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Abstract Brain–computer interface (BCI) is a system that

provides a way for brain and computer to communicate

with each other directly. Electroencephalogram (EEG) is

an important process in a BCI that can be used to determine

whether the subject is doing action and/or imagination.

This paper presents a motor imagery (MI) classification for

BCI systems using recurrent adaptive neuro-fuzzy interface

system (ANFIS). The classification system is based on

time-series prediction where features are exploited from

the EEG signals recorded from subjects imagining of the

right hand, left hand, tongue, and foot movement. The

classification system contains some recurrent ANFISes.

Each recurrent ANFIS is trained on MI signals of one class

and specializes in recognizing the signals of the same class

from the signals of other categories. Recurrent ANFISes

are employed to predict one step ahead for the EEG time-

series data, and then, the classification is performed by

mean square error (MSE) of the predicted signals. This

approach is carried out on twelve subjects MI signals of

four classes in online mode. Average prediction MSE of

0.0302 and average classification accuracy of 85.52% are

obtained as results.

Keywords Classification � Electroencephalography

(EEG) � Recurrent adaptive neuro-fuzzy interface system

(recurrent ANFIS) � Brain–computer interface (BCI) �
Motor imagery (MI) � Time-series prediction

1 Introduction

In recent years, the studies on the subjects of the brain are

increased dramatically. These wide studies provide a new

system for communicating brain and computer just with

electroencephalogram (EEG) processing. This new

approach is named brain–computer interface (BCI). BCI

does not rely on muscular and neuromuscular inputs. In a

BCI, the use of nerves, muscles, and movements is

replaced with electrophysiological signals processing by

means of some software and hardware [1]. This advantage

enables the subjects with muscular and neuromuscular

disabilities to communicate and control their ambience

without any use of prerequisite movements. Therefore,

BCIs can amend existing assistive technologies. Using

BCIs has advantages for handicapped subjects [2] and

applications such as neuro-feedback for stroke rehabilita-

tion [3], medical usage such as sleep disorders heeling [6],

epileptic seizure prediction [4, 7], alertness detection and

cognitive load monitoring [8]. BCIs are also profitable as

an additional technology in robotics [9], computer games

[5], virtual reality [10], etc.

EEG signals of various motor imagery (MI) classes have

distinct event-related brain potentials (ERP) which can

further have specific attributes such as event-related

desynchronization (ERD) which manifest a decrease in

power, and event-related synchronization (ERS) which

manifest an increase in power in mu and beta rhythms over

the sensorimotor cortex [11].
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Classification is an important computational procedure

in a BCI. A two-class EEG-based classification classifies

fatigue state versus alert state using a combination of

independent component by entropy rate-bound minimiza-

tion analysis (ERBM-ICA) for the source separation,

autoregressive (AR) modeling for the features extraction,

and Bayesian neural network as the classifier algorithm is

presented in [15]. An optimal probe selection for EEG

classification in a BCI for three mental tasks using blind

source separation (BSS) technique based on independent

component analysis (ICA) with its back-projecting of the

scalp map is presented in [14]. As a result, the four chan-

nels of P3, O1, C4, and O2 are cited as the prominent

channels with more scattered features. EEG classification

of pre- and post-mental load tasks for mental fatigue

detection by the classification system combined of princi-

pal component analysis (PCA) as the dimension reduction

method, power spectral density (PSD) as feature extractor,

and Bayesian neural network (BNN) as classifier is pre-

sented in [16]. An EEG classification system for fatigue

detection includes PSD as a feature extractor, fuzzy swarm-

based artificial neural network (ANN) as a classifier, and

component analysis of entropy rate-bound minimization

(ICA-ERBM) for source separation technique, is presented

in [17]. EEG classification is also studied for fatigue

detection [15–17] and user identification [18–20] as bio-

metric systems.

This paper presents a novel EEG classification proce-

dure based on time-series prediction. A new class of

recurrent adaptive neuro-fuzzy interface system (ANFIS) is

developed for predicting EEG time series. Autoregressive

moving average (ARMA) prediction models, typical

feedforward ANFIS, and ANN are also used for prediction

approach in a similar framework to have a comparison

between the developed recurrent ANFIS and the existing

systems.

