
ORIGINAL ARTICLE

Optimal control for wastewater treatment process based
on an adaptive multi-objective differential evolution algorithm

Jun-Fei Qiao1,2 • Ying Hou1,2 • Hong-Gui Han1,2

Received: 3 November 2016 / Accepted: 4 October 2017 / Published online: 16 October 2017

� The Natural Computing Applications Forum 2017

Abstract In this paper, for the operations of wastewater

treatment processes (WWTPs), an intelligent multi-objec-

tive optimization control (IMOOC), based on an adaptive

multi-objective differential evolution (AMODE) algorithm,

is proposed to search for the suitable set-points to balance

the treatment performance and the operational costs. In this

IMOOC, the combination of an AMODE algorithm and the

multi-objective critical issues helps us to fulfill all the

control objectives simultaneously. To improve the opti-

mization efficiency and achieve fast convergence, the

AMODE algorithm is designed to improve the local search

and the global exploration abilities: The adaptive adjust-

ment strategies are developed to select the suitable scaling

factor and crossover rate in the process of searching.

Meanwhile, the multi-objective critical issues, according to

the state of the processes, are given as a nonlinear multi-

objective optimization problem to evaluate the operational

performance of WWTPs. Therefore, once the nonlinear

multi-objective optimization problem is solved at each

sampling time, the most appropriate set of Pareto is

selected as suitable set-points to achieve the process per-

formance. To demonstrate the merits of our proposed

method, the proposed IMOOC is applied to the Benchmark

Simulation Model No. 1 of WWTPs. The results show that

the proposed IMOOC effectively provides process control.

The performance comparison with other algorithms also

indicates that the proposed optimal strategy yields better

effluent qualities and lower average operation

consumption.

Keywords Intelligent multi-objective optimization

control � Adaptive multi-objective differential evolution �
Wastewater treatment processes � Optimal strategy

1 Introduction

Water is an essential raw material for the human security

and river biodiversity [1]. Environmental protection and

water management have been studied for many years,

especially in areas where clean water is scarce. However,

rapid urbanization and industrialization led to unhealthy

environments and widespread wastewater. In response,

research was undertaken which led to the development of

wastewater treatment technologies [2–4]. The activated

sludge process, one of the most remarkable engineering

inventions in the twentieth century, has made significant

contribution to wastewater reclamation in the past

100 years [5, 6]. Activated sludge is a mixture of inert

solids from wastewater combined with a microbial popu-

lation growing on the biodegradable substrates present in

the wastewater. However, for the wastewater treatment

processes (WWTPs), the cost of energy is increasing when

effluent limitations are becoming lower. The activated

sludge-based WWTPs around the world are facing tech-

nical and financial challenges to meet ever more stringent

effluent water quality standards [7–9].
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To satisfy effluent water quality standards with reason-

able economic expenses, many different innovative control

technologies have been applied to single or multiple vari-

ables in WWTPs. The major goals of the controllers are to

keep the plant running, satisfy the effluent requirements,

and minimize operating costs [10, 11]. For example, Shen

et al. implemented the MPC strategy with the Benchmark

Simulation Model No.1 (BSM1) for WWTPs [12].

Acceptable performance is obtained by combining the

feedforward controllers and taking into consideration the

influent ammonium concentration and the flow rate, while,

in some case in which the influent ammonium concentra-

tion is not measured, its estimation requires an observer.

O’Brien et al. investigated a case study application of MPC

in which the technique was used in a WWTP in Lancaster.

The MPC system provided significant benefits, including a

reduction of more than 25% in power usage and a similar

increase in plant efficiency. Moreover, a generalized pre-

dictive control (GPC) technique was introduced to regulate

the activated sludge process found in a bioreactor used in

WWTPs, and this control strategy can track dissolved

oxygen set-point changes quickly, adapting to the system

uncertainties and disturbances [13]. However, for the for-

mer controllers [12–14], the closed-loop behaviors of

WWTP differ with respect to their objectives and methods.

These controllers pay attention to individual variables and

feature the system by a single objective function. In fact,

evaluating strategies for WWTPs does not just relate to one

single objective, rather, it involves several objectives, such

as effluent quality, operation cost, as well as the stability of

the strategies [15]. Obviously, these objectives must be

considered simultaneously in the design and control pro-

cess for WWTPs [16, 17].

