
ORIGINAL ARTICLE

A facial expression recognition method based on ensemble of 3D
convolutional neural networks

Wenyun Sun1 • Haitao Zhao2 • Zhong Jin1

Received: 5 May 2017 / Accepted: 4 October 2017 / Published online: 20 October 2017

� The Natural Computing Applications Forum 2017

Abstract In this paper, a general framework for 3D con-

volutional neural networks is proposed. In this framework,

five kinds of layers including convolutional layer, max-

pooling layer, dropout layer, Gabor layer and optical flow

layer are defined. General rules of designing 3D convolu-

tional neural networks are discussed. Four specific net-

works are designed for facial expression recognition.

Decisions of the four networks are fused together. The

single networks and the ensemble network are evaluated on

the Extended Cohn–Kanade dataset and achieve accuracies

of 92.31 and 96.15%. The ensemble network obtains an

accuracy of 61.11% on the FEEDTUM dataset. A reusable

open-source project called 4DCNN is released. Based on

this project, implementing 3D convolutional neural net-

works for specific tasks will be convenient.

Keywords Deep learning � Convolutional neural network �
Ensemble learning � Facial expression recognition

1 Introduction

Research on facial expression was started by psychologists.

Facial Action Coding System (FACS) [7] and Emotional

Facial Action Coding System (EMFACS) [8] were pro-

posed by Ekman and Friensen. In their studies, facial

expressions are defined as several action units (AUs)

associated with six basic emotions. In the community of

computer vision, quite a few quantitative studies have been

devoted to analyzing expressions in images or videos [45].

One of the most important methods is the Active Appear-

ance Models (AAMs) [4] in which a statistical model was

defined using 68 facial landmarks. Facial landmarks are

easy to be understood and manipulated. Action units and

emotional labels can be inferred from these facial land-

marks by rules [23]. Besides the facial landmark based

methods, using the global or local appearance of the face is

another way to recognize the expressions

[14, 20, 21, 30, 40, 50].

In the research of facial expression recognition, perfor-

mance can be improved by making the most use of the

structures in 3D space. Recently, 3D face tracker is used

for pose independent and texture independent facial

expression recognition [6]. 3D Gabor filters are used to

extract features from 3D scanning data, keeping invariant

to head pose, clutter and lighting condition [42]. Local

Binary Pattern histograms from Three Orthogonal Planes

(LBP-TOP) are used to extract spatial–temporal features

for recognizing facial expressions in movie clips [5]. The

extra dimension plays an important role in these studies.

This paper is extended from our previous work [32]. The

main contributions of this paper include:

• Convolutional layer, max-pooling layer, dropout layer,

Gabor layer and optical flow layer are defined for 3D

data. The general rules of designing 3D convolutional

neural networks are discussed.

• Four networks are proposed for facial expression recog-

nition. After they have been trained separately, decisions

of the four networks are fused together. Experiment

result shows that these networks work well. The single

networks and the ensemble network are evaluated on the

& Zhong Jin

zhongjin@njust.edu.cn

1 Nanjing University of Science and Technology, No. 200,

Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu, China

2 East China University of Science and Technology, No. 130,

Meilong Road, Xuhui District, Shanghai, China

123

Neural Comput & Applic (2019) 31:2795–2812

DOI 10.1007/s00521-017-3230-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3230-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3230-2&domain=pdf

Extended Cohn–Kanade dataset, achieve accuracies of

92.31 and 96.15%. The performance outperforms the

state-of-the-art [14, 20, 21, 40, 50]. The ensemble

network obtains accuracies of 61.11%on the FEEDTUM

dataset.

The remainder of this paper is organized as follows. In

Sect. 2, related work on deep learning and expression

recognition is surveyed. Section 3 gives the framework of

3D CNNs. In Sect. 4, a new initialization method for neural

networks is proposed. In Sect. 5, four networks are pro-

posed to solve the facial expression recognition problem.

Experiments are carried out to evaluate the proposed

method on posed and spontaneous facial expression data-

sets. Results are analyzed and compared with the previous

work. Finally, conclusions are presented in Sect. 6.

2 Related work

2.1 Convolutional neural networks

Deep learning-based methods have been applied to many

video analysis tasks including human genders recognition

[46], English-to-Chinese translation [47], moving object

recognition [11], static hand gesture recognition [24], etc.

In particular, many studies employed convolutional neural

networks (CNNs) to achieve superior performances. In a

standard CNN [19], the element at position (x, y) in the c-th

feature map of the l-th convolutional layer, denoted as v
x;y
l;c ,

is given by

v
x;y
l;c ¼ tan h

XCl�1

C¼1

XPl

p¼1

XQl

q¼1

W
p;q
l;c;Cv

ðxþp�1Þ;ðyþp�1Þ
ðl�1Þ;C þ bl;c

 !
;

ð1Þ

where tan h is the hyperbolic tangent activation function,

bl;c is the bias for the c-th feature map. Cl�1 is the number

of feature maps in the ðl� 1Þ-th layer. C indexes over the

set of feature maps in the ðl� 1Þ-th layer connected to the

current feature map.W
p;q
l;c;C is the value at the position (p, q)

of the kernel connected to the C-th feature map. Pl and Ql

are the height and width of the kernel, respectively.

2.2 3D convolutional neural networks

3D convolutional neural networks were proposed by Ji

et al. [15] for solving the human action recognition prob-

lem. It is a general method for processing spatial–temporal

data (e.g. moving object recognition [11]). Considering the

3rd dimension as the temporal dimension of a video

sequence, we can capture the motion information by 3D

convolutions. Formally, the element at position (x, y, z) in

the c-th feature map of the l-th convolutional layer, denoted

as v
x;y;z
l;c , is formulated by

v
x;y;z
l;c ¼ tan h

XCl�1

C¼1

XPl

p¼1

XQl

q¼1

XRl

r¼1

W
p;q;r
l;c;C v

ðxþp�1Þ;ðyþq�1Þ;ðzþr�1Þ
ðl�1Þ;C þ bl;c

 !
;

ð2Þ

where W
p;q;r
l;c;C is the value at the position (p, q, r) of the

kernel connected to the C-th feature map in the previous

layer. Pl, Ql and Rl are the height, width and depth of the

kernel respectively.

In this paper, fully connected layer and 1D/2D/3D

convolutional layers are reformulated in a general form.

The close relationship among them is discovered.

2.3 CNNs for facial expression recognition

Facial expression is an interesting research subject in the

community of computer vision. There are related tasks like

classification, detection, manipulation and transfer. In this

paper, our attention is focused on solving the problem of

classifying faces into six basic emotional categories using

3D convolutional neural networks.

As we know, CNNs were proposed in the 1990s. A piece

of interesting work about CNN-based expression recogni-

tion had already been done in the early days by Matsugu

et al. [23]. After Krizhevsky et al. [17] had won the Ima-

genet Large-Scale Visual Recognition Challenge 2012

(ILSVRC-2012) [27] using a novel network called Alex-

Net, deep CNNs attracted more attentions than before. Sun

et al. [30] designed an expression classifier based on the

modern CNN proposed by Krizhevsky et al. Byeon et al.

[3] designed an expression classifier based on 3D CNN

proposed by Ji et al. [15].

Both the work of Byeon et al. and this work use 3D

CNNs to solve the facial expression recognition task. The

differences between them should be clarified:

• This paper aims at proposing general definitions (see

Sect. 3.1) and designing rules (see Sect. 3.2) for 3D

CNNs rather than solving a specific task.

• In this work, an ensemble of four networks are

proposed for facial expression recognition (see

Sect. 5.1). The preprocessing steps, layer configura-

tions and loss functions of the proposed networks are

different from those of Byeon et al. Our networks

achieve superior performances (see Sects. 5.3.4, 5.4.4).

• We use Gabor layer and optical flow layer in our 3D

CNNs to extract texture feature and motion feature in

spatial–temporal space. The performance can be

extremely improved by fusing decisions supported by

both texture feature and motion feature (see

Sects. 5.3.4, 5.4.4)

2796 Neural Comput & Applic (2019) 31:2795–2812

123

3 Unified framework for 3D CNNs

In this section, a unified framework for 3D CNNs is pro-

posed. In this framework, definitions of convolutional

layers, max-pooling layers and dropout layers are extended

for 3D data. Low-level image feature extractors such as

Gabor filters and optical flow calculators are defined as

CNN layers. Based on these definitions, general rules of

designing 3D convolutional neural networks are discussed.