ANNs are widely used as approaches for pattern

recognition including MI classification [11–13]. Fuzzy

systems can describe objects and processes that are not

defined precisely or have some uncertainty in their

description. Fuzzy systems perform a valuable role in

handling with uncertainty. Therefore, fuzzy systems have a

growing interest in modern applications such as production

techniques medical studies, information technology, pat-

tern recognition, decision making, data analysis, and

diagnostics [3–5].

Neuro-fuzzy systems are a combination of fuzzy sys-

tems and ANNs and utilize the benefits of them concur-

rently. Adaptive neuro-fuzzy inference system (ANFIS) is

a significant approach in neuro-fuzzy networks which has

shown notable potential in modeling nonlinear systems. In

ANFIS, the parameters of fuzzy membership functions are

gained from a dataset defining the system’s manner [9, 10].

Successful executions of ANFIS in biomedical applications

have been announced such as EEG classification [21–25]

and data analysis in biosignal processing [2, 26].

In this paper, a new recurrent structure based on ANFIS

is performed for EEG classification. The presented

approach that involves eight recurrent ANFISes classifies

four classes of EEG signals when raw EEG data in the time

domain are used as inputs. These recurrent ANFISes are

trained with back-propagation gradient descent method in

composition with least squares method. After the training

phase, each recurrent ANFIS will be specialized in sort of

signals which is trained with and can recognize the signals

of the same class from the signals of other classes.

2 Experiment datasets

The dataset IIIa from BCI Competition III and the dataset

2a from BCI-IV are used in this paper [28, 29]. The dataset

IIIa was recorded from three healthy subjects (S1–S3), and

nine healthy subjects (S4–S12) were recorded in dataset 2a.

These datasets consisted of four classes: left-hand move-

ment imagination (class 1), right-hand movement imagi-

nation (class 2), foot movement imagination (class 3), and

tongue movement imagination (class 4).

For dataset IIIa, signals were recorded in ten sessions for

each subject. Subjects S1 fulfilled 360 trials, and subjects

S2 and S3 fulfilled 240 trials [29, 30]. The signals for

datasets 2a were recorded in two sessions on various days

for each subject. Each session includes six recording parts

which is cut off by short breathers. Each recording part

contained 48 trials (12 trials for each class), leading to 288

trials per session and totally 576 trials.

Figure 1 shows the timing diagram of the routine of

recording signals [27–30]. The routine of recording signals

started with sitting the subjects in a comfortable armchair.

Then, a cue arrow was shown on the screen, and the sub-

jects were asked to imagine a movement according to the

orientation of the arrow. The orientation of the arrow was

selected randomly, and no feedback to the subjects was

provided. The sampling frequency was 250 Hz. EEG in

trainingBlank screen Training

0 1 2 3 4 6 75

Beep 
fixation cross

Trigger
Arrow

fixation cross Fixation cross

Time (s)
(a)

0 1 2 3 4 6 75

Beep 

Fixation cross

Time (s)
(b)

BreakCue Motor imagery

Fig. 1 Timing of the paradigm a dataset IIIa, b dataset 2a [28, 29]
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dataset IIIa was filtered with a 1–50-Hz band-pass filter and

50-Hz notch filter on. EEG in dataset 2a was filtered with a

0.5–100-Hz band-pass filter and an additional 50-Hz notch

filter to remove the line noise [27–30]. The EEG recording

systems for the datasets IIIa and 2a were a sixty-four EEG-

channel amplifier from Neuroscan and a twenty-two Ag/

AgCl electrodes system, respectively, as shown in Fig. 2.

The recording systems use the right mastoid as ground and

the left mastoid as a Ref. [28, 29].

The two electrodes, named C3 and C4, are used in this

paper. These electrodes are, respectively, placed over the

left and right sensorimotor areas which are dominantly the

main active areas in the imagination of motions [31]. These

locations are signalized in Fig. 2. Usually, there is a pre-

processing before EEG classification for artifacts and noise

removal [32–34]. In this paper, the signals that highly

affected by the artifacts are removed from the database by

an expert, and no other artifact removal procedure is used.