Regarding the multi-objective optimization of the

operation of WWTPs, there has been an explosion of

innovative control technologies to achieve high levels of

treatment performance. Cadet et al. used a simple L/A

control law for WWTPs [18], and its switch has been

realized by fuzzy logic. The results are as expected with an

improvement of nitrogen removal. But in this case the cost

will be increased, and the control actions will behave rel-

atively ineffectively. Guerrero et al. adopted a model-based

set-point optimization to improve the performance of

control system in WWTP. Set-points were optimized to

provide low effluent N and P discharges with minimal cost.

The control system made for a decrease in cost up to 45%

with respect to the open-loop scenario [19]. Stare et al.

introduced several control strategies for nitrogen removal

which are proposed and evaluated in a benchmark simu-

lation model of an activated sludge process [20]. Results of

the simulation show that with Proportional–Integral (PI)

and feedforward controllers almost the same operating

costs can be achieved as with MPC strategies under various

plant operating conditions. However, MPC strategies are

advantageous only in cases where the plant is highly loaded

and if stringent effluent fines are imposed by legislation,

and there are other multi-objective control approaches for

WWTPs [21, 22]. What is more, the former controllers

[19–22] weight the individual objectives so that a single

objective function is formed by combining the individual

objectives. This way of approaching the multi-objective

problem for WWTP is not the best manner of solving such

problems because assigned weights are subjective [23, 24].

To control WWTPs as a multi-objective problem from a

process control point of view, Francisco et al. introduced a

dynamic analysis of the closed-loop control of these vari-

ables considering a nonlinear model predictive controller

(NMPC) and a particular distributed NMPC-PI control

structure. This research provides the optimum strategy of

measurements to keep constant with minimum economic

loss [25]. In [26], a multi-objective evolutionary algorithm,

non-dominated sorting genetic algorithm (NSGA-II), is

used to derive sets of Pareto optimal operational and con-

trol parameter values for WWTPs, with objectives

including minimization of greenhouse gas emissions,

operational costs and effluent pollutant concentrations,

subject to legislative compliance. This multi-objective

optimal control method can facilitate a significant reduc-

tion in greenhouse gas emissions without the need for plant

redesign or modification of the control strategy layout. And

some other multi-objective optimal control methods for

WWTPs can be found in [27–29]. However, in general,

how to design a suitable multi-objective optimal control

method to address the multiple conflicting criteria (i.e.,

effluent quality, operation cost, operation stability),

including studying the ASP models that are primarily

responsible for the process, is still a challenge [30–32].

Motivated by the above analysis, to design an efficient

multi-objective optimal control method for WWTPs, an

intelligent multi-objective optimization scheme (IMOOS),

based on an adaptive multi-objective differential evolution

(AMODE) algorithm, is proposed to search for the suit-

able set-points to balance the treatment performance and

the operational costs. In this IMOOS, the combination of

an AMODE algorithm and the multi-objective critical

issues helps us to fulfill all the specified control objectives

simultaneously. To improve the optimization efficiency

and achieve fast convergence, the AMODE algorithm is

designed to improve the local search and the global

exploration abilities: The adaptive adjustment strategies are

developed to select the suitable scaling factor and cross-

over rate in the searching process. Meanwhile, the multi-

objective critical issues, according to the state of the pro-

cesses, are given as a nonlinear multi-objective optimiza-

tion problem to evaluate the operational performance of

WWTPs. Therefore, once the nonlinear multi-objective
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optimization problem is solved at each sampling time, the

most appropriate set of Pareto, based on the adaptive non-

dominated sorting strategy, is selected as the suitable set-

points to achieve the process performance. To demonstrate

the merits of our proposed method, the IMOOS algorithm

is applied to BSM1. The results show that IMOOS effec-

tively provides process control. The performance compar-

ison also indicates that the proposed optimal strategy yields

better effluent qualities as well as lower average operation

consumption.

The remainder of this paper is organized as follows.

After briefly introducing BSM1 and the evaluation criteria

in Sect. 2, the proposed multi-objective optimization con-

trol is developed in details in Sect. 3. Then, the simulation

results and discussion are shown in Sect. 4. The perfor-

mance of IMOOC is compared with several other methods.