3.1 Layers for 3D data

3.1.1 Convolutional layers for 3D data

Let us start from the fully connected layer. Denote the l-th

fully connected layer’s activation as vl 2 Rn and the pre-

vious layer’s activation as vl�1 2 Rm. A fully connected

layer can be defined as follows:

vl ¼ tan hðgðvl�1ÞÞ; ð3Þ

where

gðxÞ ¼ Wxþ b: ð4Þ

The function g plays the role of fully connected operator. It

converts a vector of m dimension to a vector of n dimen-

sion by linear transformation W 2 Rn�m. Then, the bias

b 2 Rn is added to the converted vector. After that, the

vector is activated by an element-wise nonlinear activation

function tan h (or sigmoid, maxð�; 0Þ, etc.).
The definition of the fully connected layer can be gen-

eralized to convolutional layer. Firstly, denote the elements

of gðxÞ, W, x and b as gi, Wi;j, xj and bi , ði 2
f1; 2; . . .; ng; j 2 f1; 2; . . .;mgÞ respectively. The vector-

ized fully connected operator g can be written as

gi ¼
Xm

j¼1

Wi;j � xj

 !
þ bi; i 2 f1; 2; . . .; ng: ð5Þ

Secondly, Eq. (5) is modified by replacing the scalar

multiplication operator ‘‘�’’ by vector/matrix/tensor con-

volution operator ‘‘�’’. The scalar elements gi, Wi;j, xj and

bi are also replaced by vector/matrix/tensor. Then we get

gi ¼
Xm

j¼1

Wi;j � xj

 !
þ bi; i 2 f1; 2; . . .; ng; ð6Þ

where gi 2 RdimðgiÞ1�dimðgiÞ2�����dimðgiÞD , Wi;j 2 RdimðWi;jÞ1

�dimðWi;jÞ2�����dimðWi;jÞD , xj 2 RdimðxjÞ1�dimðxjÞ2�����dimðxjÞD ,

bi 2 RdimðbiÞ1�dimðbiÞ2�����dimðbiÞD , i 2 f1; 2; . . .; ng,
j 2 f1; 2; . . .;mg. bi is a constrained vector/matrix/tensor in

which all the elements are equal.

Fully connected layer and 1D/2D/3D convolutional

layers can be defined by this general definition in the fol-

lowing specific cases:

• When D ¼ 1 and dimðgiÞ1 ¼ dimðxjÞ1 ¼ dimðWi;jÞ1 ¼
1, Eq. (6) is specialized to Eqs. (4)/(5). It describes the

fully connected layer (see Fig. 1a).

• When D ¼ 1 and dimðgiÞ1; dimðxjÞ1; dimðWi;jÞ1 > 2, it

describes the 1D convolutional layer in Time Delay

Neural Networks (TDNNs) [35] (see Fig. 1b).

• When D ¼ 2, it describes the commonly used 2D

convolutional layer (see Fig. 1c). x contains m channels

of ½x1; x2; . . .; xm�T. Each channel is a spatial image of

dimðxjÞ1 � dimðxjÞ2. g contains n channels of

½g1; g2; . . .; gn�T. Each channel is a spatial image of

dimðgiÞ1 � dimðgiÞ2. W contains n� m convolutional

kernels, whose sizes are dimðWi;jÞ1 � dimðWi;jÞ2.
From this point of view, the convolutional layer can

be considered as a fully connected layer with convo-

lutional connections.

• When D > 3, it describes the D-dimensional convolu-

tional layer which processes D-th order tensors (see

Fig. 1d).

3.1.2 Max-pooling layers for 3D data

Spatial pooling is an important procedure in CNNs. The 2D

max-pooling layer partitions a spatial image into a set of

small non-overlapping 2� 2 regions. For each region, the

maximum is output. Denote the c-th channel of the l-th

layer as vl;c 2 Rdimðvl;cÞ1�dimðvl;cÞ2 and the c-th channel of the

previous layer as vl�1;c 2 R2dimðvl;cÞ1�2dimðvl;cÞ2 . The element

at position ðx1; x2Þ of the l-th 2D max-pooling layer,

denoted as v
x1;x2
l;c , is given by

v
x1;x2
l;c ¼ max R

x1;x2
l;c

� �
; ð7Þ

where

R
x1;x2
l;c ¼ v

x0
1
;x0

2

l�1;cjx01 2 f2x1 � 1; 2x1g; x02 2 f2x2 � 1; 2x2g
n o

:

ð8Þ

The set R
x1;x2
l;c contains all elements in a 2� 2 sub-matrix.

The max/avg function outputs the maximum/mean of this

set. The 2D max-pooling layer converts vl�1 to vl channel

by channel.

Similarly, the max-pooling layer can be extended for 3D

data. Denote the c-th channel of the l-th layer as vl;c 2
Rdimðvl;cÞ1 �dimðvl;cÞ2�����dimðvl;cÞD and the c-th channel of the

previous layer as vl�1;c 2 R2dimðvl;cÞ1�2dimðvl;cÞ2�����2dimðvl;cÞD .

The element at position ðx1; x2; . . .; xDÞ of the l-th

Neural Comput & Applic (2019) 31:2795–2812 2797

123

D-dimensional max-pooling layer, denoted as v
x1;x2;...;xD
l;c , is

given by

v
x1;x2;...;xD
l;c ¼ max R

x1;x2;...;xD
l;c

� �
; ð9Þ

where

R
x1;x2;...;xD
l;c ¼ v

x0
1
;x0

2
;...;x0D

l�1;c jx0i 2 f2xi � 1; 2xig; i 2 1; 2; . . .;D
n o

:

ð10Þ

The set R
x1;x2;...;xD
l;c contains all elements in a 2� 2� � � � � 2

sub-tensor. The max/avg function outputs the maximum/

mean of this set. When D ¼ 1/D ¼ 2/D ¼ 3, Eqs. (9), (10)

describe 1D/2D/3D max-pooling layer in TDNNs/2D

CNNs/3D CNNs. Examples are illustrated in Fig. 2.

3.1.3 Dropout layers for 3D data

Dropout is a popular method to prevent over-fitting [12].

The dropout layer is usually applied after fully connected

layers (see Fig. 3a). Denote the c-th activation of the l-th

dropout layer as vl;c 2 R and the c-th activation of the

previous layer as vl�1;c 2 R. The element-wise dropout

layer can be defined as

vl;c ¼ al;cvl�1;c; ð11Þ

where

al;c �Bð1; 0:5Þ: ð12Þ

The al;c is the random gate coefficient of the c-th activa-

tion. When al;c ¼ 1, the c-th activation of the l-th layer

keeps the same as that of the previous layer. Otherwise, the

c-th activation of the l-th layer is set to zero, and the c-th

activation of the previous layer is suppressed. After

applying element-wise dropout, the number of activations

in the l-th layer keeps the same as that of the previous

layer.

The dropout layer can also be used for processing vec-

tors/matrices/tensors. Denote the c-th channel of the l-th

dropout layer as vl;c 2 Rdimðvl;cÞ1�dimðvl;cÞ2�����dimðvl;cÞD and the

c-th channel of the previous layer as vl�1;c 2 Rdimðvl;cÞ1

�dimðvl;cÞ2�����dimðvl;cÞD . The D-dimensional dropout layer can

be defined as

vl;c ¼ al;cvl�1;c; ð13Þ

where

g3

g2

g1

W32

W22x2

x1

x1

x2

x1

g3

g2

g1

W12

W11

W21

W32

W22

W31

x2

g3

g2

g1

W12

W11

W21

W32

W22

W31

x2

x1

g3

g2

g1

W12

W11

W21

W32

W22

W31

(a) (b)

(c) (d)

1 1

1 1

b1

b2

b3

b1

b2

b3

b1

b2

b3

b1

b2

b3

W12

W31

W21

W11

Fig. 1 Examples of

convolutional layer without

element-wise activating. a Fully

connected layer, b 1D

convolutional layer, c 2D

convolutional layer, d 3D

convolutional layer

2798 Neural Comput & Applic (2019) 31:2795–2812

123

al;c �Bð1; 0:5Þ: ð14Þ

The al;c is the random gate coefficient of the c-th channel.

When al;c ¼ 1, the c-th channel of the l-th layer keeps the

same as that of the previous layer. Otherwise, the c-th

channel of the l-th layer is set to zero tensor, and the c-th

channel of the previous layer is suppressed. When D ¼ 1/

D ¼ 2/D ¼ 3, the dropout layer defined by Eqs. (13), (14)

can be applied after 1D/2D/3D convolutional layers or 1D/

2D/3D max-pooling layers. Examples are illustrated in

Fig. 3b–d.