3 Recurrent ANFIS architecture

ANFIS is a kind of neural network in a combination of

Takagi–Sugeno fuzzy inference system. As ANFIS amal-

gamates both neural networks and fuzzy systems, it has the

ability to acquire the advantages of both in a single struc-

ture [9]. ANFIS has pioneering results in recent years of

neuro-fuzzy networks. Indeed, it is also considered to be

one of the best systems in function approximation among

the existing neuro-fuzzy models [35]. To express the

ANFIS operating process, two first-order Takagi–Sugeno

fuzzy if–then rules are assumed as:

Rule 1: if x isA1 and y isB1 then f1 ¼ p1xþ q1yþ r1

Rule 2: if x isA2 and y isB2 then f2 ¼ p2xþ q2yþ r2

ð1Þ

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi
are the outputs within the fuzzy region designated by the

fuzzy rules, and pi, qi, and ri are the design parameters

designated within the training phase. Figure 3 shows the

ANFIS architecture to execute these two if–then rules. This

network consists of five layers. If the output of node i of

layer L is shown by oL,i, the function of this network is

described as follows:

The first layer calculates the degrees of inputs mem-

bership in fuzzy membership functions:

o1;i ¼ lAi
xð Þ i ¼ 1; 2

o1;i ¼ lBi�2
yð Þ i ¼ 3; 4

ð2Þ

where lAi
xð Þ and lBi�2

yð Þ are the fuzzy membership

functions. For example, by employing Gaussian function,

lAi
xð Þ is written as:

lAj
xð Þ ¼ e

� x�ci
ri

� �2

ð3Þ

where ci and ri are the membership function parameters

computed in training procedure.

The output of the second layer is gained with multi-

plying the output values of the first layer:

o2;i ¼ wi ¼ lAi
xð Þ:lBi

yð Þ i ¼ 1; 2: ð4Þ

The output of the third layer is calculated by normal-

izing the output values of the second layer:

o3;i ¼ �wi ¼
wi

w1 þ w2

i ¼ 1; 2: ð5Þ

The output of the fourth layer is computed by multi-

plying the output values of the previous layer with a first-

order polynomial. For the first-order Takagi–Sugeno fuzzy

if–then rules, it can be calculated as:

o4;i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ i ¼ 1; 2 ð6Þ

Fig. 2 Position of EEG electrodes a dataset IIIa, b dataset 2a [28, 29]
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Finally, the output of network is calculated in layer five

as:

o5;i ¼ o ¼
X
i

�wifi ¼
P

i wifiP
i wi

i ¼ 1; 2 ð7Þ

where o is the output of network, and �wi is the output of

third layer.

The architecture of ANFIS implementing these two

rules is described in details in [9].

However, a major deficiency of available neuro-fuzzy

networks is that their efficiency is limited to static prob-

lems because of their feedforward structure. Consequently,

they have less efficiency for representing dynamic func-

tions in comparison with recurrent networks [36–38]. By

upgrading typical feedforward ANFIS to recurrent type, its

ability to handle time-series patterns recognition will be

promoted. A considerable issue in this structure evolution

is that the recurrent structure shows greater prediction

capacities compared with the feedforward ones. Therefore,

in this paper, time-series prediction is performed by an

altered structure of ANFIS with output-to-input feedback

loop.

For converting the network architecture to the recurrent

type, the error of prediction is exerted to the network as an

input. Indeed, the prediction error is feedback to the net-

work, and by doing so, a closed-loop system is acquired.

This architecture is shown in Fig. 4. If the output of typical

ANFIS is considered as a function of inputs: o = f(x, y),

the output of this recurrent ANFIS will be changed to:

o = f(x, y, e). By applying this change, the output of net-

work which was the function of inputs will become a

function of inputs and errors of previous estimations.

There are two groups of parameters that should be cal-

culated to match the ANFIS output to the training data:

fuzzy membership function parameters called premise

parameters and linear parameters called design parameters.

