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Abstract Photovoltaic (PV) is one of the most promising

renewable energy sources. To ensure secure operation and

economic integration of PV in smart grids, accurate fore-

casting of PV power is an important issue. In this paper, we

propose the use of long short-term memory recurrent

neural network (LSTM-RNN) to accurately forecast the

output power of PV systems. The LSTM networks can

model the temporal changes in PV output power because of

their recurrent architecture and memory units. The pro-

posed method is evaluated using hourly datasets of dif-

ferent sites for a year. We compare the proposed method

with three PV forecasting methods. The use of LSTM

offers a further reduction in the forecasting error compared

with the other methods. The proposed forecasting method

can be a helpful tool for planning and controlling smart

grids.

Keywords Smart grids � Renewable energy sources � PV
power forecasting � Deep learning

1 Introduction

Recently, the use of renewable energy sources (RESs) has

obviously been increased worldwide. This increase is dri-

ven by the environmental and technical benefits of RESs as

well as the massive increase in the load demand [15, 38].

Recent studies have been proposed for integrating a 100%

renewable energy penetration in smart power systems

[12, 39]. The RES units can be large-scale stations inte-

grated to transmission power systems, small-scale dis-

tributed generation (DG) integrated to medium voltage

distribution systems, or even rooftop-mounted units inte-

grated to low-voltage distribution systems. One of the most

notable RES types is photovoltaic (PV) systems. Due to the

development in technology and the exponential rise of

demand on PV systems, their costs are continuously

decreasing [16, 19]. The global contribution of PV systems

is expected to rapidly increase in several countries. For

instance, in Egypt, there is a great interest in developing

several PV projects in small, medium, and large scales, and

this trend is highly motivated by the high level of solar

radiation and the sunny pattern throughout the year in all

parts of the country [3, 44].

PV systems convert sun light directly into electric

power. The main characteristic of PV systems is that their

output power is intermittent and unpredictable. The output

PV power depends on the fluctuated environmental con-

ditions, e.g., sun conditions. For example, the PV output

power will have a maximum value during a clear day,

while moving and transient clouds greatly reduce the

amount of generated power. The authors of [13, 33]

demonstrated that high PV penetration can cause many

technical problems in power systems, such as reverse

power flow and voltage regulation problems. Undesired

fluctuations in voltages and power are also a common

problem in distribution systems caused by high PV pene-

tration. These fluctuations can lead to instability of small

micro-grid systems with small capacities of storage devices

[52]. Several other technical aspects are also linked to

intermittent PV systems, including power quality, genera-

tion control, and protection [49]. These technical aspects
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constrain the allowed PV penetration level to maintain

secure and optimal system operation.

To guarantee safe operation and economic integration of

electrical power systems with high PV penetration, accu-

rate forecasting of PV power is essentially required. At the

planning stage of PV systems, optimal allocation of these

PV systems is required, which needs accurate forecasting

of environmental conditions at their recommended sites

[37, 48]. Forecasting the output power of PV systems

enables system operators to monitor their performance,

perform control actions, optimally dispatch various DG

types, and manage voltage control devices.

Accurate forecasting of PV power could be a complex

task due to the fluctuated nature of the weather (e.g., cloud

movement and the temperature changes). Recently, recur-

rent neural networks have been used in various applica-

tions, such as optimal demand response in smart grids [54],

control of single-phase converters [17], manipulator con-

trol [27, 28, 30, 31], modeling crack growth of aluminum

alloy [56], distributed task allocation of multiple robots

[26], text recognition [43], and localization of wireless

sensor networks [29]. Indeed, recurrent neural networks

achieve good results in different applications because they

can model the dynamics of the data. This paper proposes

the use of long short-term memory (LSTM) recurrent

neural network (LSTM-RNN) for forecasting PV output

power. LSTM-RNN can model the temporal changes in the

data due to their recurrent architecture and memory units.

Unlike the traditional recurrent neural networks, LSTMs

were designed to avoid the long-term dependency problem.