3.1.4 Gabor layers for 3D data

2D Gabor filters are widely used in image processing

applications. They are biologically explainable for the

evidence that simple cells in the primate visual cortex

behave similarly to Gabor functions [18]. Some research

findings show that there are many Gabor-like kernels in the

first layer of a CNN which is well trained on large-scale

natural image datasets [43, 44]. But little research has been

devoted to Gabor filters for tensors except [25, 38, 42].

A Gabor filter is defined by a sinusoidal wave multiplied

by a Gaussian function. In 3D space, Gabor filters is

defined as

gr;m;h;/ðx; y; zÞ ¼ nrðx; y; zÞwm;h;/ðx; y; zÞ; ð15Þ

where

nrðx; y; zÞ ¼
1

ð2pÞ3=2r3
exp � x2 þ y2 þ z2

2r2

� �
; ð16Þ

wm;h;/ðx; y; zÞ ¼ exp i2p u0xþ v0yþ w0zð Þ½ �; ð17Þ

where

u0 ¼ m sin h cos/; v0 ¼ m sin h sin/;w0 ¼ m cos h: ð18Þ

In Eq. (16), r determines the scale of the Gaussian function

n. In Eqs. (17), (18), the h and the / are the yaw and pitch

angles which determine the orientation of the wave func-

tion w. m determines the frequency of the wave function w.

Vl-1,2
Vl-1,2

(a) (b) (c)

Vl,2 Vl,2

max/avg

Vl-1,3
Vl-1,3 Vl,3 Vl,3

max/avg

Vl-1,1
Vl-1,1 Vl,1 Vl,1

max/avgmax/avg

max/avg

max/avg

Vl-1,1 Vl,1

Vl-1,2 Vl,2

Vl-1,3 Vl,3

max/avg

max/avg

max/avg

Fig. 2 Examples of max-

pooling layers. a 1D max-

pooling layer, b 2D max-

pooling layer, c 3D max-pooling

layer

Vl-1,3 Vl,3

al,3=1

Vl-1,2 Vl,2

al,2=0

Vl-1,1 Vl,1

al,1=1

=Vl-1,3

=0

Vl-1,3 Vl,3
al,3=1

Vl-1,2 Vl,2
al,2=0

Vl-1,1 Vl,1
al,1=1

=Vl-1,1

=0

=Vl-1,3

=Vl-1,1

Vl-1,3

Vl-1,2 Vl,2

Vl-1,1 Vl,1
al,1=1

=Vl-1,1

Vl,3
al,3=1

al,2=0

al,1=1

=Vl-1,1

=0

=Vl-1,3

(c) (d)

(a) (b)

Vl-1,1 Vl,1

al,2=0

=0

Vl-1,2 Vl,2

al,3=1

=Vl-1,3

Vl-1,3 Vl,3

Fig. 3 Examples of dropout layers. a Element-wise dropout layer,

b 1D dropout layer, c 2D dropout layer, d 3D dropout layer

Neural Comput & Applic (2019) 31:2795–2812 2799

123

A 3D Gabor filter bank is a set of filters created by

varying r, m, h and /. It can be formally defined as

G ¼ gr;m;h;/jr 2 R; m 2 N; h 2 H;/ 2 U
� �

; ð19Þ

where R, N, H and U limit r, m, h and / in reasonable

ranges.

To simplify the implementation, we consider the dis-

crete 3D Gabor filter as a special kind of 3D convolutional

layer. This trick can be practically played when some

requirements are satisfied:

• The layer accepts single channel as its input and

produces multiple channels as its output.

• Each convolutional kernel Wi;j is initialized to the i-th

bank element Gi 2 G. The element at position (p, q, r)

of the kernel, denoted as Wp;q;r
i;j , is given by

Wp;q;r
i;j ¼ Gi p� Rx � 1; q� Ry � 1; r � Rz � 1

� 	
;

ð20Þ

where i indexes over the set of the bank set. j is fixed at

1. Rx ¼ ðdimðWi;jÞ1 � 1Þ=2, Ry ¼ ðdimðWi;jÞ2 � 1Þ=2,
Rz ¼ ðdimðWi;jÞ3 � 1Þ=2 are the radiuses of the Gabor

kernel along x-axis, y-axis and z-axis.

• Convolutional kernels are fixed during training.

• The bias vector is initialized to zeros and fixed during

training.

• The identity activation function f ðxÞ ¼ x is used.

Gabor filters for higher-order tensor ([3D) can be defined

in the same manner with more coordinates ðx; y; z; . . .Þ and
more orientation angles ðh;/; . . .Þ.

3.1.5 Optical flow layers for 3D data

The Horn–Schunck method [13] can be used to calculate

dense optical flow fields for gray-scale videos. The field

contains 2D motion vectors in each pixel. These vectors are

calculated from a current gray-scale frame and its previous

frame.

In 3D CNNs, an optical flow layer accepts a fixed-length

gray-scale video clip vl�1 2 Rw�h�T�1 as its input and

produces an output vl 2 Rw�h�ðT�1Þ�2. Denote the c-th

channel of the input at time t as vtl�1;c 2 Rw�h and the c-th

channel of the output at time t as vtl;c 2 Rw�h. The optical

flow layer can be defined as follows:

vtl;1 ¼ ox vtl�1;1; v
tþ1
l�1;1

� �

vtl;2 ¼ oy vtl�1;1; v
tþ1
l�1;1

� � ð21Þ

where ox and oy are functions calculating the magnitudes of

the optical flow field along x-axis and y-axis.

3.2 General 3D CNNs

A 3D CNN consists of extended layers defined in Sect. 3.1

(convolutional, max-pooling, fully connected, dropout,

Gabor and optical flow) and standard layers (flatten, soft-

max norm, cross-entropy loss, mean squared error loss,

etc.) [17, 19]. As an example illustrated in Fig. 4, a flatten

layer is placed in the middle of the network. It reshapes and

concatenates multiple tensors into a single vector. The

flatten layer divides the whole network into two parts: the

convolutional part on the left and the fully connected part

on the right.

The input and output of the layers on the left are sets of

3rd-order tensors, which are usually called feature maps or

channels. An optical flow layer or a Gabor layer is often

placed at the beginning of the network. They calculate low-

level dense image features. The cropping layer randomly

crops a sub-tensor with specified size for data augmenta-

tion. Stacked pairs of convolutional layer and max-pooling

layer learn mid-level and high-level features from labeled

data.

Layers on the right have the same functions as the ones

in standard fully connected neural networks. Fully con-

nected layers are good at logical reasoning based on the

deep features learned by the convolutional part. According

to Eq. (6), the fully connected layers can be considered as a

specific case of the general convolutional layers, in which

spatial size of the activation is 1� 1� � � � � 1 and spatial

size of the convolution kernel is 1� 1� � � � � 1. For better

understanding, the fully connected layer illustrated in

Fig. 4 follows the regular form in [19]. It is intrinsically

equivalent to the 1� 1� � � � � 1 convolution layer. A

softmax normalization layer or a cross-entropy loss layers

is often attached to the end of 3D CNNs for solving clas-

sification problem. Sometimes, a mean squared error layer

is used for solving regression problems. Dropout layers can

be inserted after fully connected layers, convolutional

layers and max-pooling layers for improving the quality of

the middle representations.

The objective of the training algorithm is to minimize

the loss with respect to the parameters. By making sure all

these layers are derivable, all gradients of the loss with

respect to the parameters can be calculated using the chain

rule. Then the gradient descent method can be applied to

solve this optimization problem. The Stochastic Gradient

Descent (SGD) with mini-batches method is good at

making full use of the parallel computing ability of the

modern computers. It is widely used for training neural

networks on large-scale datasets.

The depth of the network is always the central topic in

deep learning. Encouraged by the recent advances in deep

2800 Neural Comput & Applic (2019) 31:2795–2812

123

learning [28, 33], we have investigated some very deep

networks. Unlike the natural image tasks, the facial

expression recognition task has very limited sizes of the

datasets, counts of the categories and variations of the

inputs. It is not to say the expression recognition problem is

easy to solve. But at least such deep networks containing

16–19 layers with millions of trainable parameters are

unnecessary. Theoretically, as the network goes deeper,

more abstract features can be learned. But a very deep

network could cause problems like over-fitting, degrada-

tion of training accuracy, larger meta-parameter set, higher

computation cost, vanishing/exploding gradient, etc. These

problems will make the network difficult to train. For the

expression recognition problem, we suggest using network

containing 2–4 convolutional layers and 1–2 fully con-

nected layers.