The least squares and the gradient descent methods are

integrated into a hybrid algorithm to calculate these

parameters for training the network. The hybrid algorithm

includes backward pass and forward pass. The least squares

method in forward pass is employed to adjust the design

parameter values optimally when the premise parameters

are fixed. When the optimum design parameters are

defined, the back-propagation gradient descent method in

the backward pass is employed to determine the optimal

premise parameter values [9].

There is a difference in applying the network in the

training and in the test phases. The error in the training

phase is different with the error in the test phases. This

problem is explained as follows:

Consider the consequence of inputs in the training phase

to be as (x1, y1, e1) and (x2, y2, e2) and the outputs as o1

and o2, respectively, and in test phase, the inputs conse-

quence to be as (x1
0, y1

0, e1
0) and (x2

0, y2
0, e2

0) and the

outputs as o1
0 and o2

0, respectively. If x2 = x2
0 and

y2 = y2
0, it is assumed that o2 = o2

0, but if x1 = x1
0 and/or

y1 = y1
0, as a result o1 = o1

0, and e2 = e2
0 (because the

errors are affected by the previous level). As a result,

although x2 = x2
0 and y2 = y2

0, because of e2 = e2
0 the

outputs o2 = o2
0. Therefore, there is a problem in time-

series prediction in recurrent form. To resolve this prob-

lem, an error estimation system (EES) is used in test phase.

EES is trained with the network training data: x and y as

inputs and e as output, and then, in level i in test phase,

EES can find the proper ei (ei is affected by i - 1 level in

training phase) according to xi and yi.

The network can have a good performance of prediction

in test phase without using the EES, but by using EES, the

error of prediction is decreased, whereas the classification

is based on MSE, as a result, the classification accuracy

(CA) is increased. The network is configured according to

Fig. 4 in the training phase. In the test phase, the e input is

gained by EES, and the whole network is configured

according to Fig. 5 in the test phase.

Fig. 3 ANFIS architecture
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4 Methodology

4.1 Network configuration

In [39, 40], feedforward neural network is used for EEG

time-series prediction and EEG classification. By exploit-

ing feedforward network, the previous value of the signal is

used to predict the future value of time series. Therefore,

the signal values from sample indexes t - 1 to t - n are

utilized to predict the signal value at sample index t, so it

can be written as:

x̂ tð Þ ¼ f x t � 1ð Þ; x t � 2ð Þ; . . .; x t � nð Þ½ � ð8Þ

where x tð Þ is the signal value at sample index t, x̂ tð Þ is the

predicted value of signal at sample index t, and f is a

feedforward network function that predicts x̂ tð Þ from prior

values of signal.

By using the errors of former predictions, the power of

estimation is improved, and the errors of prediction in the

next steps of prediction will be diminished; hence, a

superior prediction will be done. By this consideration, x̂ tð Þ

has become a function of prior values of signal and the

previous values of prediction error:

x̂ tð Þ ¼ f x t � 1ð Þ; . . .; x t � nð Þ; e t � 1ð Þ; . . .; e t � mð Þ½ � ð9Þ

where e(t) is the error of prediction at sample index t which

is obtained as:

e tð Þ ¼ x tð Þ � x̂ tð Þ ð10Þ

n and m values are chosen by empirical approach to gain

the high and acceptable CA. In the beginning, they were

chosen with the smaller values, and they were increased

step by step to reach to a high classification accuracy. In

this paper, m and n are set as n = 3 and m = 3. By using

these values of parameters, the high accuracy of estimation

is acquired. Of course, by choosing higher values of n and

m, the higher classification accuracy is gained, but the

training time is increased dramatically (typically, the

neuro-fuzzy networks training is time-consuming), i.e.,

having two fuzzy membership functions for each input, and

increasing just one unit of each parameter, the fuzzy if–

then rules are increased twofold causing the twofold

amount of computation. In this work, we try to have an

+-

Fig. 4 Recurrent ANFIS architecture

EES

Recurrent ANFIS

x

y
e

o

Fig. 5 Recurrent ANFIS

predictor architecture
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acceptable classification accuracy by choosing the mini-

mum values of n and m.