Indeed, LSTM can capture abstract concepts in the PV

power sequences. To the best of our knowledge, this is the

first paper that uses LSTM-RNN to forecast PV power and

considers the temporal changes in PV data when con-

structing the forecasting models. The main contributions of

this paper can be summarized as follows:

1. We propose a novel PV power forecasting method

based on deep LSTM recurrent neural networks. The

proposed method considers the temporal changes in

PV power when constructing the forecasting models.

2. We assess the performance of five LSTM models with

different architectures in the forecasting of PV power.

3. To demonstrate the effectiveness of the proposed

method, we compare it with three widely used PV

power forecasting methods.

The rest of this paper is organized as follows. Section 2

presents the related work. Section 3 explains the proposed

method. Section 4 presents and discusses the experiential

results. The conclusions and some lines of future work are

given in Sect. 5.

2 Related work

Horizons of PV power forecasting vary from seconds to

months depending on their usage, where they can be

classified into three categories: (1) short-term forecasting,

(2) medium-term forecasting, and (3) long-term forecast-

ing. Efficient methods are required to improve the accuracy

of PV forecasting models, thus reducing the negative

impacts of system uncertainty. In the literature, several

forecasting methods have been developed for predicting

PV power. These methods can be classified into four cat-

egories: (1) statistical methods, (2) artificial intelligence

methods, (3) physical methods, and (4) hybrid methods

[1, 51]. To achieve accurate results, a suitable forecasting

method should be used with each PV data and the horizon

length required. In the subsections below, we briefly review

the four categories.

2.1 The statistical methods

Statistical methods depend on the given historic environ-

mental data at the PV sites to generate their forecasting

models. Persistence models belong to statistical methods

category, where they are simple tools for PV power fore-

casting [7, 11, 34]. These models were developed for sta-

tionary time series, and thus they are not suitable to

forecast PV power as solar radiation profile is non-sta-

tionary. Other examples for the statistical methods are

auto-regressive moving average (ARMA) [22], auto-re-

gressive integrated moving average (ARIMA) [45], and

auto-regressive moving average model with exogenous

inputs (ARMAX) [32]. In [5], a probabilistic forecasting

model of PV systems for 6 h ahead was proposed for smart

grids applications. These statistical methods are preferable

for short-term and medium-term forecasting.

2.2 The artificial intelligence methods

Artificial intelligence techniques are widely used in several

fields, including forecasting. In [42], an artificial neural

network model was introduced to predict solar irradiation

using physical and environmental data. An improved

forecasting model that considers aerosol index data instead

of using the traditional environmental data was proposed in

[35]. In [41], different artificial neural network models

were constructed according to sun condition (i.e., sunny,

partly cloudy, and overcast) for short-term forecasting of

PV production.

In [53], a Bayesian neural network model was proposed

to predict solar irradiation. The efficiency of the model was

demonstrated through comparisons with traditional neural

network models. To improve the forecasting accuracy, the

2728 Neural Comput & Applic (2019) 31:2727–2740

123



authors of [8] combined wavelet analysis with artificial

neural networks. The long-term forecasting of PV output

power was performed using historical data, fuzzy theory,

and neural networks in [55]. In [24], an artificial neural

network model was used to forecast PV power and deter-

mine the sufficient time horizon for accurate representation

of PV data. Wavelet recurrent neural networks were used in

[9] to predict solar radiation for two days ahead, where

they considered the correlation between solar radiation,

wind speed, air humidity, and temperature.

2.3 The physical methods

Unlike the aforementioned methods, the physical methods

require detailed models of PV and local measurements.

Satellites, with their ability to monitor cloud movement

over wide areas, have been employed for forecasting solar

radiation [21, 36, 46]. In [18], an advanced model was

proposed to estimate the solar radiation with introducing

new sensors that greatly improve the forecasting accuracy.

In [10], a ground-based sky imager is employed for cloud

and solar radiation forecasting, where images for sky are

recorded every half minute.

Satellites are an effective way for short-term forecasting

(up to 5 h). In the case of long-term forecasting of solar

radiation, numerical weather prediction models are

demonstrated to be more efficient than satellites [36]. The

authors of [47] tested several numerical weather prediction

models at several sites in the USA, Europe, and Canada. A

comprehensive study to validate and test the accuracy of

several numerical weather prediction models and fore-

casting systems in the USA is performed in [40].

