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Abstract In this paper, we develop a novel image tag

completion method. We propose to represent the images by

using the convolutional neural network (CNN) and predict

the complete tags from the convolutional representations.

The prediction is performed by a linear predictive model,

and the complete tags are also imposed to be consistent to

the existing elements of the incomplete tag matrix. We

propose to learn the CNN parameters, the complete tags,

and the predictive model parameters jointly. The learning

problem is modeled by a minimization problem of an

objective function composed of a consistency term

between the learned complete tag vectors and the existing

incomplete tag matrix, a prediction error term, and the

convolutional similarity regularization term, and a sparsity

term of the complete tag vector. The minimization problem

is solved by an augmented Lagrangian method. The

experiments over some benchmark data sets show that our

method outperforms the state-of-the-art image tag com-

pletion methods.

Keywords Image tag completion � Convolutional neural
network � Augmented Lagrangian method � Sparsity
regularization

1 Introduction

1.1 Background

Image tagging problem is becoming more and more

important for both image retrieval and classification

applications [5, 7, 23, 32, 33, 40, 41]. This problem is

defined as assigning a set of textual tags to an targeted set

of images. An example is the keyword-based image

searching application. In this application, given a query

keyword, we return a list of images whose tags are similar

to the query words. In this application, the quality of the

tags assigned to the images is critical for the performance

of the retrieval. In the ideal case, the tags of an image

should be accurate and complete. However, in the real-

world applications, the tags of images are usually incom-

plete, and it is necessary to complete the tags of images.

For example, when a social network user updates an image

to his/her page, some tags may be provided. But the pro-

vided tags usually cannot cover all the sematic concepts of

the images, and the tags are incomplete. In this scenario, it

is necessary to obtain the complete list of tags of the image

before we use it for image retrieval problem. The problem

of completing the tags of images is called image tag

completion [10, 14, 25, 44]. To solve this problem, many

approaches have been proposed [6, 15, 17, 18, 39, 42]. The

matrix completion is a popular method for the tag com-

pletion problem [2–4]. However, the performance of these

works are not satisfied yet. Meanwhile, convolutional

neural network (CNN) has been proved to be an effective
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tool to represent images [8, 20, 21, 43]. However, sur-

prisingly, CNN has not been applied to the problem of

image tag completion. In this paper, we propose to use

CNN as the representation method for the problem of

image tag completion and develop an joint learning method

of convolutional representations and complete tags of

images.

1.2 Relevant works

Our work is an image tag completion method; thus, we

introduce a few stat-of-the-art image tag completion

methods. Lin et al. [18] proposed a novel method for image

tag completion by using the image-specific and tag-specific

linear sparse reconstructions. The incomplete initial tag-

ging matrix is reconstructed by the linear sparse recon-

structions which optimally reconstructs images and the

tags. The reconstruction is constrained by sparsity, image–

image similarity, image–tag association, and tag–tag con-

currence. Wu et al. [39] presented the image–tag relation

by a tag matrix and completed the tags by learning an

optimal tag matrix. The completion is constrained by both

the observed tags and the visual similarity. A new algo-

rithm was proposed to solve the argued optimization

problem. Feng et al. [6] showed that the problem of tag

completion can be solved as a noisy matrix recovery

problem. The missing tags are recovered, and the noisy

tags are de-emphasized jointly in this method. Moreover, a

graph Laplacian component derived from visual features

are also used to regularize the noisy matrix recovery. Lin

et al. [17] developed a novel approach for image tag

completion using dual-view linear sparse reconstructions.

This method conducts tag completion from two views,

which are image view and tag view, and uses available

context information. The image–image correlations are

used to linearly reconstruct the low-level image features

and the tag vectors jointly. Moreover, the tag–tag correla-

tions are also used to obtain the reconstruction of the tag

vector from the initial incomplete tags. Both the image

view- and tag view-reconstructed tag vectors are combined

to predict the complete tags. Xia et al. [42] designed a

regularized optimization framework for the tag completion

problem, by jointly conducting nonnegative matrix fac-

torization (NMF) and the holistic visual diversity mini-

mization to complete the tag-image matrix. The NMF

modeling map the tag-image matrix into a latent low-rank

space and use the sematic relevance of the tags to complete

the tags partially. Moreover, the holistic visual diversity is

used to regularize the NMF to utilize the content-similar

images. Li et al. [15] proposed a novel tag completion

method by using the low-rank and error sparsity, the local

reconstruction structure consistency, and the promote basis

diversity. The tag matrix is decomposed as the combination

of a low-rank matrix and a sparse error matrix, and the

local linear reconstruction is further applied to regularize

the learn of the tag vectors.