The simulation results demonstrate that IMOOC is a more

effective controller: It can ensure that the water quality

meets the expected level and has lower average operation

consumption. Finally, Sect. 5 gives some conclusions.

2 Description of WWTPs

WWTPs aim to achieve, at minimum costs, a sufficiently

low concentration of biodegradable matter in the effluent

together with minimal sludge production. To do this, the

process has to be controlled. However, WWTPs are non-

linear systems subject to large perturbations in influent

flow rate, together with uncertainties concerning the com-

position of the incoming wastewater. In this paper, to

develop alternative controller, the modeled WWTP is

based on the BSM1 plant. BSM1 plant is a simulation

environment defining a plant layout, a simulation model,

influent loads, test procedures, and evaluation criteria.

2.1 Description of BSM1

The layout of BSM1, as shown in Fig. 1, consists of a

primary clarifier, an activated sludge reactor containing

two tanks which may be operated under anoxic condition,

followed by three aerobic tanks in series, a secondary

settler, and a sludge thickener.

Each anoxic tank has a volume of 1000 m3 and each

aerobic tank volume of 1333 m3. Both anoxic tank and

aerobic tank are modeled using a version of the Activated

Sludge Model No.1. The complete benchmark model is

summarized by the following equations.

For l = 1 (Unit 1)

dZ1

dt
¼ 1

V1

ðQaZ5 þ QrZr þ QoZo þ r1V1 � Q1Z1Þ; ð1Þ

where Q1 = Qa ? Qr ? Qo, Qa is the internal recycle flow

rate, Qr is the external recycle flow rate, Qo is the influent

flow rate, Z1, Z5, Zr, Zo are, respectively, the component

concentrations of zone 1, zone 5, external recycle, and the

initial concentration of influent, V1 is the volume of zone 1,

r1 is the component reaction rate in zone 1.

For l = 2–5 (Unit 2–5)

dZl

dt
¼ 1

Vl

ðQl�1Zl�1 þ rlVl � QlZlÞ; ð2Þ

where Ql = Ql - 1, Zl - 1 is the component concentration

of l - 1th zone, Vl is the volume of lth zone.

The secondary settler is modeled as a 10-layer unit

which has no biological reaction. The height of each layer

is equal to 0.4 m. The settler has an area of 1500 m2. And

the feed layer is the sixth layer counting from bottom to

top.

The solid flux is Js = vs(X)X. A double-exponential

settling velocity function is

vsðXÞ ¼ max 0; min v
0

0; v0 e�rhðX�XminÞ � e�rpðX�XminÞ
� �n oh i

;

ð3Þ

Q0 , Z 0

Qa , Za

Qe , Ze

Qf , Zf

Qw, Zw

Qu , Zu

Qr , Zr

Biological Reactor Clarifier

m=6

m=1

m=10

Anoxic Section Aerated Section

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

PI

PI

Fig. 1 General overview of the BSM1 plant
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where X is the total sludge concentration, v0
0
is the maxi-

mum settling velocity, v0 is the maximum settling velocity,

rh is the hindered zone settling parameter, rp is the floc-

culant zone settling parameter, Xmin = fns Xf, and Xf is the

sludge concentration from the concentrations in compart-

ment 5 of the activated sludge reactor. v0
0
= 250 m d-1,

v0 = 474 m d-1, rh = 0.000576 m3 (g SS)-1,

rp = 0.00286 m3 (g SS)-1, fns = 0.00228.

2.2 Evaluation criteria

There are three weather influents including dry weather,

rainy weather, and storm weather. Each influent contained

14 days data with a sample time of 15 min. To derive an

objective view of the performance of the control strategy,

three criteria have been determined to be useful in

assessing the performance of the plant: aeration energy

(AE), pumping energy (PE) and effluent quality (EQ). AE

was calculated for the last 7 days of dynamic data. AE

consumption is described as in [15]:

AE ¼ 24

7

Z t¼14

t¼7

X5
l¼3

0:0007� KLalðtÞ2
Vl

1333

� ��

þ0:3267� KLalðtÞ
Vl

1333

� �� dt; ð4Þ

where KLal(t) is the overall mass transfer coefficient in the

lth unit and Vl is the volume of the lth unit, KLal(t) = 0 to

10 h-1, l = 3, 4, 5. In this case, a rough estimate of

average electricity price in the EU (0.1 €/kWh) was taken

into account, and thus, all of the weights were multiplied

by 0.1.