2.4 The hybrid methods

Efficient and accurate hybrid methods can be formulated

by combining different forecasting methods. In [4], ARMA

and nonlinear auto-regressive models were combined in

order to achieve accurate forecasting results. The authors of

[25] demonstrated that the combination of ARMA and time

delay neural network produces an efficient hybrid method

for solar radiation prediction. The authors of [6] combined

two traditional methods, auto-regressive integrated moving

average and support vector machines to forecast PV power.

Bacher et al. [2] proposed a two-stage method that incor-

porates auto-regressive model and auto-regressive with

exogenous input model for short-term forecasting of PV

power. To forecast solar radiation, both exponential

smoothing state space model and artificial neural networks

were proposed in [14].

The above-mentioned methods do not consider the

temporal changes in PV historical data when constructing

the forecasting models, and thus they discard key

information about the dynamic of the data. In this paper,

we propose the use of LSTM-RNN to construct an accurate

forecasting model of PV output power. LSTM-RNN con-

siders the temporal changes in the PV power, thereby

producing more reliable models.

3 Proposed method

We use the LSTM-RNN to predict an hour-ahead power of

PV. LSTM can model the temporal changes in the data and

thus improves the forecasting results. In the subsections

below, we briefly describe the LSTM unit which is the

basic building block of our PV forecasting method, and we

explain the proposed PV forecasting models.

3.1 Basic LSTM unit

In the learning phase, traditional neural networks cannot

utilize the information learned at previous time steps in the

modeling of the data at the current step. This point repre-

sents a major shortcoming of traditional neural networks.

RNNs try to solve this problem by using loops that pass

information from one step of the network to the next steps,

allowing information to persist. In other words, RNNs

connect previous information to the present task. Indeed,

using previous sequence samples may help in the under-

standing of the present sample.

LSTMs are a special kind of RNNs that can learn short-

term as well as long-term dependencies [23]. Unlike RNNs,

LSTMs were designed to avoid the long-term dependency

problem. LSTM network is trained using backpropagation

through time, and it overcomes the vanishing gradient

problem. The traditional neural networks have neurons, in

turn, LSTM networks have memory blocks that are con-

nected through successive layers. Each block contains

gates that handle the state of the block and the output. In

the LSTM unit, there are three types of gates: forget, input,

and output. The task of each gate can be summarized as

follows:

– Forget gate sets what information to throw away from

the block based on certain conditions.

– Input gate sets which values from the input to update

the memory state based on certain conditions.

– Output gate sets what to output based on input and the

memory of the block based on certain conditions.

As shown in Fig. 1, an LSTM block receives an input

sequence and then each gate uses activation units to decide

whether they are triggered or not. This operation makes the

change of state and addition of information that flows

through the block conditional. The gates have weights that

can be learned during the training phase. Indeed, the gates
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make the LSTM blocks smarter than classical neurons and

enable them to memorize recent sequences.

Each LSTM unit contains a cell which has a state ct at

time t. This cell can be considered as a memory unit.

Reading/modifying this cell is controlled through the input

gate it (a sigmoidal gate), forget gate ft and output gate ot.

The LSTM unit receives inputs from two external sources

at each of the four terminals (i.e., the three gates and the

input) at each time step. The two external sources are:

– The current sample xt.

– The previous hidden states of all LSTM units in the

same layer ht�1.

Each gate has an internal source, the cell state ct�1 of its

cell block. The LSTM sums the inputs coming from dif-

ferent sources with a bias. The gates are activated by

inputting their total input into the logistic function. The

total input at the input terminal is passed through tanh

nonlinearity. The LSTM multiplies the resulting activation

by the activation of the input gate and then sums the result

of the multiplication to the cell state after multiplying the

cell state by the activation of the forget gate ft. The LSTM

passes the updated cell state through tanh nonlinearity and

then multiplies it with the activations of the output gate ot
to determine the final output from the LSTM unit ht. The

previous steps and the updates of the LSTM unit can be

formulated as follows:

it ¼ rðWxiXt þWhiht�1 þWcict�1 þ biÞ ð1Þ

ft ¼ rðWxf Xt þWhf ht�1 þWcf ct�1 þ bf Þ ð2Þ

ct ¼ ftct�1 þ it tanhðWxcXt þWhcht�1 þ bcÞ ð3Þ

ot ¼ rðWxoXt þWhoht�1 þWcoct þ boÞ ð4Þ

ht ¼ ot tanhðctÞ ð5Þ

The main advantage of using the LSTM unit, unlike the

traditional neurons used in RNN, is that its cell state

accumulates activities over time. Since derivatives dis-

tribute over sums, the derivatives of the error do not vanish

quickly as they are sent back into time. In this way, LSTM

can carry out tasks over long sequences and discover long-

range features.

3.2 PV power forecasting using different LSTM

architectures

To forecast PV output power, we construct five LSTM

models using different architectures. We used different

LSTM models for the purpose of specifying the model that

gives the most accurate results with each PV dataset.

Below, we briefly explain each model.

3.2.1 Model1: basic LSTM network for regression

In this architecture, we phrase the PV power forecasting as

a regression problem. Given the PV power in this hour, we

aim at predicting the output PV power in the next hour. We

design the LSTM network for this problem as follows. The

network has a visible layer with one input, a hidden layer

with four LSTM blocks (neurons), and an output layer that

gives the predicted power. We used the default sigmoid

activation function for the LSTM blocks. We trained the

network for 20, 50, and 100 epochs with a batch size of 1.

3.2.2 Model2: LSTM for regression using the window

technique

In this architecture, we use multiple recent time steps to

predict the PV output power at the next time step (a win-

dow technique). In this technique, we can tune the size of

the window for the PV power forecasting problem. For

instance, given the current time t, we aim at predicting the

PV power at the next time in the sequence t þ 1. To do so,

we use the PV power of the current time t and the ones of

two prior times (t � 1 and t � 2) as input variables to the

LSTM unit. In this case, the input variables of the LSTM

unit are the PV power at t � 2, t � 1, and t while the output

variable is the PV power at t þ 1.

3.2.3 Model3: LSTM for regression with time steps

Indeed, time steps provide another way to phrase the PV

output power forecasting problem. Like the previous model

(Sect. 3.2.2), we take prior time steps in the PV power time

series as inputs to predict the output power at the next time

step. In this model, instead of using the past observations as

separate input features, we use them as time steps of the

one input feature, which is a more accurate framing of the

PV power forecasting problem. For instance, if the time

step equals 3, the LSTM unit outputs the PV power at t

after it handles the PV power at t � 3, t � 2 and t � 1.

it

ct

ft

ot
Output
Gate

Forget
Gate

Input
Gate

LSTM Block

xt ht

Fig. 1 LSTM unit [23]
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3.2.4 Model 4: LSTM with memory between batches

The LSTM network has a memory that enables it to

remember across long sequences. When fitting the model in

the normal configuration, we reset the state within the

network after each training batch. We can make finer

control over when the internal state of the LSTM network

is cleared by making the LSTM layer stateful. In other

words, LSTM can build state over the entire training

sequence and even maintain that state if needed to predict

PV output power. It requires that the training data not be

shuffled when fitting the LSTM network.

3.2.5 Model 5: stacked LSTMs with memory

between batches

Stacked LSTM adds capacity by stacking LSTM layers on

top of each other [20, 50]. LSTM networks can be stacked

in the same way that other layer types can be stacked (e.g.,

the layers of neural networks). Figure 2 demonstrates how

LSTM layers can be stacked. The blue blocks belong to

layer1, while the red blocks belong to layer2. The inputs to

layer1 are the PV power xt; xtþ1; . . .xN while the inputs to

layer2 are ht; htþ1; . . .hN . The intuition is that higher LSTM

layers can capture abstract concepts in the sequences,

which can improve the PV power forecasting results.