1.3 Our contributions

In our paper, we propose a novel image tag completion

method. This method is based on the convolutional repre-

sentation of the images and the linear prediction of the tag

assignment vectors. We first use a CNN model to represent

the images to the convolutional vectors and then apply a

linear predictive model over the convolutional representa-

tions to obtain the complete tag assignment vectors of the

images. To learn the parameters of the CNN and the linear

predictive model, we impose the learned tag assignment

vectors to be consistent to the available elements of the

incomplete tag vectors, minimizing the prediction errors of

the linear predicative model over the image set. We also

argue that the tag assignment vectors of the images with

large convolutional similarities should be similar and

minimize the distance between their tag assignment vectors

weighted by their convolutional similarity. Finally, we

apply the sparsity penalty to the tag assignment vectors and

minimize the L1 norm of the tag assignment vectors. The

learning problem is modeled as a minimization problem

with regard to the CNN filters, the complete tag assignment

matrix, and the predictive model parameters jointly. The

objective function of the problem is the weighted combi-

nation of a the squared Frobenius norm distance between

the tag assignment elements and available tag elements, a

predictive error term, a convolutional similarity regular-

ization term, and a sparsity term of tag assignment vectors.

To solve this problem, we use the augmented Lagrangian

method (ALM). The experimental results over some

benchmark data sets show that the proposed convolutional

representation-based tag completion method outperforms

the state-of-the-art tag completion methods.

1.4 Paper organization

The rest parts of this paper are organized as follows. In

Sect. 2, we introduce the proposed method. In Sect. 3, we

conduct experiments to evaluate the proposed method. In

Sect. 4, we give the conclusion of this paper with some

future works.

2 Proposed method

2.1 Problem modeling

We suppose that we have a set of images, denoted as

I ¼ fI1; . . .; Ing, where Ii is the ith image, and n is the total
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number of the images. A set of candidate tags of these

images are also given T ¼ fT1; . . .; Tmg, where Tj is the jth
tag and m is the number of tags. The problem of image

tagging is to assign the tags in T to the images in I . To
denote the assigning relation between the images and the

tags, we define a matrix of assignment,

T ¼ ½tji� 2 f1; 0gm�n, and its (j, i)th entity tji is set to 1 if Tj
is assigned to Ii, and 0 otherwise. In many applications, we

already have a existing assignment matrix

bT ¼ ½btji� 2 f1; 0gm�n, and its entities are of the same

meaning as T, but it is incomplete, i.e., many of its entities

are missing. To denote which entities are missing, we

further define a binary matrix U ¼ ½/ji� 2 f1; 0gm�n, where
its (j, i)th entity is defined to indicate if btji is missing,

/ji ¼
1; ifbtji is available;

0; otherwise:

(

ð1Þ

Thus with these definitions, the problem of image tagging

is transformed to the learning of a complete assignment

matrix T from the images set I , the incomplete assignment

matrix bT , and its corresponding missing entity indicator

matrix U. To this end, we propose to present an image to a

convolutional representation by a convolutional network

and then use a linear model to predict its assignment vector

from its convolutional representation. The learning of

parameters of the convolutional network and the complete

assignment matrix are conducted jointly. In the following

sections, we will introduce the model of predicting tag

assignment vectors and the learning of the parameters.

2.1.1 Tagging model

To complete the tags of an image, I, we propose to learn its

convolutional representation and the complete tag assignment

vector jointly. Given the image I we use a sliding window to

split the image to nI overlapping small image patches,

I ! fx1; . . .; xnIg, where xi 2 Rd is the visual feature vector

of the ith image patch.We further organize the feature vectors

of the image patches as a matrix X ¼ x1; . . .; xnI½ � 2 Rd�nI ,

where xi is the ith column of the matrix. To obtain the con-

volutional representation, we first perform the filtering and

nonlinear transformation to the matrix X,

G ¼ g W>X
� �

2 Rr�nI ; where gðxÞ ¼ 1

1þ expð�xÞ ; ð2Þ

W ¼ ½w1; . . .;wr� 2 Rd�r is the matrix of r filters, and wk 2
Rd is the kth filter vector. gð�Þ is a element-wise nonlinear

transformation function. In our experiments, we use the

sigmoid function as the nonlinear transformation function.