Choosing m = 3 and n = 3, (9) is converted to (11);

therefore, the signal and error values from time instants

t - 3 to t - 1 are used to predict the measurement at time

t:

x̂ tð Þ ¼ f x t � 1ð Þ; x t � 2ð Þ; x t � 3ð Þ; e t � 1ð Þ; e t � 2ð Þ; e t � 3ð Þ½ �
ð11Þ

To implement (11) for EEG time-series prediction, a

network is configured in the training phase according to

Fig. 6. After training phase and acquiring the values of

prediction error, the EES is trained by x(t - 1), x(t - 2),

and x(t - 3) as the inputs and e(t - 1), e(t - 2), and

e(t - 3) as the outputs. Then, in the test phase, the final

system to do the time-series prediction for the unknown

signal is configured according to Fig. 7. However,

without using EES, the prediction can be done in a good

mode, but by exploiting EES, the power of prediction is

increased that influences CA properly. In this paper, the

EES is a two-layer MLP with 8 hidden neurons in the

hidden layer.

Training just one predictor on all EEG signals of dif-

ferent classes is not ideal consistently because of the

complexity and nonstationary characteristics of EEG data

on the signals of various classes. Based on the supposition

underlying the neural time-series prediction framework, if

more than one channel is used for signals of each class,

useful supplemental information pertinent to the differ-

ences of signals of each class can be extracted to enhance

the separability of the overall features, in consequence

amending BCI efficiency [40].

The number of EEG channels and the number of classes

specify the number of predictor networks as:

N ¼ C � E ð12Þ

where N is the number of predictor networks, E is the

number of selected EEG channels, and C is the number of

classes. Two electrodes of C3 and C4 are chosen, and four

classes of right-hand movement, left-hand movement,

tongue movement, and foot movement exist, so eight net-

works are employed as predictors for EEG time-series data,

and each network is trained corresponding to one-channel-

class time-series EEG data.

4.2 Classification procedure

The classification procedure is configured in three phases.

The first phase is configuration and training eight recurrent

ANFISes separately to execute one-step-ahead prediction,

using the sequence of [x(t - 1), x(t - 2), x(t - 3),

e(t - 1), e(t - 2), e(t - 3)] for each channel-class time-

series EEG data as described in the previous section

(Sect. 4.1). This phase (the training phase of the networks)

is presented in Fig. 8.

After the training stage, the networks are ready to per-

form classification of test signals for unlabeled signals in

two other phases as shown in Fig. 9. In Fig. 9, the recurrent

ANFISes are labeled ‘C3L’ and ‘C4L’ for left-hand data-

electrode ‘C3’ and left-hand data-electrode ‘C4,’ respec-

tively, and ‘C3R’ and ‘C4R’ for right-hand data-electrode

‘C3’ and right-hand data-electrode ‘C4,’ respectively, and

‘C3F’ and ‘C4F’ for foot data-electrode ‘C3’ and foot data-

electrode ‘C4,’ respectively, and ‘C3T’ and ‘C4T’ for

tongue data-electrode ‘C3’ and tongue data-electrode ‘C4,’

respectively, corresponding to the type of each channel-

class time-series EEG data on which they are trained with.

In the second stage, according to Fig. 9, to find the class

of the unknown signal, the unknown signals recorded from

Time 
Delay

Time 
Delay

Time 
Delay

Recurrent 
ANFIS

+-

+-

+-

Fig. 6 Illustration of recurrent

ANFIS architecture for EEG

time-series prediction
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EES

Recurrent ANFIS

Fig. 7 Recurrent ANFIS

predictor architecture for EEG

time-series prediction

Recurrent ANFIS

Predicted SignalOriginal Signal

Fig. 8 Classification procedure in the training phase

C4L-Recurrent ANFIS

C4R-Recurrent ANFIS

C4F-Recurrent ANFIS

C4T-Recurrent ANFIS

C3L-Recurrent ANFIS

C3R-Recurrent ANFIS

C3F-Recurrent ANFIS
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MSE 
Function
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Function
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Fig. 9 Classification procedure in the test phase
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C3 to C4 electrodes are entered to the relevant networks