4 Initialization method for neural networks

Some research findings [9, 10] show that good initialization

methods may be helpful in keeping activations and gradi-

ents stable, thus making training faster. In these studies, it

assumes that the data obey the standard normal distribu-

tion. The activations’ distribution can be estimated by the

inputs’ distribution. The gradients’ distribution can be

estimated by the distribution of the gradients in the next

layer. By adjusting the standard deviation of the random

initial values in each layer, the activations and gradients

can be controlled in a reasonable range (see Fig. 5).

But in practice, it is found that the assumption is not

always satisfied. The dataset often does not obey the

standard normal distribution. The difference between the

actual distribution and the estimated distribution is

increased as the layer goes deeper. So the initialization

methods based on the standard normal distribution

assumption become very sensitive.

Furthermore, the method of Glorot et al. [9] is based on

the assumption that the activation function is tan h or

sigmoid. This assumption is invalid when Rectified Linear

Unit (ReLU) or Parametric Rectified Linear Unit (PReLU)

is used. The method is improved to meet the requirement of

the network by He et al. [10]. But, the improved method is

still unsuitable for networks containing various kinds of

non-standard layers (e.g. networks described in Sect. 5.1).

To this end, a new initialization method for neural net-

works is proposed.

Inspiring by the method of Glorot et al. [9] and He

et al. [10], we use several trials to determine the standard

deviation of the initial parameters to keep the activations

and gradients stable in each layer. The key of initializa-

tion is to determine a standard deviation to keep the

activations stable. Consider two extreme examples: A

convolutional kernel sampled from Nð0; 10002Þ may lead

the activations to be saturated. But a convolutional kernel

sampled from a small standard deviation (e.g.

Nð0; 0:0012Þ) may lead the signal to fall into the linear

region of the activation function and make the training

slow. The optimal standard deviation may be found

between these two examples. We search the optimal

standard deviation by these steps:

• Initialize each element of the convolutional kernels of

the first layer to a random value sampled from the

normal distribution with zero means and a predefined

large standard deviation.

• Initialize the bias vector of the first layer to zeros.

• Perform the feed-forward pass using a large mini-batch.

• Calculate the histogram of the activations in the first

layer.

• If too many activations in the first layer are saturated

(e.g. [0:95 or \� 0:95 when using tan h activation

function), regenerate the kernels with a smaller stan-

dard deviation and try again.

• Otherwise, this standard deviation is chosen for the first

layer.

• A greedy layer-wise scheme is used to initialize the

whole network. The rest layers can be initialized in the

Feature Map

Feature Map

Feature Map

...

...

Feature Map

Feature Map

Feature Map

...

...

Feature Map

Feature Map

Feature Map

...

...

Feature Map

Feature Map

Feature Map

…...

…...

Feature Map

Feature Map

Input Op�cal-flow Rand-crop Conv Max-pool Dropout Conv Max-pool Dropout Fla�en Full-connected

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

…

…

…

Input

128*128*16 2@128*128*16 2@110*110*16 20@104*104*12 20@52*52*6 20@52*52*6 24@48*48*2 24@24*24*1 24@24*24*1 13824 6 1

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map

...

...

Feature Map

Feature Map

Feature Map

…...

…...

W

Tensor part Vector part

So�-max Cross
Norm entropy

Fig. 4 An example of 3D CNN

Neural Comput & Applic (2019) 31:2795–2812 2801

123

same manner with the standard deviations of the

previous layers fixed.

As concluded by He et al. [10], if an initialization method

scales the forward signal properly, it also has the same effect

on the backward signal, or vice versa. The pseudo-code of the

proposed method is summarized in Algorithm 1.

Although the new method is simple and just looks like

an engineering trick, it considers the real distribution of

data in specific domains. This property is not ensured by

the existing methods [9, 10]. Besides, the proposed method

can be easily extended to new networks built from a wide

variety of novel layers without caring about the details.

5 Experiments

5.1 Network designments

As listed in Tables 1, 2, 3 and 4, four different networks are

proposed to solve the expression classification problem,

namely 3DCNN-A, 3DCNN-B, 3DCNN-C and 3DCNN-D.

They are wished to make complementary predictions. The

major difference between the four networks is their low-

level feature extractors. 3D Gabor layers are used in

3DCNN-A and 3DCNN-B. Optical flow layers are used in

3DCNN-C and 3DCNN-D. It means that their predictions

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

×104

0

2

4

6

8

(a)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

×104

0

2

4

6

8

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5

×104

0

2

4

6

8

(c)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

×104

0

1

2

3

4

(d)

-30 -20 -10 0 10 20 30

×104

0

2

4

6

8

(e)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

×105

0

2

4

6

8

(f)

Fig. 5 Histogram of the input and output of activation functions. a,
b Bad initialization, the activation function working in linear region,

c, d good initialization, the activation function working in nonlinear

region, e, f bad initialization, the activation function working in

saturated region

Algorithm 1: Initialization algorithm.
Input: a large standard deviation σmax, allowed saturation rate threshold α, decay
speed of the standard deviation β

Output: standard deviation of convolutional kernel in each layer σ1, σ2, ..., σL

for each layer-i do
σi := σmax

repeat
σi := β × σi

the i-th convolutional kernel ∼ N(0, σ2
i)

the i-th bias vector := 0
calculate the activations in the i-th layer
calculate histogram of the activations in the i-th layer
saturation rate := the number of saturated elements

the number of all elements

until saturation rate � α;
end

2802 Neural Comput & Applic (2019) 31:2795–2812

123

are made according to different views of the data, namely

the texture and the motion. The decisions of 3DCNN-A and

3DCNN-B are based on facial appearances, and the deci-

sions of 3DCNN-C and 3DCNN-D are based on facial

motions. Moreover, there are several minor differences

including the depths of convolutional/fully connected lay-

ers, the receptive field sizes of the convolutional layers, the

numbers of output channels of the convolutional layers,

and the activation functions.

Although four networks can work well independently,

the performance can be further improved by decision-level

fusion. After all the networks have been trained on dif-

ferent views of the data separately, the decisions supported

by each network (activations of the normalized softmax

layer, probabilities of six categories) are fused together to

make the final prediction.

The symmetry of the face should also be considered.

Decisions according to the frontal view and the mirrored

view are also fused together. The pipeline is outlined in

Fig. 6.

5.2 Low-level feature extractor designments

In the proposed four networks, 3D Gabor layers and optical

flow layers are used to extract the low-level features in

spatial–temporal space. The Gabor filter bank is created by

varying standard deviation r, frequency m, yaw h and pitch

Table 1 3DCNN-A
Layer name Output dimension Number of parameters

Input 128 9 128 9 5 9 1 –

3D Gabor filter 118 9 118 9 1 9 80 –

2D convolutional 112 9 112 9 1 9 8 7 9 7 9 1 9 80 9 8 ? 8 9 1

2D max-pool 56 9 56 9 1 9 8 –

2D convolutional 52 9 52 9 1 9 16 5 9 5 9 1 9 8 9 16 ? 16 9 1

2D max-pool 26 9 26 9 1 9 16 –

2D convolutional 22 9 22 9 1 9 16 5 9 5 9 1 9 16 9 16 ? 16 9 1

2D max-pool 11 9 11 9 1 9 16 –

Flatten 1 9 1 9 1 9 1936 –

Fully connected 1 9 1 9 1 9 25 25 9 1936 ? 25 9 1

Element-wise dropout 1 9 1 9 1 9 25 –

Fully connected 1 9 1 9 1 9 6 6 9 25 ? 6 9 1

Softmax norm 1 9 1 9 1 9 6 –

Cross entropy loss 1 –

Total – 89,581

Table 2 3DCNN-B
Layer name Output dimension Number of parameters

Input 128 9 128 9 5 9 1 –

3D Gabor filter 118 9 118 9 1 9 80 –

Randomly cropping 116 9 116 9 1 9 80 –

2D max-pool 58 9 58 9 1 9 80 –

2D convolutional 52 9 52 9 1 9 16 7 9 7 9 1 9 80 9 16 ? 16 9 1

2D max-pool 26 9 26 9 1 9 16 –

2D convolutional 20 9 20 9 1 9 16 7 9 7 9 1 9 16 9 16 ? 16 9 1

2D max-pool 10 9 10 9 1 9 16 –

2D convolutional 6 9 6 9 1 9 32 5 9 5 9 1 9 16 9 32 ? 32 9 1

2D max-pool 3 9 3 9 1 9 32 –

2D convolutional 1 9 1 9 1 9 64 3 9 3 9 1 9 32 9 64 ? 64 9 1

Element-wise dropout 1 9 1 9 1 9 64 –

Fully connected 1 9 1 9 1 9 6 6 9 64 ? 6 9 1

Softmax norm 1 9 1 9 1 9 6 –

Cross entropy loss 1 –

Total – 107,014

Neural Comput & Applic (2019) 31:2795–2812 2803

123

/ of the Gabor function. The standard deviation is selected

from f4; 8; 16; 32g. The wave length 1=m is the same as

standard deviation. The yaw and pitch angles are selected

manually, and listed in Table 5. Finally, the Gabor filter

bank can extract 80 feature maps from each sample.

