, 294–296

6. Deng L, Hinton G, Kingsbury B (2013) New types of deep neural

network learning for speech recognition and related applications:

an overview. ICASSP

7. Gaikwad SK, Gawali BW, Yannawar P (2010) A review on

speech recognition technique. Int J Comput Appl 10(3):16–24

8. Goltsev A, Gritsenko V (2012) Investigation of efficient features

for image recognition by neural networks. Neural Netw 28:15–23

9. Hambli R, Chamekh A, Hadj B, Salah H (2006) Real-time

deformation of structure using finite element and neural networks

in virtual reality applications. Finite Elem Anal Des

42(11):985–991

10. Hambli R, Katerchi H, Benhamou C-L (2011) Multiscale

methodology for bone remodelling simulation using coupled

finite element and neural network computation. Biomech Model

Mechanobiol 10:133–145

11. Harlow FH, Welch JE (1965) Numerical calculation of time-

dependent viscous incompressible flow of fluid with free surface.

Phys Fluids 8(12):2182–2189

12. Jenkins WM (1997) An introduction to neural computing for the

structural engineer. Struct Eng 75(3):38–41

13. Krose B, Smagt PVD (1996) An introduction to artificial neural

networks. The University of Amsterdam, Amsterdam

14. Petersen ME, Ridder DD, Handels H (2002) Image processing

with neural networks—a review. Pattern Recognit

35(10):2279–2301

15. Rafiq MY, Bugmann G, Easterbrook DJ (2001) Neural network

design for engineering applications. Comput Struct

79(17):1541–1552

16. Ren W, Weinan E (2005) Heterogeneous multiscale method for

the modeling of complex fluids and micro-fluidics. J Comput

Phys 204(1):1–26

17. Sainath TN, Kingsbury B, Saon G, Soltau H, Mohamed A-R,

Dahl G, Ramabhadran B (2015) Deep convolutional neural net-

works for large-scale speech tasks. Neural Netw 64:39–48

18. Tompson J, Schlachter K, Sprechmann P, Perlin K (2017)

Accelerating eulerian fluid simulation with convolutional net-

works. arXiv:1607.03597v6 [cs.CV] 22 Jun 2017

19. Topping BHV, Bahreininejad A (1992) Neural computing for

structural mechanics. Saxe Coburg, Coburg

20. Unger JF, Konke C (2008) Coupling of scales in multiscale

simulation using neural networks. Comput Struct

86(21–22):1994–2003

3038 Neural Comput & Applic (2019) 31:3023–3038

123

http://arxiv.org/abs/1607.03597v6

	Neural network-based discretization of nonlinear differential equations
	Abstract
	Introduction
	Computational procedure
	True solution
	Presented scheme
	Outline
	Regression models

	Finite difference method (FDM)

	Numerical example problems
	Example 1: homogeneous rod (k\left(u \right) = k_{0} + k_{1} u)
	Problem statement
	Computational procedure
	True solution
	Presented scheme
	FDM

	Results

	Example 2: Homogeneous rod (k\left(u \right) = k_{0} + k_{1} u +\, k_{2} u^{2})
	Problem statement
	Computational procedure
	True solution
	Presented scheme
	FDM

	Results

	Example 3: composite rod
	Problem statement
	Computational procedure
	True solution
	Proposed scheme
	FDM
	Homogenization method

	Results

	Conclusions
	Acknowledgements
	References