PE depends on how the various tanks can be arranged on

the available space and given as:

PE ¼ 1

T

Zt¼14 days

t¼7 days

0:004� QaðtÞ þ 0:008� QrðtÞð

þ0:05� QwðtÞÞ � dt

; ð5Þ

where T = 7 is the period of observation, Qa(-

t) = 55,338 m3/d is the internal recirculation flow rate,

Qr(t) is the return sludge flow rate, Qw(t) is the wastage

flow rate, and with the flow rates expressed in m3d-1.

Moreover, EQ means levies or fines are to be paid due to

the discharge of pollution in the receiving water bodies and

given as:

EQ ¼ 1

T � 1000

Zt¼14 days

t¼7days

2� SSeðtÞ þ CODeðtÞ þ 30� SNkj;eðtÞ

þ10� SNO;eðtÞ þ 2� BODeðtÞ

" #

� QeðtÞdt;
ð6Þ

where SSe(t) is the suspended solid concentration,

CODe(t) is the chemical oxygen demand, SNkj,e(t) is the

total nitrogen concentration, SNO,e(t) is the nitrate and

nitrite nitrogen, BODe(t) is the biochemical oxygen

demand of 5 days, and Qe(t) is the effluent flow rate.

In the majority of the existing work about the evaluation

of control strategies, the definitions used to characterize

AE, PE, and EQ in WWTPs are the standard performance

in the BSM1 platform. However, the balance between

treatment performance (EQ) and the cost (AE and PE)

becomes a critical issue for the operations of WWTPs.

Thus, to optimize the operation consumption of a WWTP,

beyond the evaluation criteria carrying out specific tasks at

different conditions, the operational optimization of

WWTPs is recommended to achieve the optimal set-points.

3 Multi-objective optimization control based
on AMODE

The problem of determining the optimal set-points of the DO

concentration in the fifth tank (SO5) and the nitrogen nitrate

concentration in the second anoxic tank (SNO2) to control

WWTPs has traditionally been solved by using constrained

optimization or applying artificial intelligence techniques.

The economic profit has been used as the main criterion in

most research on optimization to obtain adequate control set-

points of SO5 and SNO2 for controlling WWTPs.

This paper addresses the problem of optimal control by a

hierarchical control architecture governed by a high-level

multi-objective optimization approach. In this study, the

proposed multi-objective optimization control consists of

two levels. The super-structure is in charge of determining

the optimal set-points, as well as the substructure is a PI

controller, which is used to trace the optimal set-points of

SO5 and SNO2.

3.1 Multi-objective optimization control

architecture

The dynamics involved in WWTPs present different

objectives as described above [Eqs. (4)–(6)]. Optimal aer-

ation policies in WWTPs have shown great potential

toward increasing process efficiency. Hence, a hierarchical
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multi-objective optimization control architecture has been

developed (see Fig. 2). This control framework aims to

determine and trace the optimal set-points of SO5 and SNO2
which minimize both the energy required for aeration and

the effluent quality indexes.

In this hierarchical multi-objective optimization control,

the architecture used in this paper has two layers (see

Fig. 2). The upper layer solves the optimization problem

defined in Sect. 2 which are given by the three objectives

Eqs. (4)–(6). The outputs of this layer are the optimal set-

points of SO5 and SNO2. Then, the lower layer has the

controllers to minimize the error between the optimal set-

points calculated by the upper layers and the measured

variables in the process.

3.2 Adaptive multi-objective differential evolution

(AMODE) algorithm

In WWTPs, the balance between the treatment perfor-

mance and the cost becomes a critical issue for the oper-

ations, which necessitates a multi-objective optimization.