(i.e., recorded signal of C3 is entered to all networks

labeled with C3, and symmetric behavior is done for

recorded signal of C4). Each network performs one-step-

forward prediction for the input signal in each trial. Then,

in the third stage, the MSE of the prediction according to

the difference of the original test signal and the predicted

signal is calculated for the trial as follows:

MSE ¼ 1

M

XM
k¼1

x kð Þ � x̂ kð Þ½ �2 ð13Þ

where x(k) is the values of actual signal and x̂ kð Þ is the

values of predicted signal, k index is the counter of the

length of trial that increases from 1 to M, and M is the

number of samples in the input trial. Then, the unlabeled

signal is classified in agreement with the network which

performs lowest MSE of prediction. The MSE is a criteria

of the difference of the original test signal and the pre-

dicted signal. The supposition underling this classification

procedure is that because each network is trained on signals

of just one class, each network can predict the signals

which are the same as its training signals with low error,

but the other networks have the larger error on prediction

of that kind of signals, because the structure of their

training signals was different with that kind of signals.

Thus, the network that has the same training signal with the

test signal can perform the prediction with lower error than

the other networks and can identify the similarity of the test

signal with the training signals. Therefore, the class of test

signal is specified according to the class of the network

which has the minimum error of prediction. In this paper,

the common feature extraction methods are not used. Since

the classification is based on time-series prediction, each

network shows the lower prediction error has chosen as the

winner, and the class of test signal is selected similar to the

network with lower prediction error. For example, if the

C3T network shows the lower prediction error, the class of

signal is tongue movement. In other words, the errors of

prediction (there are 8 networks, so there are 8 prediction

errors) can be assumed as the features and the minimum

function as the classifier.

This procedure can be used for every trial time length

utilizing a sliding window method. To do so, k in (13)

ranges from k = a to M where a and M are specified before

the next classification procedure (initially k = 1 and

M = window size). It means that the previous samples

placed before the index k = a are discarded as the window

slides away from the index k = a to the end of trial. The

benefit of utilizing the sliding window for classification is

that there is no need to know the start point of the com-

munication by the user; therefore, online classification can

be configured. An important point in this regard is selecting

the optimal window size. By selecting window size prop-

erly, maximum CA is obtained as the signal pass through

the window. In [39], the optimal window is appointed by

means of an automated iterative search procedure. The

optimal window size ranges between 2.3 and 3.2 s, and this

means that the optimal M with considering the sampling

frequency of 250 Hz is appointed in interval of [575, 800].

4.3 The comparison between the presented

recurrent ANFIS and the other similar

predictor systems like ANFIS, MLP, and ARMA

A comparison between the presented recurrent ANFIS and

the other similar predictor systems like typical feedforward

ANFIS, MLP, and ARMA model is considered. A para-

metric model named ARMA model consists of autore-

gressive (AR) part, and a moving average (MA) part is

described in the following:

x̂ tð Þ ¼
Xm
i¼1

aix t � ið Þ þ
Xn
j¼0

bje t � jð Þ ð14Þ

where ai and bj are the AR and MA parameters [41, 42].

For comparison, the classification is done as the same

method described in Sect. 4.2. All stages of classification

are the same, but only the time-series prediction system in

our work which is a recurrent ANFIS is replaced by MLP,

feedforward ANFIS, and ARMA model. These similar

systems predict the EEG time series in a similar frame-

work, and then, based on the errors of prediction, the CA of

each one is gained. The comparison is made by setting

m = 3 and n = 3 in (14) for ARMA model, setting n = 6

in (8) for the MLP, and setting n = 6 in (8) for the feed-

forward ANFIS. So, the MLP and feedforward ANFIS have

6 values of EEG signals as the inputs, and the ARMA

model has 3 values of EEG signals and 3 values of pre-

diction errors as the inputs. The MLP utilized here has one

hidden layer with 8 neurons in the hidden layer, and the

feedforward ANFIS has two membership functions in the

first layer.