4 Results and discussion

4.1 Datasets

We used two PV datasets for locations in Aswan (Dataset1)

and Cairo (Dataset2) cities, Egypt. Figure 3 shows the

distribution of PV power in the Dataset1 with hours, days,

weeks, and months. As shown in Fig. 3a, the maximum PV

power is generated at 12.00 h approximately (Egypt time

zone: GMT ? 2). As we can see, in Aswan city the PV

operates for a long period (from 7.00 to 18.00 h) during the

whole year (Fig. 3d). This is because Aswan has a sub-

tropical desert low-latitude arid hot climate, and the sum-

mer runs from March to November with temperatures

reaching upwards of 40circ during June, July, and August.

The PV power per week is almost constant (Fig. 3b), while

the PV power per day has small fluctuations (Fig. 3c).

4.2 Results

We divide the dataset into training and testing datasets. A

total of 70% of the samples are used to train the PV power

forecasting model, while the remaining samples are used

for testing the model. We used the root-mean-square error

(RMSE) to evaluate the performance of the forecasting

models. RMSE can be defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðX̂i � XiÞ2
v

u

u

t ð6Þ

In this equation, X̂i and Xi are the ith foretasted and actual

values, respectively, and N is the size of the testing dataset.

The loss function of LSTM was the mean-squared error,

and the optimizer was ‘adam.’ The models were imple-

mented using Keras library (theano backend). Model1 has a

visible layer with 1 input, a hidden layer with 4 LSTM

blocks, and an output layer that makes a single value

prediction. We evaluated the performance of the five

models with 20, 50, and 100 epochs.

Table 1 shows the training errors of the five models

with Dataset1. In the training phase, model4 gave the

smallest training error with 100 epochs, while model1 gave

the highest RMSE with 50 epochs. Table 2 shows the

testing errors of five models with Dataset1. With 50

epochs, model3 obtained the smallest RMSE value, while

model1 gave the highest one.

Figures 4, 5, 6, 7, and 8 present the predicted PV power

using the five LSTM models with 20, 50, and 100 epochs

with Dataset1. As we can see, model3 with 50 epochs

accurately predicts the PV power compared to the other

models. In turn, we notice big errors in the case of model1

with 50 epochs.

Table 3 presents the training errors of the five models

with Dataset2. In the training phase, model2 gave the

smallest RMSE value, while model1 gave the highest error

with 50 epochs. Table 4 presents the testing errors of the

five models with Dataset2. Model2 and model3 gave the

smallest RMSE value, while model1 gave the highest one

with 50 epochs.Fig. 2 Stacked LSTM
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We can conclude that model3 gives the best results

compared to model1, model2, model4, and model5. Thus,

we recommend to use it for forecasting the PV power. The

main reason of achieving good results (small RMSE) with

LSTM is its ability to model the temporal changes in the

PV power, while the traditional PV forecasting methods do

not utilize the temporal information. In other words, LSTM

can capture abstract concepts in the PV power sequences

and thus improves the forecasting results.
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Fig. 3 The distribution of PV power in Dataset1 with a hours, b days, c weeks, and d months

Table 1 Training errors of the five models with Dataset1

Model/epoch 20 50 100

Model1 374.47 377.33 371.20

Model2 89.68 82.36 72.72

Model3 90.06 74.82 72.48

Model4 87.83 76.99 71.15

Model5 84.40 76.23 73.04

Minimum errors are highlighted in best values

Table 2 Testing errors of the five models with Dataset1

Model/epoch 20 50 100

Model1 382.37 383.42 377.88

Model2 104.49 89.86 82.66

Model3 106.20 82.15 83.46

Model4 103.71 90.99 87.45

Model5 103.76 86.10 98.61

Minimum errors are highlighted in best values
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Fig. 4 Predicting PV power of Dataset1 using model1 with a 20, b 50 and c 100 epochs
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Fig. 5 Predicting PV power of Dataset1 using model2 with a 20, b 50, and c 100 epochs
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Fig. 6 Predicting PV power of Dataset1 using model3 with a 20, b 50, and c 100 epochs
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Fig. 7 Predicting PV power of Dataset1 using model4 with a 20, b 50, and c 100 epochs
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Fig. 8 Predicting PV power of Dataset1 using model5 with a 20, b 50, and c 100 epochs
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4.3 Comparison with related methods

In this section, we compare the performance of the pro-

posed method (model3) with three PV forecasting methods:

multiple linear regression (MLR), bagged regression trees

(BRT), and neural networks. As we can see in Table 5,

MLR and BRT give high RMSE. Indeed, these methods

were developed for stationary time series forecasting;

therefore, they are not suitable for forecasting PV power

because solar radiation profile is non-stationary. With NN,

we have tried different configurations, such as using 1 and

2 layers while changing the number of neurons from 1 to

50. With Dataset1 and Dataset2, the NN model gives its

best results with 2 layers and 7 neurons.