Then, we perform the row-wise max-pooling to the output

matrix G,

y ¼ maxðGÞ ¼ ½y1; . . .; yr�> 2 Rr ð3Þ

where maxð�Þ gives the row-wise maximum elements, and

yk is the maximum entity of the kth row of G,

yk ¼ maxðGk;:Þ; ð4Þ

where Gk;: is the kth row of matrix G. The output vector of

max-pooling, y, is the convolutional representation vector

of the image I. The tag completion problem of this image to

learn a tag assignment vector t ¼ ½t1; . . .; tm� 2 f1; 0gm,
where tj ¼ 1 indicates that the Tj is assigned to the image I.

Remark Each image can be assigned to multiple tags, not

just one tag. Thus this is an multi-tag completion problem.

Direct learning of the binary vector is difficult; thus, we

relax the learning of binary vector to the learning of a

continues value vector, t 2 Rm. The elements of the

assignment vector can be treated as the scores of assigning

the tags to this image. To learn the tag assignment vector t

of an image from its convolutional representation vector y,

we use a linear function to predict t from y,

t ðUy� bÞ ð5Þ

where U 2 Rm�r and b 2 Rm are the parameters of the

predictive model for the assignment vector. To learn the

complete tag assignment matrix T for all the images in I ,
we apply the convolutional representation and linear tag

assignment prediction to all the images. The problem of the

learning of the complete tag assignment matrix is consid-

ered jointly with the learning problem of the convolutional

representation parameters, i.e., the filter matrix, and the

linear predictive model parameters.

2.2 Learning problem

To jointly learn the complete tag assignment matrix T, the

convolutional representation filter matrix W, and the linear

predictive model U and b jointly, we consider the fol-

lowing few problems to construct the joint objective

function of the learning problem.

• For the ith training image Ii, its existing incomplete

assignment vector is given as

bti ¼ bt1i; . . .;btmi
� �>2 f1; 0gm, which is the ith column

of the matrix bT . This vector is not complete, and the ith

column of U indicates the missing elements of bti,

/i ¼ ½/1i; . . .;/mi�> 2 f1; 0gm. If /ji ¼ 1, btji is avail-

able, not missing. In this case, the learned tag

assignment score tji should be as close to the available

btji. To measure how close tji is to its corresponding

available btji, we calculate the squared Frobenius norm

distance between them, ðtji �btjiÞ2. The squared
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Frobenius norm distance between tji and btji weighted by

the /ji is minimized with regard to tji. The minimiza-

tion is applied over all the images and tags,

min
T

X
n

i¼1

X
m

j¼1
/jiðtji �btjiÞ2

(

¼
X
n

i¼1
Tr ðti �btiÞ>diagð/iÞðti � btiÞ
� �

)

;

ð6Þ

where Trð�Þ is the trace of a matrix, and diagð/iÞ is a
diagonal matrix with /i as its diagonal vector. By

minimizing this problem, we hope the learned T can

respect the incomplete tag assignment vector, bT .

• Since we use a linear model to predict the tag

assignment vector from the convolution representation

vectors, we show the prediction error can be as small as

possible. Again, we use the squared Frobenius norm

distance to measure the prediction error. For the ith

training image, the squared Frobenius norm distance

between its tag assignment vector, ti, and the output

vector of the linear predictive model of its correspond-

ing convolutional representation vector,

yi ¼ max gðW>XiÞð Þ, is minimized. The minimization

problem is also applied over the training set,

min
T ;U;b;W

X
n

i¼1
ti � ðUyi � bÞk k2F : ð7Þ

By this way, we bridge the problems of learning

complete tags and convolutional representations of the

images.

• We also use the similarities between the visual features

of different images to regularize the learning of the

complete tag assignment vectors. For a images Ii, we

seek its k-nearest neighbors to present its visually

similar images. The set of k-nearest neighbors of Ii is

denoted as N i. To measure the similarity between Ii
and a neighboring image Ii0 2 N i is measured by the

normalized Gaussian kernel of the Frobenius norm

distance between their convolutional representation

vectors,

Sii0 ¼
exp �ckyi � yi0 k2F
� �

P

i002N i
exp �ckyi � yi00 k

2
F

� � ; if Ii0 2 N i

0; otherwise:

8

>

>

<

>

>

:

ð8Þ

If Sii0 is large, the Ii and Ii0 are visually similar, we

expect their complete tag assignment vectors, ti and ti0

should also be close to each other. Thus, we minimize

the squared Frobenius norm distance between ti and ti0

weighted by Sii0 . The minimization is also applied over

all pairs of training images,

min
T

X
n

i;i0¼1
Sii0 ti � ti0k k2F : ð9Þ

• We also observed that for each image, it is usually

assigned to only a few tags, and the complete tag

assignment vector should be sparse. To encourage the

sparsity of the tag assignment vector, we use a L1 norm

term to regularize the tag assignment vector to force

most of its elements to zero. The L1 norm of the tag

assignment vector ti, tik k1¼
Pm

j¼1 jtjij is minimized,

and the minimization problem is applied over all the

training images,

min
T

X
n

i¼1
tik k1¼

X
n

i¼1

X
m

j¼1
jtjij

( )

: ð10Þ

The overall optimization problem of the learning is the

weighted summation of the above objectives,

min
T ;U;b;W

X
n

i¼1
Tr ðti � btiÞ>diagð/iÞðti � btiÞ
� �

þ k1
X
n

i¼1
ti � ðUyi � bÞk k2F

(

þk2
X
n

i;i0¼1
Sii0 ti � ti0k k2Fþk3

X
n

i¼1
ktik1

)

ð11Þ

where k1, k2, and k3 are the weights of different regular-

ization terms of the objective, and their values are decided

by cross-validation in our experiments. They play the roles

of trade-off of different terms. Please note that yi is not

listed as a variable in this problem. It is a function of the

convolutional filter matrix W. Directly solving W of (11) is

difficult, we propose to explicitly introduce yi; i ¼ 1; . . .; n
as variable vectors, and constrains to impose

yi ¼ max gðW>XiÞð Þ. The optimization problem of (11) is

transformed to a constrained optimization problem,

min
T;U;b;W;Y

X
n

i¼1
Tr ðti �btiÞ>diagð/iÞðti �btiÞ
� �

þ k1
X
n

i¼1
ti � ðUyi � bÞk k2F

(

þk2
X
n

i;i0¼1
Sii0 ti � ti0k k2Fþk3

X
n

i¼1
ktik1

)

s.t. yi ¼ max gðW>XiÞ
� �

;8 i ¼ 1; . . .; n;

ð12Þ

where Y ¼ ½y1; . . .; yn� 2 Rm�n is the matrix of convolu-

tional representations.

2.3 Problem optimization

To solve the problem in (12), we use the augmented

Lagrangian method (ALM) [1, 9, 26, 28, 30, 31, 45–47].
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The augmented Lagrangian function of the problem in (12)

is given as follows,

LðT ;U; b;W ; Y ;AÞ ¼
X
n

i¼1
Tr ðti �btiÞ>diagð/iÞðti � btiÞ
� �

þ k1
X
n

i¼1
ti � ðUyi � bÞk k2F

þ k2
X
n

i;i0¼1
Sii0 ti � ti0k k2Fþk3

X
n

i¼1
ktik1

þ
X
n

i¼1
a>i yi �max gðW>XiÞ

� �� �

þ b
2

X
n

i¼1
yi �max gðW>XiÞ

� ��

�

�

�

2

F
;

ð13Þ

where ai 2 Rm
þ is the Lagrange multiplier vector for the

constraint yi ¼ max gðW>XiÞð Þ, and b is the positive pen-

alty parameter. The optimization problem is transformed to

the following minimization–maximization coupled

problem,

max
A

min
T ;U;b;W ;Y

LðT;U; b;W ; Y;AÞ

s.t.A� 0;
ð14Þ

where A ¼ ½a1; . . .; an� 2 Rm�n
þ is the matrix of Lagrange

multiplier vectors. To solve this coupled problem, we use

the alternating direction method of multipliers (ADMM).

This method updates the multiplier matrix A and the other

variables, T ;U; b;W and Y alternately. In the following

sections, we discuss how to optimize these variables,

respectively.

2.3.1 Optimizing T

To optimize the complete tag assignment matrix T, we fix

all the other variables, and the following sub-optimization

problem is obtained from (14),

min
T

X
n

i¼1
Tr ðti �btiÞ>diagð/iÞðti � btiÞ
� �

þ k1
X
n

i¼1
ti � ðUyi � bÞk k2F

(

þ k2
X
n

i;i0¼1
Sii0 ti � ti0k k2Fþk3

X
n

i¼1
ktik1

¼
X
n

i¼1
Tr ðti � btiÞ>diagð/iÞðti � btiÞ
� �

þ k1 ti � ðUyi � bÞk k2F

 

þk2
X
n

i0¼1
Sii0 ti � ti0k k2Fþk3ktik1

!