The Horn–Schunck method [13] is used to calculate

dense optical flow fields for video clips containing 16

frames. 15 fields are extracted from each clip. For sim-

plicity, supposing adjacent fields are similar, the output

tensor is extended by repeating its border elements, to

make the lengths of the input and output sequence the

same. In 3DCNN-C and 3DCNN-D, the optical flow layer

accepts an input tensor of 128�128�16�1 and produces

an output tensor of 128�128�16�2.

5.3 Experiment on posed dataset

5.3.1 Extended Cohn–Kanade dataset

The Extended Cohn–Kanade dataset (CK?) [22] is

employed to evaluate the proposed deep networks. It is one

of the most commonly used datasets in the studies of facial

expression recognition. There are 97 subjects in it. 1–9

video sequences are recorded for each subject. Each

sequence contains a motion vary from a normal expression

to a stable posed expression. The lengths of the sequences

are different. Totally, the number of sequences is 487.

We use the corresponding manual annotation data [26]

which provide coordinates of 59 facial landmarks and six

basic emotional labels. Figure 7 shows some samples from

CK? with annotations.

As shown in Table 6, all the sequences are divided into

training set, validation set and test set by 78.6, 10.7 and

10.7% respectively. From another point of view, the

sequences are roughly divided into six balanced categories.

The training set, validation set and test set contain

sequences belonging to subjects 58–138, subjects 42–57

and subjects 10–37 respectively. There is no overlap

between the training and testing subjects. The validation

set is used to design networks, select meta-parameters and

observe the training progress.

5.3.2 Preprocesses

As illustrated in Fig. 8, all faces were aligned and cropped

by locating the outer facial landmarks. Backgrounds were

removed. The length of each sequence was rescaled to 16

by using 3D cubic spline interpolation method. We named

these sequences as CK?II. Frames 1–11 of each sequence

were removed subsequently. Only the last five frames

containing stable expressions were kept. These data were

named as CK?I. The dimensions of samples in CK?I/

CK?II were 128�128�5/128�128�16.

5.3.3 Training and test

The training meta-parameters were different for four net-

works. 3DCNN-A and 3DCNN-B were trained by using

SGD algorithm with a batch size of 128 examples, learning

rate of 0.01, momentum of 0.9, and weight decay of

0.0005. 3DCNN-C and 3DCNN-D were trained by using

SGD algorithm with a batch size of 32 examples, learning

rate of 0.005. Momentum and weight decay were not used

in training 3DCNN-C and 3DCNN-D. All the networks

were initialized by the method proposed in Sect. 4, trained

on a single workstation with Intel Xeon E5-2620 CPU.

Each of them roughly cost 2–4 days to converge.

After all the networks had been converged, four deci-

sion-level fusion strategies including Nearest Neighbor (1-

Table 3 3DCNN-C
Layer name Output dimension Number of parameters

Input 128 9 128 9 16 9 1 –

Optical flow 128 9 128 9 16 9 2 –

Randomly cropping 108 9 108 9 16 9 2 –

3D convolutional 104 9 104 9 12 9 20 5 9 5 9 5 9 2 9 20 ? 20 9 1

3D max-pool 52 9 52 9 6 9 20 –

3D dropout 52 9 52 9 6 9 20 –

3D convolutional 48 9 48 9 2 9 24 5 9 5 9 5 9 20 9 24 ? 24 9 1

3D max-pool 24 9 24 9 1 9 24 –

3D dropout 24 9 24 9 1 9 24 –

Flatten 1 9 1 9 1 9 13,824 –

Fully connected 1 9 1 9 1 9 6 6 9 13,824 ? 6 9 1

Softmax norm 1 9 1 9 1 9 6 –

Cross entropy loss 1 –

Total – 147,994

2804 Neural Comput & Applic (2019) 31:2795–2812

123

NN), Support Vector Machine (SVM), probability maxi-

mum and probability averaging were applied. The perfor-

mances of the single networks and the ensemble network

were evaluated.

5.3.4 Results and analysis

The results including the accuracies of single networks and

ensemble network are summarized in Table 7. The accu-

racies of 3DCNN-A, 3DCNN-B, 3DCNN-C and 3DCNN-

D are 90.39, 90.39, 92.31 and 92.31% respectively.

As listed in Table 8, four decision-level fusion strategies

have been tried. After fusing four networks together, the

best accuracy of 96.15% was achieved by probability

averaging method. The improvement was strongly associ-

ated with the combination of different views and low-level

Table 4 3DCNN-D
Layer name Output dimension Number of parameters

Input 128 9 128 9 16 9 1 –

Optical flow 128 9 128 9 16 9 2 –

Randomly cropping 110 9 110 9 16 9 2 –

3D convolutional 104 9 104 9 12 9 20 7 9 7 9 5 9 2 9 20 ? 20 9 1

3D max-pool 52 9 52 9 6 9 20 –

3D dropout 52 9 52 9 6 9 20 –

3D convolutional 48 9 48 9 2 9 24 5 9 5 9 5 9 20 9 24 ? 24 9 1

3D max-pool 24 9 24 9 1 9 24 –

3D dropout 24 9 24 9 1 9 24 –

Flatten 1 9 1 9 1 9 13,824 –

Fully connected 1 9 1 9 1 9 6 6 9 13,824 ? 6 9 1

Softmax norm 1 9 1 9 1 9 6 –

Cross entropy loss 1 –

Total – 152,794

Gabor
Filter

Soft-Max
Norm

...

3DCNN-ACK+I

Frontal

Mirrored Gabor
Filter

Soft-Max
Norm

...

3DCNN-A

Gabor
Filter

Soft-Max
Norm

...

3DCNN-BCK+I

Frontal

Mirrored Gabor
Filter

Soft-Max
Norm

...

3DCNN-B

Optical
Flow

Soft-Max
Norm

...

3DCNN-CCK+II

Frontal

Mirrored Optical
Flow

Soft-Max
Norm

...

3DCNN-C

Optical
Flow

Soft-Max
Norm

...

3DCNN-DCK+II

Frontal

Mirrored Optical
Flow

Soft-Max
Norm

...

3DCNN-D

Decision
-level

Fusion

probability

probability

probability

probability

probability

probability

probability

probability

sequence

sequence

sequence

sequence

sequence

sequence

sequence

sequence

label

Fig. 6 Pipeline of predicting and decision-level fusion

Table 5 Yaw/pitch of the 3D

Gabor filter bank
No. Yaw h Pitch /

1 - 0.5 0

2 - 0.5 0.5

3 - 0.25 0

4 - 0.25 0.25

5 - 0.25 0.5

6 - 0.25 0.75

7 0 0

8 0 0.125

9 0 0.25

10 0 0.375

11 0 0.5

12 0 0.625

13 0 0.75

14 0 0.875

15 0.25 0

16 0.25 0.25

17 0.25 0.5

18 0.25 0.75

19 0.5 0

20 0.5 0.5

Neural Comput & Applic (2019) 31:2795–2812 2805

123

features which contain useful complementary information.

Although fusing the frontal and mirrored view is a conve-

nient trick used in many facial tasks, the effect is not so

obvious here (� 	 1%). By comparison, after fusing the

decisions supported by four networks, the performance was

improved greatly (� 4%). The proposed networks used two

kinds of low-level features, the optical flow feature of the

whole sequence and the 3D Gabor feature of the

stable frames. They are totally different. They contain much

more complementary information than the frontal face and

its mirrored view. Success is due to the ensemble of them.

The confusion matrix (see Tables 9, 10) shows that the

networks almost perfectly separate each class from others,

except for the pairs of anger-disgust and anger-sadness

which are naturally hard to distinguish.