5 Results and discussion

The proficiency of the presented procedure is demonstrated

in two parts: the effectiveness of the presented recurrent

ANFIS in the prediction of time series applied on EEG

signals and the CA of the classifier based on time-series

prediction. The accuracy of proposed classification proce-

dure is assayed by using a fivefold cross-validation.

Figure 10 shows an instance of the efficiency of the

recurrent ANFIS in predicting EEG time-series data.

According to Fig. 10, the proposed network can model the
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EEG signal with negligible error. Although EEG signals

are highly nonstationary and time variant, the network can

track it fittingly.

The comparison of MSE of the proposed network,

ARMA model, the MLP-ANN, and the feedforward

ANFIS is presented in Table 1. In Tables 1 and 2, sub-

jects (S1–S3) are from dataset IIIa and subjects (S4–S12)

are from dataset 2a. Based on Table 1, it is obvious that

our suggested network has smaller MSE in comparison

with the other methods. The classification system acts

based on the MSE of each network, and the unlabeled

signal will be classified according to the network with

lowest MSE, so the accuracy of the classifier is enhanced

by the system whoever can exploit the time-series pre-

diction with lower MSE. According to Table 1, the MSE

of recurrent ANFIS is lower than the others, and it means

that the power of identifying the structure of EEG signals

by recurrent ANFIS is higher than the others. The MSE

rates of prediction influence the CA directly. However,

the MSE rates decrease, and the CA would increase

subsequently.

The percentage of CA for twelve persons from S1 to S12

is presented in Table 2. The percentage of CA is calculated

as:

CA% ¼ the number of true classified signals

the number of all test signals
� 100:

ð15Þ

The basis of classification is established on the mor-

phological discrepancy of EEG signals in variant action

imaginations because EEG signals are classified in the time

domain and differences in their shapes are the basis of
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Fig. 10 Predicted signal versus actual EEG

Table 1 MSE comparison

analysis for 12 subjects (S1–

S12) of EEG time-series

prediction for each framework

included recurrent ANFIS,

feedforward ANFIS, ARMA

model, and neural network

Recurrent ANFIS Feedforward ANFIS ARMA model Neural network

S1 0.632 e-004 0.972 e-003 0.441 e-002 0.126 e-002

S2 0.278 e-003 0.285 e-001 0.491 e-001 0.372 e-001

S3 0.154 e-003 0.135 e-001 0.268 e-001 0.219 e-001

S4 0.447 e-002 0.508 e-001 0.815 e-001 0.687 e-001

S5 0.697 e-002 0.672 e-001 0.991 e-001 0.759 e-001

S6 0.255 e-003 0.305 e-001 0.402 e-001 0.443 e-001

S7 0.683 e-002 0.602 e-001 0.874 e-001 0.632 e-001

S8 0.769 e-002 0.874 e-001 0.105 0.992 e-001

S9 0.331 0.542 0.753 0.610

S10 0.230 e-003 0.268 e-001 0.337 e-001 0.288 e-001

S11 0.312 e-003 0.295 e-001 0.426 e-001 0.489 e-001

S12 0.441 e-002 0.564 e-001 0.663 e-001 0.672 e-001

Average 0.0302 0.0828 0.1158 0.0972
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classification. According to Table 2, the CA of the recur-

rent ANFIS is more than the others which is acquired

because of the lower MSE of prediction. The lower rate of

MSE is gained because of the feedback structure of the

designed network.

Time course CA related to the proposed recurrent

ANFIS is shown in Fig. 11. Because the starting point of

imagination in recording procedures is started from 3 to

7 s, this period is considered for the aim of this paper. CA

rates have started from 0% at 3 s and have risen sharply,

and after a while, no tangible changes are observed.

According to Fig. 11, the CA rates become stable after a

while despite the intrinsic time-to-time variation in EEG,

which is a significant issue for a BCI system.