¼
X
n

i¼1
gðtiÞ

)

:

ð15Þ

From (15), we observe that the objective of (15) is a

summation of a function gðtiÞ over independent tag

assignment vectors ti. Thus the optimization of each ti is

independent from the optimization problems of other ti0 ,

i0 6¼ i. We can optimize ti by only optimizing gðtiÞ, and the

following optimization problem is obtained,

min
ti

gðtiÞ ¼ Tr ðti � btiÞ>diagð/iÞðti � btiÞ
� �

þ k1 ti � ðUyi � bÞk k2F

(

þk2
X
n

i0¼1
Sii0 ti � ti0k k2Fþk3ktik1

)

:

ð16Þ

In gðtiÞ, the last term ktik1 is non-smooth, and it is difficult

to minimize it directly. To overcome this problem, we use

the fix-point method. The last term ktik1 can be rewritten as
follows,

ktik1 ¼
X
m

j¼1
tji
	

	

	

	 ¼
X
m

j¼1

t2ji

tji
	

	

	

	

¼ t>i KðtiÞti; ð17Þ

where KðtiÞ ¼ diag 1
t1ij j ; . . .;

1
tmij j

� �

. It could be observed that

if we fix the matrix KðtiÞ, t>i KðtiÞti is a quadratic function

of ti. In each iteration of an iterative algorithm, we firstly

use the previous solution eti to update the KðetiÞ and then fix

it to solve the minimization problem of (16). Meanwhile,

we should also note that in the third term,
Pn

i0¼1 Sii0 ti � ti0k k2F , we also need to know the tag assign-

ment vectors of other images, ti0 , i
0 6¼ i, to update ti. We

also use the previous solutions of ti0 , eti0 , to regularize the

learning of ti. The obtained objective is given as follows,

egðtiÞ ¼ Tr ðti �btiÞ>diagð/iÞðti � btiÞ
� �

þ k1 ti � ðUyi � bÞk k2Fþk2
X
n

i0¼1
Sii0 ti � eti0
�

�

�

�

2

F

þ k3t
>
i KðetiÞti

ð18Þ

To minimize this objective, we set its derivative regðtiÞ to
zero to obtain the optimal solution t�i ,

regðtiÞ ¼ 2diagð/iÞðti � btiÞ þ 2k1 ti � ðUyi � bÞð Þ

þ 2k2
X
n

i0¼1
Sii0 ti � eti0
� �

þ 2k3KðetiÞti ¼ 0;

) diagð/iÞ þ k1 þ k2
X
n

i0¼1
Sii0

 !

I þ k3KðetiÞ
 !

ti

¼ diagð/iÞbti þ k1ðUyi � bÞ þ k2
X
n

i0¼1
Sii0eti0

 !

;

) t�i ¼ diagð/iÞ þ k1 þ k2
X
n

i0¼1
Sii0

 !

I þ k3KðetiÞ
 !�1

diagð/iÞbti þ k1ðUyi � bÞ þ k2
X
n

i0¼1
Sii0eti0

 !

:

ð19Þ
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2.3.2 Optimizing U and b

To optimize the linear predictive model parameter U and b,

we fix the other variables and obtain the following sub-

optimization problem.

min
U;b

hðU; bÞ ¼ k1
X
n

i¼1
ti � ðUyi � bÞk k2F

( )

; ð20Þ

where hðU; bÞ is the objective function of this sub-opti-

mization problem. To minimize this objective function

with regard to b, we firstly set its derivative with regard to

b to zero to obtain the optimal solution b�,

rbhðU; bÞ ¼ k1
X
n

i¼1
ti � ðUyi � bÞð Þ ¼ 0;

) b� ¼ 1

n

X
n

i¼1
Uyi � tið Þ:

ð21Þ

We substitute the optimal solution b� to (20) to reduce the

problem to only one variable U,

min
U

ehðUÞ ¼ k1
X
n

i¼1
ti � Uyi �

1

n

X
n

i0¼1
Uyi0 � ti0ð Þ

 !�

�

�

�

�

�

�

�

�

�

2

F

8

<

:

¼ k1
X
n

i¼1
ti �

1

n

X
n

i0¼1
ti0

 !

� U yi �
1

n

X
n

i0¼1
yi0

 !�

�

�

�

�

�

�

�

�

�

2

F

9

=

;

:

ð22Þ

To obtain the optimal solution of U, we set the derivative

of ehðUÞ to zero,

rU
ehðUÞ ¼ 2k1

X
n

i¼1
ti �

1

n

X
n

i0¼1
ti0

 !