As concluded by Krizhevsky et al. [17], data augmenta-

tion (mirroring and randomly cropping) and dropout were

important to prevent over-fitting especially for tasks with

small sample size limitation. In this experiment, new find-

ings about the over-fitting problem are discovered. As shown

in Table 11, the gap between performances on training set

and test set was very small in the case of 3DCNN-C and

3DCNN-D (even without using weight decay). The optical

flow feature may play an important role in reducing the

impact of over-fitting. The advantages of using motion

information are undoubted. Optical flow is a widely used

motion feature for processing video data. By integrating

optical flow calculator into a deep convolutional neural

network, the motion information can be explicitly extracted.

Since the optical flow calculator is designed to work in

temporal space, the motion signals are stronger and more

stable than the classic edge or texture detector like Gabor

filters which usually work in spatial space. It may be sig-

nificant for some pure motion analyzing tasks such as human

action recognition. We suggest that the optical flow features

Fig. 7 Samples of CK? with manual annotations

Table 6 Subsets division of CK?

Category Size

Training Validation Test

Anger 59 9 9

Fear 65 7 8

Disgust 30 7 9

Sadness 63 10 8

Happiness 84 10 9

Surprise 82 9 9

Total 383 52 52

Fig. 8 Samples of CK? after preprocessing. a A sequence in CK?I, b a sequence in CK?II

2806 Neural Comput & Applic (2019) 31:2795–2812

123

could be widely used in practice when the distinguishable

motion is available. And it will be better if the complemen-

tary texture features are provided too.

5.3.5 Comparing with previous work

To compare our results with some previous studies using

Areas Under ROC Curve (AUC) as their performance

measurement, six stand-alone expression detectors were

built by making a slight modification to our classifier. The

detector makes a CNN feed-forward pass first, fetches the

probabilities (output of the normalized softmax layer),

compares the probability of interest with a threshold, pre-

dicts its binary detection result. By varying the thresholds,

Receiver Operating Characteristic (ROC) curves (see

Figs. 9, 10) and Areas Under ROC Curve (AUC) (see

Table 12) were obtained.

As listed in Table 12, the proposed method outperforms

the compared methods. The method of Zheng et al. [50]

uses the still frame, and the other ones [14, 20, 21, 40] use

the video data. Compared to these methods, the proposed

method has two important advantages.

• Firstly, both static and dynamic information is explic-

itly extracted and integrated to make the final predic-

tion. The compared methods use only one of them.

Table 7 Classification and fusion results on CK?

Data Low-level feature Network Data view Accuracy (%) Accuracy by fusing frontal

and mirrored views (%)

Accuracy by fusing

four networks (%)

CK?I 3D Gabor 3DCNN-A Frontal 92.31 90.39 96.15

Mirrored 90.39

3DCNN-B Frontal 92.31 90.39

Mirrored 90.39

CK?II Optical flow 3DCNN-C Frontal 90.39 92.31

Mirrored 92.31

3DCNN-D Frontal 92.31 92.31

Mirrored 90.39

The best performances are highlighted in bold

Table 8 Results of different decision-level fusion strategies on CK?

fusion strategies Accuracy (%)

1-Nearest neighbor 80.77

SVM with RBF kernel 94.23

Probability maximum 92.31

Probability averaging 96.15

The best performances are highlighted in bold

Table 9 Confusion matrix of

the single network on CK?

(take 3DCNN-D as an example)

Anger Fear Disgust Sadness Happiness Surprise Total

Anger 8 0 1 2 0 0 11

Fear 0 8 0 0 0 0 8

Disgust 1 0 8 0 0 0 9

Sadness 0 0 0 6 0 0 6

Happiness 0 0 0 0 9 0 9

Surprise 0 0 0 0 0 9 9

Total 9 8 9 8 9 9 52

Table 10 Confusion matrix of

the ensemble network on CK?
Anger Fear Disgust Sadness Happiness Surprise Total

Anger 8 0 0 1 0 0 9

Fear 0 8 0 0 0 0 8

Disgust 1 0 9 0 0 0 10

Sadness 0 0 0 7 0 0 7

Happiness 0 0 0 0 9 0 9

Surprise 0 0 0 0 0 9 9

Total 9 8 9 8 9 9 52

Neural Comput & Applic (2019) 31:2795–2812 2807

123

• Secondly, the mid-level representations and high-level

representations of CNNs learned by supervised learning

play important roles in distinguishing the subtle differ-

ences of expressions between categories. The compared

methods use the features without learning (like Haar,

Gabor) or nonstructural features (like ICA).

5.4 Experiment on spontaneous dataset

5.4.1 FEEDTUM dataset

The Facial Expressions and Emotions dataset of Technical

University of Munich (FEEDTUM) [36] consists of elicited

spontaneous emotions of 18 subjects. Besides the neutral

state, the dataset covers six basic emotions for each subject.

Three sequences are recorded per subject per emotion.

Totally, the number of sequences is 378.

The CK? dataset and the FEEDTUM dataset both have

hundreds of dynamic sequences with emotional labels.

They satisfy the basic requirement of the experiments in

this work. But the latter one is more challenging. The main

trouble is that the intensities of spontaneous expressions

are lower than the posed ones. Even human can hardly

recognize them (accuracy of 61% on average [37]).

Besides, some of the faces are near-frontal with bias angle

in 	 30
. They will cause small miss-alignment which may

have a negative impact on the classification. We hope that

the problem will be alleviated by the strong anti-distortion

ability of CNNs.

As shown in Table 13, all the sequences are divided into

training set, validation set and test set by 77.8, 11.1 and

11.1% respectively. There is no overlap between the

training and testing subjects. All the subsets are balanced.

Table 11 The gaps between performances evaluated on training set and test set of CK?

Low-level

feature

Network Accuracy on

training set (%)

Accuracy on

test set (%)

Gap of accuracies (%) Data

augment

Dropout Weight

decay

3D Gabor 3DCNN-A 98.96 90.39 8.57 Used Used Used

3DCNN-B 100.0 90.39 9.61 Used Used Used

Optical flow 3DCNN-C 93.21 92.31 0.90 Used Used Not used

3DCNN-D 91.65 92.31 - 0.66 Used Used Not used

0 0.5 1
0

0.5

1
Anger

0 0.5 1
0

0.5

1
Fear

0 0.5 1
0

0.5

1
Disgust

0 0.5 1
0

0.5

1
Sadness

0 0.5 1
0

0.5

1
Happiness

0 0.5 1
0

0.5

1
Surprise

Fig. 9 ROC curves of single

network on CK? (take 3DCNN-

D as an example)

2808 Neural Comput & Applic (2019) 31:2795–2812

123

5.4.2 Preprocesses

The bounding boxes of the faces were located using Zhu’s

method [51], and 68 landmarks were detected using the

SDM method [34, 39] for each frame. To make the

detected landmarks have the same meaning as those in

CK?, a simple linear mapping was used to transform the

coordinates of 68 landmarks to the coordinates of 59

landmarks.

Since the histogram of the frame in FEEDTUM is dif-

ferent from that in CK?, a histogram adaption method was

applied. The mean and standard deviation of the intensity

of pixels in the region of the face were calculated on two

datasets respectively. After a gray-scale linear transfor-

mation had been applied to each frame in FEEDTUM, the

histograms of the two datasets became similar.

Finally, the preprocessing steps in Sect. 5.3.2 were fol-

lowed. The preprocessed data called FEEDTUM-I and

FEEDTUM-II were obtained.

5.4.3 Training and test

The networks described in Sect. 5.1 were employed. These

networks were initialized as the final state of the network

trained on the CK? dataset (see Sect. 5.3.3). Then, they are

fine-tuned on FEEDTUM dataset. The fine-tuning meta-

parameters (batch size, learning rate, momentum, weight

decay) were chosen as the same as those in the pre-training

stage. Each network roughly costs 2–4 days to converge.

After all the networks had been converged, four net-

works were fused together using probability averaging

method. All performances of the single networks and the

ensemble network were evaluated.

5.4.4 Results and analysis

The results including the accuracies of single networks and

ensemble network are summarized in Table 14. The

accuracies of 3DCNN-A, 3DCNN-B, 3DCNN-C and

3DCNN-D are 36.11, 50.00, 52.78 and 58.33%, respec-

tively. The accuracy does not increase greatly after fusing

(from 58.33 to 61.11%). The 3DCNN-C and the 3DCNN-D

did a better job than the 3DCNN-A and the 3DCNN-B. We

can conclude that the motion feature is more useful than

the texture feature for processing spontaneous expressions.