Recent studies in this field have shown promise in utilizing

multi-objective optimization (MOO) algorithm to address

the multiple conflicting criteria (i.e., effluent quality,

operation cost and operation stability). In this study, the

optimal control strategy is carried out using an AMODE

algorithm, since multi-objective differential evolution

(MODE) is computationally fast and has been shown to

provide better coverage and maintain a better spread of

solutions than other multi-objective evolutionary algo-

rithms [33]. Meanwhile, the multi-objective optimization

problem presented in this work is composed of the previous

objective functions described as

Min½f1ðuðtÞÞ; f2ðuðtÞÞ; f3ðuðtÞÞ�; ð7Þ

f1ðuðtÞÞ ¼ AEðuðtÞÞ;
f2ðuðtÞÞ ¼ PEðuðtÞÞ;
f3ðuðtÞÞ ¼ EQðuðtÞÞ:

ð8Þ

subject to

SNHðtÞ� 4;NtotðtÞ� 18;BOD5ðtÞ� 10;CODðtÞ
� 100;TSSðtÞ� 30;

ð9Þ

where u(t) = [u1(t), u2(t)]
T represents the set-points of SO5

and SNO2, 0\ u1(t)\ 2.5 g (- COD) m-3,

0\ u2(t)\ 2.5 g N m-3.

In this AMODE algorithm, the population is U(t) = [U1

(t), U2 (t)]T, U1 (t) = [U11(t), U12(t), …, U1Np(t)] and

U2(t) = [U21(t), U22(t), …, U2Np(t)] are the DO concen-

tration and the nitrogen nitrate concentration at time t,

respectively; Np is the population size. The initial value of

U(t) is random value. Some novel methods are designed in

order to improve the local search and the global exploration

abilities. In the multi-objective differential evolution

algorithm, the suitable scaling factor and crossover rate can

be calculated in the mutation and crossover processes to

balance the local search and the global exploration abili-

ties. Meanwhile, in the proposed AMODE algorithm, the

scaling factor F is used to enlarge or reduce the difference

vector in the evolution process. The dynamic adjustment

strategy of the scaling factor can be expressed as:

FiðtÞ ¼Fiðt � 1Þ lLðt � 1Þ þ ðlHðt � 1Þ � lLðt � 1ÞÞ½
hiðt � 1Þ�;

ð10Þ

where

Dynamic adjustment 
strategy of the scaling 

factor

SrNO2(t)

Adaptive Multiobjective 
Differential Evolution 

(AMODE) 

F(t)

IMOOC

Q0 , Z 0

Qa , Za

Qe , ZeQf , Zf

Qw, Zw

Qu , Zu

Qr , Zr

Biological Reactor Clarifier

m=6

m=1

m=10

Anoxic Section Aerated Section

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

PI

PI

SrO5(t)

AMODE1( ) ( ),=f t AE t 2 ( ) ( ),=f t PE t 3 ( ) ( ).=f t EQ t

Dynamic adjustment 
strategy of the 
crossover rate

Cr(t)

Fig. 2 Multi-objective

optimization control

architecture
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hiðt � 1Þ ¼ f 0i ðt � 1Þ � f 00i ðt � 1Þ
� 	


f 0i ðt � 1Þ
�

þf 00i ðt � 1Þ
	 ; ð11Þ

where Fi(t) and Fi(t - 1) are the scaling factor of the ith

element at time t and t - 1, i = 1, 2, b = 1, 2, …, Np,

lH(t - 1) and lL(t - 1) are the highest and lowest bounds

of the scaling factor at time t - 1, respectively; f 0i ðt � 1Þ
and f 00i ðt � 1Þ are the average fitness of low-level and high-

level in non-dominated solutions for the ith element at time

t - 1.

In the process of mutation, the donor variable Uib
0
(t) can

be described as:

U0
ibðtÞ ¼ UibðtÞ þ FiðtÞ Uir1ðtÞ � Uir2ðtÞ½ �; ð12Þ

where Uir1(t) and Uir2(t) are the random values of the ith

element from the population at time t.

Moreover, a crossover operation takes play after muta-

tion. Since the crossover rate is considered as a key fact for

the search ability and convergence in the evolution process

[34], in the proposed AMODE algorithm, the update pro-

cess of crossover rate is designed:

CriðtÞ ¼Criðt � 1Þ qHðt � 1Þ þ ðqHðt � 1Þ � qLðt � 1ÞÞ=½
hiðt � 1Þ�;

ð13Þ

where Cri(t) and Cri(t - 1) are the crossover rate of the ith

element at time t and t - 1, qH(t - 1) and qL(t - 1) are

the highest and lowest bounds of the crossover rate at time

t - 1, respectively.