This approach shows a significant potential for the

classification of such complex and nonstationary EEG

signals. The designed network is obtained by feedbacking

the errors of the former predictions. Therefore, a closed-

loop system is configured. By using the errors of former

predictions, the power of estimation is improved, and the

errors of prediction in the next steps of prediction will be

diminished, and hereby a superior prediction will be per-

formed. As a result, using the error information, the system

can handle the uncertainty and the time-variant nature of

the EEG signals. The system can model the EEG signals

despite the nonlinearity and nonstationary identity. By

increasing the modeling accuracy, the higher CA is

obtained. Other potential advantages that can be mentioned

here are the classification that can be carried out without

knowing the initiate point of communication. Thus, this

method has a potential for online EEG processing. More-

over, because the signal processing and classification are

done in the time domain, there is no need to map signals to

the other domains (e.g., frequency domain), typical feature

extraction methods, and dimension reduction methods.

6 Conclusion

This paper presents a new class of recurrent adaptive fuzzy

neural network for utilizing time-series prediction to clas-

sify EEG signals in brain–computer interface systems. The

Table 2 Comparison analysis

of average percentage

classification accuracy rates for

fivefold cross-validation for 12

subjects (S1–S12) of EEG time-

series prediction for each

framework included recurrent

ANFIS, feedforward ANFIS,

ARMA model, and neural

network

Recurrent ANFIS Feedforward ANFIS ARMA model Neural network

S1 97.5 ± 3.2 85.6 ± 4.0 83.8 ± 4.1 84.1 ± 4.1

S2 89.3 ± 4.5 79.4 ± 5.1 76.8 ± 6.7 77.6 ± 5.5

S3 92.7 ± 2.8 82.5 ± 3.1 81.4 ± 3.0 82.3 ± 2.9

S4 83.2 ± 5.7 75.9 ± 6.2 72.8 ± 6.4 74.2 ± 5.9

S5 80.3 ± 6.1 74.6 ± 6.5 71.0 ± 6.5 73.6 ± 6.5

S6 89.1 ± 4.9 80.4 ± 6.6 78.5 ± 7.2 78.1 ± 6.8

S7 81.8 ± 5.2 79.1 ± 5.7 73.3 ± 5.3 75.4 ± 5.6

S8 79.7 ± 6.3 74.2 ± 7.0 70.8 ± 5.9 73.5 ± 6.5

S9 68.6 ± 5.4 65.4 ± 4.7 60.3 ± 5.7 64.3 ± 4.8

S10 91.5 ± 4.8 81.3 ± 5.0 78.1 ± 4.9 81.0 ± 5.1

S11 88.7 ± 7.0 79.2 ± 7.3 78.6 ± 8.8 77.3 ± 7.7

S12 83.9 ± 6.7 75.5 ± 6.9 74.9 ± 8.0 73.6 ± 7.4

Average 85.5 ± 5.2 77.7 ± 5.6 75.0 ± 6.0 76.2 ± 5.7
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Fig. 11 Time course of CA %

for recurrent ANFIS based on

time-series prediction for 12

subjects (S1–S12)
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recurrent ANFIS is structured by feedbacking errors of

previous predictions as inputs to make a closed-loop sys-

tem. With feedback loops, this recurrent ANFIS can exploit

the memorized past information to strengthen the capa-

bility of handling temporal prediction problems, such as

modeling complex and nonstationary EEG signals. Overall,

it is shown that the developed recurrent structure of ANFIS

is a high-performance device regarding modeling and

tracking.

For signals of each class, a network is considered. Each

recurrent ANFIS is trained on EEG signals of one class and

has the ability to recognize the similar structure on test

signal by prediction with less error in comparison with

other networks. Classification is established on the mor-

phological discrepancy of MI signals in variant tasks.

Results of online classification for twelve subjects are

presented that demonstrate the potential of this prediction

and classification method using recurrent ANFIS to be

applied in a BCI.

A new class of recurrent ANFIS is developed that can be

used for EEG modeling. The proposed network can also be

used in biosignal modeling and processing properly too.

Due to the inherent day-to-day variability in EEG signals,

the feature extraction process needs to be cautious. The

proposed classification method acts in the time domain and

does not need the typical feature extraction and dimension

reduction methods. Besides, classification based on the

proposed time-series prediction does not need any knowl-

edge of the initial point of signal recording. As a result, it

can be useful for online asynchronous classification.
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