5.4.5 Comparing with previous work

As shown in Table 15, the proposed method achieved an

accuracy of 61.11%. It is very close to the performance

reported in [37, 48]. In these studies, spatial–temporal

features on still frames and motion fields were designed.

Traditional classifiers like SVM were used to give the final

prediction. However, we used standard image features

without designment and focused on proposing a general

classifier/feature learner for 3D data. We find that 3D

CNN-based methods ([3] and the proposed method) are

0 0.5 1
0

0.5

1
Anger

0 0.5 1
0

0.5

1
Fear

0 0.5 1
0

0.5

1
Disgust

0 0.5 1
0

0.5

1
Sadness

0 0.5 1
0

0.5

1
Happiness

0 0.5 1
0

0.5

1
Surprise

Fig. 10 ROC curves of

ensemble network on CK?

Neural Comput & Applic (2019) 31:2795–2812 2809

123

worse than the methods based on hand-craft dynamic fea-

tures ([37, 48]).

The difference between the FEEDTUM dataset and the

CK? dataset can discover the reason why 3D CNNs do not

perform well. Although both two datasets contain dynamic

sequences, the sequences in the CK? dataset vary from a

normal expression to a stable posed expression. The

sequences in the FEEDTUM dataset do not have such clear

segmentations. The 3D convolutional layer can learn specific

motions (such as Action Units) on the CK? dataset. These

motions provide complementary information to facial

appearances. However, the 3D convolutional layer can only

learn time-series pooling features on the FEEDTUMdataset.

The advantage is not obvious in this task.

By the way, the perception test performed by the cre-

ators of the FEEDTUM dataset shows that the average

human recognition rate is 61%, the worst is 38% and the

best is 93% [37]. The proposed method outperforms the

average human recognition rate. For the scope limitation,

most of our studies are devoted to the general framework

rather than the experiments on specific tasks. We are

expecting to get better performance by integrating new

kinds of low-level features or refining the networks.

6 Conclusion

The result shows that 3D CNNs are capable of achieving

good performance on the facial expression classification

task. The key is making use of complementary information

in a video sequence by explicitly extracting, processing and

fusing multi-view data. To achieve this goal, five kinds of

3D CNN layers are defined. Four networks are designed for

processing spatial–temporal data.

Inspiring by ideas from some previous work like caffe

[16] and theano [1, 2], we create two open-source projects

called 2DCNN [29] and 4DCNN [31]. The projects

implement the layers and algorithms of convolutional

neural networks used in this paper including convolutional

layer, fully connected layer, max-pooling layer, dropout

layer, softmax normalization layer, Gabor layer, optical

flow layer, SGD solver with mini-batches, etc. The projects

support multi-threads parallel computing, multi-worksta-

tions parallel computing and GPU acceleration. The par-

allel computing is based on MATLAB Parallel Computing

Toolbox, and the GPU acceleration is based on MATLAB

GPU Computing technique. The 4DCNN project is derived

from the 2DCNN project for processing 4th order tensors.

In a 4DCNN, the output of each layer is a 6D array

(height 9 width 9 depth 9 time 9 channel 9 sample).

The classic CNN can be viewed as a special case of the

4DCNN. When the 3rd and 4th dimensions are set to 1, the

4DCNN reduces to the classic CNN. By using this trick,

this project can also be used to implement classic CNNs.

Table 12 Performance comparison with the previous work on CK?

Method Accuracy of

classifler (%)

AUC of detector

Anger Fear Disgust Sadness Happiness Surprise Average

Yang et al. [40] – 0.973 0.916 0.941 0.978 0.991 0.998 0.966

Long et al. [20] – 0.933 0.964 0.988 0.991 0.993 0.999 0.978

Jeni et al. [14] – 0.990 0.980 1.000 0.990 1.000 0.990 0.992

Lorincz et al. [21] – 0.991 0.987 0.994 0.995 0.999 0.996 0.994

Byeon et al. [3] 89.42 – – – – – – –

Zheng et al. [50] 91.90 – – – – – – –

3DCNN-A 90.39 0.9535 0.9716 1.0000 0.9886 0.9948 1.0000 0.9848

3DCNN-B 90.39 0.9897 0.9943 0.9922 0.9915 1.0000 1.0000 0.9946

3DCNN-C 92.31 0.9793 1.0000 0.9767 0.9858 1.0000 1.0000 0.9903

3DCNN-D 92.31 0.9793 1.0000 0.9871 0.9886 1.0000 1.0000 0.9925

Ensemble network 96.15 0.9922 1.0000 0.9922 0.9972 1.0000 1.0000 0.9969

The best classification/detection performances of single/ensemble networks are highlighted in bold

Table 13 Subsets division of FEEDTUM

Categorya Size

Trainingb Validationc Testd

Anger 42 6 6

Fear 42 6 6

Disgust 42 6 6

Sadness 42 6 6

Happiness 42 6 6

Surprise 42 6 6

Total 252 36 36

aThe neutral class is ignored. b Sequences belonging to subjects 5–18.
c Sequences belonging to subjects 3–4. d Sequences belonging to

subjects 1–2

2810 Neural Comput & Applic (2019) 31:2795–2812

123

The training/testing codes and the preprocessed data are

provided in the open-source package.

Our open-source implementation already has the ability

of processing 4D data like BU-4DFE [41] and BP4D-

Spontaneous [49]. But after some preliminary studies, we

found that processing 4D data is more challenging. The

applications based on 4DCNNs needs to be further studied.

Another unsolved problem is how to control the optimal

capacity of 3D CNNs by varying their depth and width.

Optimal capacity may be determined by many factors such

as tasks, low-level features, the number of training sam-

ples, resolution of the image, memory limitation, etc. Until

now, the capacity is chosen by experience. More theoreti-

cal research and practical experience are needed.

Acknowledgements This work is partially supported by National

Natural Science Foundation of China under Grant Nos. 61375007,

61373063, 61233011, 91420201, 61472187 and by National Basic

Research Program of China under Grant No. 2014CB349303.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ,

Bergeron A, Bouchard N, Bengio Y (2012) Theano: new features

and speed improvements. In: Deep learning and unsupervised

feature learning NIPS 2012 workshop

2. Bergstra J, BreuleuxO, Bastien F, Lamblin P, PascanuR,Desjardins

G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: a CPU and

GPU math expression compiler. In: Proceedings of the python for

scientific computing conference (SciPy). Oral Presentation

3. Byeon YH, Kwak KC (2014) Facial expression recognition using

3D convolutional neural network. Int J Adv Comput Sci Appl

5(12):107–112

4. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance

models. IEEE Trans Pattern Anal Mach Intell 6:681–685

5. Dhall A et al (2012) Collecting large, richly annotated facial-

expression databases from movies. IEEE Multimedia

19(3):34–41

6. Dornaika F, Moujahid A, Raducanu B (2013) Facial expression

recognition using tracked facial actions: classifier performance

analysis. Eng Appl Artif Intell 26(1):467–477

7. Ekman P, Friensen E (1978) Facial action coding system (FACS):

manual. Consulting Psychologists Press, Palo Alto

8. Friensen W, Ekman P (1983) Emfacs-7: emotional facial action

coding system. Technical report, University of California at San

Francisico

9. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: International

conference on artificial intelligence and statistics, pp 249–256

10. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:

surpassing human-level performance on imagenet classification.

arXiv preprint arXiv:1502.01852

11. He T, Mao H, Yi Z (2016) Moving object recognition using

multi-view three-dimensional convolutional neural networks.

Neural Comput Appl 28(12):3827–3835

12. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhut-

dinov RR (2012) Improving neural networks by preventing co-

adaptation of feature detectors. arXiv preprint arXiv:1207.0580

13. Horn BK, Schunck BG (1981) Determining optical flow. In: 1981

Technical symposium east, pp 319–331. International Society for

Optics and Photonics

14. Jeni L, Girard JM, Cohn JF, De La Torre F et al (2013) Con-

tinuous au intensity estimation using localized, sparse facial

feature space. In: 2013 10th IEEE international conference and

workshops on automatic face and gesture recognition (FG),

pp 1–7. IEEE

15. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural

networks for human action recognition. IEEE TransPattern Anal

Mach Intell 35(1):221–231

16. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,

Guadarrama S, Darrell T (2014) Caffe: convolutional architecture

for fast feature embedding. arXiv preprint arXiv:1408.5093

Table 14 Classification and fusion results on FEEDTUM (pretrained on CK?)