� U yi �
1

n

X
n

i0¼1
yi0

 ! !

¼ 0;

) U
X
n

i¼1
yi �

1

n

X
n

i0¼1
yi0

 !

¼
X
n

i¼1
ti �

1

n

X
n

i0¼1
ti0

 !

;

) U� ¼
X
n

i¼1
ti �

1

n

X
n

i0¼1
ti0

 !

X
n

i¼1
yi �

1

n

X
n

i0¼1
yi0

 ! !�1

:

ð23Þ

2.3.3 Optimizing W

To solve the filter matrix W, we fix the other variables and

obtain the following sub-optimization problem,

min
W

X
n

i¼1
a>i yi �max gðW>XiÞ

� �� �

þ b
2

X
n

i¼1
yi �max gðW>XiÞ

� ��

�

�

�

2

F

(

¼
X
r

k¼1

X
n

i¼1
aik yik �max gðw>k XiÞ

� �� �

þ b
2

yik �max gðw>k XiÞ
� �� �2


 �

¼
X
r

k¼1
f ðwkÞ

)

:

ð24Þ

According to (24), we can see that the objective of (24) is

actually a summation of the function f ðwkÞ over indepen-
dent filters wk; k ¼ 1; . . .; r. So we can optimize the filters

independently by solving r sub-optimization problems. The

sub-optimization of the kth filter is given as follows,

min
wk

f ðwkÞ ¼
X
n

i¼1
aik yik �max gðw>k XiÞ

� �� �




(

þ b
2

yik �max gðw>k XiÞ
� �� �2

��

;

ð25Þ

where max gðw>k XiÞ
� �

is the output of the convolutional

representation model with regard to the kth filter, wk. It can

be rewritten as follows by introducing a maximum

responding instance vector, gik,

max gðw>k XiÞ
� �

¼ max
gik

gðw>k XigikÞ
� �

;

s.t. gik 2 f1; 0gni ; gik1 ¼ 1:
ð26Þ

gik is a binary vector, and it has only one element as one,

while all the other elements are set to zero. The position of

this one-value element indicates the position of the instance

in Xi which gives the maximum response. Substituting (26)

to (25), we have

min
wk

f ðwkÞ ¼
X
n

i¼1
aik yik � gðw>k Xig

�
ikÞ

� �




(

þ b
2

yik � gðw>k Xig
�
ikÞ

� �2
��

;

s.t. g�ik ¼ argmaxgik2f1;0gni ; gik1¼1gðw>k XigikÞ; i¼1;...;n:

ð27Þ

We also use the fix-point method to solve this problem. In

each iteration of an iterative algorithm, we first fix wk as its

previous solution, ewk, to update g�ik. Then we fix g�ik to

update wk by using the gradient descent method,

wk  wk � grwk
f ðwkÞ; ð28Þ

where rwk
f ðwkÞ is the gradient function of f ðwkÞ,
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rwk
f ðwkÞ ¼

X
n

i¼1
�aikrwk

gðw>k Xig
�
ikÞXig

�
ik




�b yik � gðw>k Xig
�
ikÞ

� ��

rwk
gðw>k Xig

�
ikÞXig

�
ik

�

;

ð29Þ

rgð�Þ is the gradient function of the nonlinear transfor-

mation function, and g is the descent step size.

2.3.4 Optimizing Y

To optimize the convolutional representation vectors of the

images, we fix the other variables and obtain the following

sub-optimization problem,

min
Y

X
n

i¼1
k1 ti � ðUyi � bÞk k2Fþa>i yi �max gðW>XiÞ

� �� �




(

þ b
2

yi �max gðW>XiÞ
� ��

�

�

�

2

F

�

¼
X
n

i¼1
lðyiÞ

)

:

ð30Þ

We also observe the objective function of this problem is a

linear combination of an independent function lðyiÞ over
the training images. Thus we can consider the minimiza-

tion of lðyiÞ with regard to yi independently. The mini-

mization problem of lðyiÞ is given as follows,

min
yi

lðyiÞ ¼ k1 ti � ðUyi � bÞk k2Fþa>i yi �max gðW>XiÞ
� �� �




þ b
2

yi �max gðW>XiÞ
� ��

�

�

�

2

F

�

:

ð31Þ

To solve this problem, we set the directive of lðyiÞ with
regard to yi to zero and have the following optimal solution

y�i

rlðyiÞ ¼ �2k1U> ti � ðUyi � bÞð Þ þ ai þ b yi �max gðW>XiÞ
� �� �

¼ 0;

) �2k1U> ti � ðUyi � bÞð Þ þ ai þ b yi �max gðW>XiÞ
� �� �

¼ 0;

) bI � 2k1U
>U

� �

yi ¼ 2k1U
> ti þ bð Þ þ bmax gðW>XiÞ

� �

� ai;

) y�i ¼ bI � 2k1U
>U

� ��1
2k1U

> ti þ bð Þ þ bmax gðW>XiÞ
� �

� ai
� �

:

ð32Þ

2.3.5 Optimizing A

To optimize the Lagrange multiplier matrix, we fix the

other variables and obtain the following sub-optimization

problem,

max
A

sðAÞ ¼
X
n

i¼1
a>i yi �max gðW>XiÞ

� �� �

¼ Tr A>H
� �

( )

ð33Þ

where H ¼ y1 �max gðW>X1Þð Þð Þ; . . .; yn �maxð½
gðW>XnÞð ÞÞ� 2 Rm�n: We use the gradient ascent method

to update this matrix to maximize the objective function

s(A),

A Aþ 1rsðAÞ ð34Þ

where rsðAÞ is the gradient function of s(A), which is

defined as

rsðAÞ ¼ H; ð35Þ

and 1 is the ascent step size.

2.4 Algorithm

Based on the optimization results of the above section, we

design an iterative algorithm to learn these variables. The

algorithm, named as Joint Image Convolutional Repre-

sentation and Tag Completion (JICRTC) algorithm, is

described in Algorithm 1.

Algorithm 1 Iterative optimization algorithm of

JICRTC.

Inputs : Xi;bti; i ¼ 1; . . .; n.
Initialization : ti; yi; i ¼ 1; . . .; n, U, b, W, and A.

Repeat :

1. Calculate the image pair-wise convolutional similari-

ties for i; i0 ¼ 1; . . .; n:

Sii0 ¼
exp �ckyi � yi0 k2F
� �

P

i002N i
exp �ckyi � yi00 k2F
� � ; if Ii0 2 N i

0; otherwise:

8

>

>

<

>

>

:

ð36Þ

2. Update the complete tag assignment score vectors for

i ¼ 1; . . .; n:

ti ¼ diagð/iÞ þ k1 þ k2
X
n

i0¼1
Sii0

 !

I þ k3KðtiÞ
 !�1

diagð/iÞbti þ k1ðUyi � bÞ þ k2
X
n

i0¼1
Sii0ti0

 !

:

ð37Þ

3. Update the predictive model parameters, U and b,

U ¼
X
n

i¼1
ti �

1

n

X
n

i0¼1
ti0

 !

X
n

i¼1
yi �

1

n

X
n

i0¼1
yi0

 ! !�1

; and

b ¼ 1

n

X
n

i¼1
Uyi � tið Þ:

ð38Þ
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4. Update the maximum responding instance indicators

for i ¼ 1; . . .; n:

g�ik ¼ argmax
gik2 1;0f gni ;gik1¼1

g w>k Xigik
� �

; k ¼ 1; . . .; r: ð39Þ

5. Update the filters for k ¼ 1; . . .; r:

wk ¼ wk � g
X
n

i¼1
�aikrwk

gðw>k Xig
�
ikÞXig

�
ik

�

 

�b yik � gðw>k Xig
�
ikÞ

� ��

rwk
gðw>k Xig

�
ikÞXig

�
ik

�

:

ð40Þ

6. Update the convolutional representations of the

images:

yi ¼ bI � 2k1U
>U

� ��1
2k1U

> ti þ bð Þ
�

þbmax gðW>XiÞ
� �

� ai
�

:
ð41Þ

7. Update the Lagrange multiplier matrix A:

A ¼ Aþ 1 y1 �max gðW>X1Þ
� �� �

; . . .;
��

yn �max gðW>XnÞ
� �� ��

Þ
ð42Þ

Until convergence.

Outputs : ti; i ¼ 1; . . .; n.

3 Experiments

In this section, we evaluate the proposed algorithm,

JICRTC, over a few benchmark image data sets. The

evaluation is based on two different computer vision

problems, which are image annotation and image retrieval.

3.1 Data sets and experimental setting

In the experiments, three data sets of images are used. The

data sets are introduced as follows.