In the process of crossover, the trial variable �UibðtÞ is

generated by exchanging the components of donor variable

with target variable. The crossover uses the method of

binomial. The scheme can be described as:

�UibðtÞ ¼
U0

ibðtÞ; if rand½0; 1� �CriðtÞ
UibðtÞ otherwise

�
: ð14Þ

There are Np target variables and Np trial variables for

Ui(t), U(t) is updated by non-dominated sorting strategy.

The most appropriate set of Pareto is selected as u(t).

Remark 1 In this AMODE algorithm, the scaling factor

and the crossover rate can be adjusted according to the

evolutionary process. The proposed AMODE algorithm

differs from the classical differential evolution algorithms

in the following aspects: Firstly, the adaptive scaling factor

strategy is utilized to enhance both convergence and

diversity. Secondly, the adaptive crossover rate mechanism

is considered to make the AMODE algorithm effective,

ensuring the population has a good convergence in the

evaluation process.

3.3 Intelligent multi-objective optimization control

(IMOOC)

The aim of the proposed multi-objective optimization

control is to minimize the energy consumption and meet

the quality standards for WWTPs. In IMOOC design, the

performance index is used to adjust the properties of the

closed-loop system. In general, the AMODE algorithm is

used to obtain the optimal set-points for controlling

WWTPs. Then, a PI control method [18] is applied to trace

the optimal set-points of SO5 and SNO2 for improving the

control performance. In order to reveal the proposed con-

trol strategy clearly, the proposed IMOOC is summarized

in Table 1, which is executed at time t. The sampling time

of u(t) is 15 min as same as the interval of original influent

data.

In this control strategy, the AMODE algorithm is used

to handle multiple objectives for the IMOOC algorithm.

The key idea is to minimize the objective functions by

obtaining and tracing the optimal set-points of SO5 and

SNO2. Some remarks should be noted, and in the following

section the performance of the proposed IMOOC is

discussed.

Remark 2 The optimization of WWTPs is a complex

activity because several objectives must be taken into

account simultaneously, i.e., the optimization of the alter-

natives is a multi-criteria problem. In IMOOC, the

AMODE algorithm is used to achieve the optimization of

the energy required for aeration and the effluent quality

indexes. Then, the PI control method is investigated for

tracing the optimal set-points of SO5 and SNO2. This method

is able to maintain a good performance since it considers

both the multi-objective optimization and trace control

method among the control process in BSM1. This method

and simulation results have a great value for the real

implementation of the methodology.

4 Simulation results and discussion

The aim of this section is to evaluate the proposed IMOOC

algorithm for optimal controlling DO and nitrate levels in

WWTPs. In the following experiment, the optimal set-

points of SO5 and SNO2 are firstly obtained by the AMODE

algorithm. After obtaining the optimal set-points of SO5 and

SNO2 by using the proposed AMODE algorithm, the PI

control is applied to trace the optimal set-points by

adjusting the oxygen transfer coefficient of the same tank

(KLa5) and the internal recycle flow rate (Qa). Then, the

proposed IMOOC algorithm is evaluated and compared

against several other controllers. All the simulations were

programmed with MATLAB version 2010 and were run on
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a PC with a clock speed of 2.6 GHz and 4 GB RAM, in a

Microsoft Windows 8.0 environment. The experiment also

shows the effect of set-points changes and load distur-

bances on the control systems.

4.1 System conditions

The system conditions of WWTPs are described as follows.

Samples To get an objective view of the applied control

strategy performance in different situations, the simulated

influent data are available in 2-week files derived from

BSM1 database. These files are generated to simulate three

different weather situations (see Fig. 3).

Bounds The limits on the effluents—ammonium con-

centration (SNH), total nitrogen concentration (Ntot), bio-

logical oxygen demand (BOD5), chemical oxygen demand

(COD), and suspended solid concentration (TSS), are

shown in Eq. (9).

Control loop The control loop tracks the optimal set-

points of SNO2 and SO5 by adjusting KLa5 (0\KLa5\ 242

d-1) and Qa (0\ Qa\100,000 m3 d-1) according to the

description of BSM1. Moreover, Kp = 10 and Ki = 2.