Data Low-level feature Network Data view Accuracy (%) Accuracy by fusing frontal

and mirrored views (%)

Accuracy by fusing

four networks (%)

CK?I 3D Gabor 3DCNN-A Frontal 27.78 36.11 61.11

Mirrored 30.56

3DCNN-B Frontal 41.67 50.00

Mirrored 36.11

CK?II Optical flow 3DCNN-C Frontal 47.22 52.78

Mirrored 52.78

3DCNN-D Frontal 61.11 58.33

Mirrored 61.11

Table 15 Performance comparison with the previous work on

FEEDTUM

Method Accuracy (%)

Human recognition rate [37] 61.00

Byeon et al. [3] 55.56

Wallhoff et al. [37] 61.76

Zhang et al. [48] 63.00

The proposed method 61.11

Neural Comput & Applic (2019) 31:2795–2812 2811

123

http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1408.5093

17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. Adv neural inf

proc syst 25:1097–1105

18. Kruger N, Janssen P, Kalkan S, Lappe M, Leonardis A, Piater J,

Rodriguez-Sanchez AJ, Wiskott L (2013) Deep hierarchies in the

primate visual cortex: what can we learn for computer vision?

IEEE Trans Pattern Anal Mach Intell 35(8):1847–1871

19. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

20. Long F, Wu T, Movellan JR, Bartlett MS, Littlewort G (2012)

Learning spatiotemporal features by using independent compo-

nent analysis with application to facial expression recognition.

Neurocomputing 93:126–132

21. Lorincz A, Jeni L, Szabo Z, Cohn JF, Kanade T et al (2013)

Emotional expression classification using time-series kernels. In:

2013 IEEE conference on computer vision and pattern recogni-

tion workshops (CVPRW), pp 889–895. IEEE

22. Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I

(2010) The extended Cohn–Kanade dataset (ck?): a complete

dataset for action unit and emotion-specified expression. In: 2010

IEEE computer society conference on computer vision and pat-

tern recognition workshops (CVPRW), pp 94–101. IEEE

23. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject inde-

pendent facial expression recognition with robust face detection

using a convolutional neural network. Neural Netw

16(5):555–559

24. Oyedotun OK, Khashman A (2016) Deep learning in vision-

based static hand gesture recognition. Neural Comput Appl

28(12):3941–3951

25. Qian Z, Metaxas DN, Axel L (2006) Extraction and tracking of

MRI tagging sheets using a 3D Gabor filter bank. In: Engineering

in medicine and biology society, 2006. EMBS’06. 28th Annual

international conference of the IEEE, pp 711–714. IEEE

26. Regianini L (2009) Manual annotations of facial fiducial points

on the Cohn–Kanade database. http://lipori.dsi.unimi.it/down

load.html

27. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,

Huang Z, Karpathy A, Khosla A, Bernstein M et al (2014)

Imagenet large scale visual recognition challenge. Int J Comput

Vision 115(3):211–252

28. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:

1409.1556

29. Sun W, Jin Z (2015) The 2DCNN project. https://github.com/

anders0821/2DCNN

30. Sun W, Jin Z (2015) Advances in face image analysis: theory and

applications. Facial expression classification based on convolu-

tional neural networks. Bentham Science Publishers, Sharjah

31. Sun W, Jin Z (2015) The 4DCNN project. https://github.com/

anders0821/4DCNN

32. Sun W, Zhao H, Jin Z (2016) 3D convolutional neural networks

for facial expression classification. In: Asian conference on

computer vision workshops. Springer

33. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with

convolutions. arXiv preprint arXiv:1409.4842

34. Tran NT (2015) The matlab implementation of supervised des-

cent method (SDM) for face alignment. https://github.com/

tntrung/impSDM

35. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989)

Phoneme recognition using time-delay neural networks. IEEE

Trans Acoust Speech Signal Process 37(3):328–339

36. Wallhoff F (2005) The facial expressions and emotions database

homepage (FEEDTUM). http://www.mmk.ei.tum.de/*waf/

fgnet/feedtum.html

37. Wallhoff F, Schuller B, Hawellek M, Rigoll G (2006) Efficient

recognition of authentic dynamic facial expressions on the

FEEDTUM database. In: 2006 IEEE international conference on

multimedia and expo, pp 493–496. IEEE

38. Wang Y, Chua CS (2005) Face recognition from 2D and 3D

images using 3D Gabor filters. Image Vis Comput

23(11):1018–1028

39. Xiong X, Torre F (2013) Supervised descent method and its

applications to face alignment. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 532–539

40. Yang P, Liu Q, Metaxas DN (2009) Boosting encoded dynamic

features for facial expression recognition. Pattern Recogn Lett

30(2):132–139

41. Yin L, Chen X, Sun Y, Worm T, Reale M (2008) A high-reso-

lution 3D dynamic facial expression database. In: 8th IEEE

international conference on automatic face and gesture recogni-

tion, 2008. FG’08, pp 1–6. IEEE

42. Yun T, Guan L (2013) Human emotional state recognition using

real 3D visual features from Gabor library. Pattern Recogn

46(2):529–538

43. Zeiler MD, Krishnan D, Taylor GW, Fergus R (2010) Decon-

volutional networks. In: 2010 IEEE conference on computer

vision and pattern recognition (CVPR), pp 2528–2535. IEEE

44. Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolu-

tional networks for mid and high level feature learning. In: 2011

IEEE international conference on computer vision (ICCV),

pp 2018–2025. IEEE

45. Zeng Z, Pantic M, Roisman G, Huang TS et al (2009) A survey of

affect recognition methods: audio, visual, and spontaneous

expressions. IEEE Trans Pattern Anal Mach Intell 31(1):39–58

46. Zhang H, Cao X, Ho JK, Chow TW (2017) Object-level video

advertising: an optimization framework. IEEE Trans Industr Inf

13(2):520–531

47. Zhang H, Li J, Ji Y, Yue H (2017) Understanding subtitles by

character-level sequence-to-sequence learning. IEEE Trans

Industr Inf 13(2):616–624

48. Zhang L, Tjondronegoro D, Chandran V (2012) Discovering the

best feature extraction and selection algorithms for spontaneous

facial expression recognition. In: 2012 IEEE international con-

ference on multimedia and expo (ICME), pp 1027–1032. IEEE

49. Zhang X, Yin L, Cohn JF, Canavan S, Reale M, Horowitz A, Liu

P, Girard JM (2014) Bp4d-spontaneous: a high-resolution spon-

taneous 3D dynamic facial expression database. Image Vis

Comput 32(10):692–706

50. Zheng H (2014) Facial expression analysis. Technical report,

School of Computer Science and Engineering, Southeast

University, Nanjing, China

51. Zhu X, Ramanan D (2012) Face detection, pose estimation, and

landmark localization in the wild. In: 2012 IEEE conference on

computer vision and pattern recognition (CVPR), pp 2879–2886.

IEEE

2812 Neural Comput & Applic (2019) 31:2795–2812

123

http://lipori.dsi.unimi.it/download.html
http://lipori.dsi.unimi.it/download.html
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://github.com/anders0821/2DCNN
https://github.com/anders0821/2DCNN
https://github.com/anders0821/4DCNN
https://github.com/anders0821/4DCNN
http://arxiv.org/abs/1409.4842
https://github.com/tntrung/impSDM
https://github.com/tntrung/impSDM
http://www.mmk.ei.tum.de/%7ewaf/fgnet/feedtum.html
http://www.mmk.ei.tum.de/%7ewaf/fgnet/feedtum.html

	A facial expression recognition method based on ensemble of 3D convolutional neural networks
	Abstract
	Introduction
	Related work
	Convolutional neural networks
	3D convolutional neural networks
	CNNs for facial expression recognition

	Unified framework for 3D CNNs
	Layers for 3D data
	Convolutional layers for 3D data
	Max-pooling layers for 3D data
	Dropout layers for 3D data
	Gabor layers for 3D data
	Optical flow layers for 3D data

	General 3D CNNs

	Initialization method for neural networks
	Experiments
	Network designments
	Low-level feature extractor designments
	Experiment on posed dataset
	Extended Cohn--Kanade dataset
	Preprocesses
	Training and test
	Results and analysis
	Comparing with previous work

	Experiment on spontaneous dataset
	FEEDTUM dataset
	Preprocesses
	Training and test
	Results and analysis
	Comparing with previous work

	Conclusion
	Acknowledgements
	References