• Corel dataset is composed of 4993 images. The tag set

is composed of 260 different tags. Each image has at

most five tags.

• Labelme data set is composed 2900 images, and its tag

set has 495 tags. Each image of this data sets has at

most 48 tags.

• Flickr data set has 1,000,000 images. Its tag set has

more than 1,000 tags. Each images is tagged by at most

76 tags.

The statistical information of the data sets is summarized in

Table 1.

3.2 Image annotation experiments

3.2.1 Experimental setting

We first evaluate our image tag completion method over

the image annotation problem [27]. Given an image, and a

set of candidate tags, the problem of image annotation is to

predict its true complete list of tags relevant to the image.

This is an special case of image tag completion, where each

image has no existing tags and all the tags are missing. We

should predict all its missing tags.

We use the fourfold cross-validation protocol to split the

training/test subsets. Each data set is split to four subsets,

and the four subsets are of the same size. We use each

subset as the test set in turns, and use the remaining three

subsets as the training sets. We first apply the proposed

JICRTC method to the training set to learn the parameters

of CNN and linear predictive model and apply the models

to the test images to predict the tags. The image tags

assignment scores are the outputs of the model, and the

top-ranked tags are returned as the tags of the candidate

image. We set the number of returned top-ranked images to

5 and 10, respectively, and report the precisions and recalls

as the performance measures.

3.2.2 Experimental results

We compare our method to the existing stat-of-the-art meth-

ods, including the methods proposed by Lin et al. [18], Wu

et al. [39], Feng et al. [6], Lin et al. [17], and Li et al. [15]. The

results are reported in Table 1 and Fig. 1. From the results

reported in Fig. 1, the proposed method JICRTC outperforms

the compared methods over all the three data sets on the four

performance measures. This is a strong evidence of the

advantage of the CNN model for the tag completion and

annotation of images. Over the three data sets, it seems the

compared methods obtain the best results over the Corel data

set, and the worst results over the Flickr data set.

3.3 Image retrieval experiments

3.3.1 Experimental setting

Then we evaluate the proposed method over the problem of

tag-based image retrieval [16]. This problem uses tags as

queries to retrieve the images from the database of images.

Table 1 Data set statistical information

Data sets # images # tags Max # tags per image

Corel 4993 260 5

Labelme 2900 495 48

Flickr 1,000,000 [1000 76
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In each data set of images, we remove some tags of the

images to set up the image tag completion problem and

then apply the image tag completion algorithm to complete

the missing tags. Given a query tag, we return the images

which has the same tag in the database as the retrieval

results. We measure the retrieval performance by the

positive at top (Pos@Top). The usage of this performance

measure is motivated by the works of Liang et al. [12, 16].

The works of Liang et al. [12, 16] show that the Pos@Top

is a robust and parameter-free performance measure, which

is suitable for most database retrieval problems. Following

the works of Liang et al. [12, 16, 29], we adapt this per-

formance measure to evaluate the results of the image

retrieval problem in our experiments.

Fig. 1 Figures of results of

image annotation
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3.3.2 Experimental results

The retrieval results of different methods are reported in

Fig. 2. We can observe from this table that the proposed

method JICRTC outperforms the other methods over all the

three data sets. The Pos@Top values of JICRTC are higher

than all the compared tag completion methods. This indi-

cates that the convolutional-based tag completer works

better than the other tag completer based on matrix com-

pletion, etc.

3.4 Convergence of the alternating gradient descent

We also plot the curve of the objective values with regard

to increasing iterations for the alternating gradient descent

algorithm. The curve of experiments over the Corel data set

is shown in Fig. 3. According to Fig. 3, the algorithm

converge after 40 iterations.

4 Conclusion and future works

In this paper, we proposed a novel image tag completion

method. This method is based on the CNN model. We use

the CNN model to represent the image and then predict the

complete image tags from the CNN representations. The

complete tag assignment score vectors are also regularized

by the visual similarities calculated from the CNN repre-

sentations. We develop an iterative algorithm to learn the

parameters of the CNN model, the linear predictive model,

and the complete tags. The experiments of the problems of

image annotation and image retrieval based on image tag

completion over three benchmark data sets show the

advantage of the proposed method.

In the future, we will extend our work of CNN model to

other machine learning problems beside image tag com-

pletion, such as communication networks [48–51], human

action recognition [19, 52–54], biometrics [35–38], medi-

cal imaging [11, 13, 22], computational mechanics

[24, 34], and big data analysis [26, 28].
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