Unlike LSTM-RNN, MLR, BRT and NN methods do

not contain memory units, and so they cannot model the

temporal changes in PV output power. The NN method has

a similar architecture to the LSTM-RNN, but it does not

have memory units or a recurrent architecture. In turn,

LSTM-RNN uses the information learned in the previous

time steps in the predication of the current value, yielding

robust and accurate forecasting results. As shown in

Table 5, the proposed method (model3) gives very small

forecasting errors with Dataset1 and Dataset2 compared to

the other methods.

4.4 Applications of the proposed method

The proposed method can be used in several applications of

smart grids, such as:

– Optimal planning of PV units in transmission/distribu-

tion systems, i.e., determining the optimal locations and

sizes of PV plants with considering their intermittent

nature.

– Optimal control of existing PV plants with avoiding

their operational problems, such as voltage rise and

reverse power flow.

– Optimal scheduling of other generators (e.g., fuel-based

generators) with considering the predicted values of PV

power to minimize operational costs of the grid.

– Optimal charging/discharging of storage devices (e.g.,

batteries) for profit maximization.

4.5 Limitations of the proposed method

As shown in Sects. 4.2 and 4.3, the proposed method

outperforms the compared methods. However, the current

study has some limitations, such as:

– The effect of outliers in PV power sequences has not

been studied in this paper.

– We did not incorporate environmental parameters, such

as, wind speed, air temperature, and humidity, in the

forecasting of PV power.

In the future work, we will deeply consider the afore-

mentioned limitations. Furthermore, we will use the pro-

posed method in the applications mentioned in Sect. 4.4.

5 Conclusion and future work

In this paper, we have proposed a new method for fore-

casting PV output power using deep LSTM networks.

Unlike the traditional PV power forecasting methods, our

method based on LSTM can capture abstract concepts in

the PV power sequences. Therefore, LSTM networks can

model the temporal changes in PV output power due to

Table 3 Training errors of the five models with Dataset2

Model/epoch 20 50 100

Model1 337.32 342.01 336.30

Model2 118.33 107.95 112.17

Model3 119.09 108.17 110.69

Model4 126.55 117.48 120.20

Model5 134.08 122.40 113.71

Minimum errors are highlighted in best values

Table 4 Testing errors of the five models with Dataset2

Model/epoch 20 50 100

Model1 328.17 329.99 328.90

Model2 150.78 136.87 141.82

Model3 150.68 136.87 141.96

Model4 162.86 156.78 158.41

Model5 155.88 158.81 146.94

Minimum errors are highlighted in best values

Table 5 Comparison with

related methods
Method RMSE of Dataset1 RMSE of Dataset2 Memory-based? Recurrent?

MLR 384.8951 329.11 No No

BRT 494.4633 416.212 No No

NN 377.072 348.931 No No

Proposed (model3) 82.15 136.87 Yes Yes

Minimum errors are highlighted in best values
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their recurrent architecture and memory units. We have

evaluated the performance of five LSTM models with

different architectures in the forecasting of PV power. The

proposed model3 (LSTM with time steps) gives the best

results compared to the other models; therefore, it is rec-

ommended to employ it for forecasting the PV power. We

also compared the proposed method (model3) with three

PV forecasting methods based on MLR, BRT, and NN

methods. The proposed method gave a very small fore-

casting error compared to the other methods. The future

work will focus on utilizing different RNN architectures

and loss functions for further improvement in the accuracy

of forecasting results. Furthermore, we will use the pro-

posed method to control and plan the operation of multiple

renewable energy sources (e.g., PV, wind, and biomass) in

smart grids.
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