Disturbances To derive the robustness of the proposed

control strategy, the measurable disturbances have been

considered: the influent flow rate Qo and the influent

ammonium concentration NHo in the time interval [0, 72]

Table 1 Details of IMOOC

based on the AMODE algorithm
For sample {x(t), y(t)}, initialize the parameters

% Obtaining the optimal set-points of SO5 and SNO2

For the input sequences

Obtain the influent concentration and composition

#Loop

Compute U(t) %Equations (10)–

(14)

Determine u(t) as the optimal set-points of SO5 and SNO2 %Equations (7)–

(9)

Compute the objective functions %Equations (4)–

(6)

If the optimal set-points satisfy Eq. (9)

Break loop

Else

Restart Loop (based on the set-points of SO5 and SNO2 in the last loop)

Set u(t) to the PI controller

End

% Tracing the optimal set-points of SO5 and SNO2

For the optimal set-points

Compute the control results [18]

uðtÞ ¼ KpeðtÞ þ Ki

R t

0
eðtÞdt (15)

Kp is the proportional coefficient, e(t) is the deviation of the control input, Ki is

the integral coefficient.

End
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Fig. 3 Influent flow rates. a Dry weather, b rain weather, c storm weather
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Fig. 4 Optimal results in dry weather. a The set-points of SO5, b the set-points of SNO2

Fig. 5 Optimal results in rainy weather. a The set-points of SO5, b the set-points of SNO2
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Fig. 6 Optimal results in storm weather. a The set-points of SO5, b the set-points of SNO2
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hour. And the amplitude of the disturbances occurs after

t = 72 h (twice of Qo and three times of NHo).

4.2 Control results

4.2.1 Optimizing results

To verify the performance of the described strategy for

optimal controlling WWTP, the AMODE algorithm is

proposed for optimizing the DO concentration and the

nitrogen nitrate concentration. The initial parameters of the

AMODE algorithm are: Fi(0) = 0.5, Cr(0) = 0.2, the

population size is 50, and the maximum number of itera-

tions is 200. The performance of the optimal results using

the AMODE algorithm is presented in Figs. 4, 5, and 6.

From these figures, the AMODE algorithm is able to

obtain the solutions for optimizing the DO concentration

and the nitrogen nitrate concentration in three conditions—

dry weather, rainy weather and storm weather. Moreover,

these results also highlight the importance of considering

the multi-objective functions on the energy required for

aeration and the effluent quality when developing control

strategies. The set-points of SNO2 and SO5 are based on the

balance among AE, PE, and EQ which often conflict with

each other and should be considered simultaneously.

4.2.2 Tracing control results

In the following experiment, after obtaining the optimal

set-points of SO5 and SNO2 using the proposed AMODE
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Fig. 7 Tracing results in dry weather. a The tracing results of SO5, b the tracing results of SNO2
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algorithm in the previous sections, the PI controller is

applied to trace the optimal set-points. The performance of

the tracing results using the PI controller is presented in

Figs. 7, 8, and 9. And the results of KLa5 and Qa are shown

in Figs. 10, 11, and 12.

As it is clearly shown in Figs. 7, 8, and 9, accept-

able tracking precision is achieved. In addition, changes in

the different conditions do not have an impact on the

tracking accuracy. Moreover, based on the results in

Figs. 10, 11, and 12, the proposed IMOOC strategy is able

to trace the SO5 and SNO2 in BSM1.

4.3 Analysis of the simulation results

In order to demonstrate the performance of the IMOOC

strategy, the effluent qualities of IMOOC in three different

conditions are displayed in Fig. 13. The measurable dis-

turbances have been considered in BSM1, the numerical

simulations reveal that the proposed control strategy gives

satisfactory tracking performance for WWTPs. Moreover,

to determine the control abilities of IMOOC, the details of

the effluent qualities are shown in Tables 2, 3 and 4. The

results in Tables 2, 3, and 4 show that, for the three dif-

ferent conditions, the proposed IMOOC algorithm can

ensure the effluent quality indexes within the effluent

limitations in BSM1.
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Fig. 9 Tracing results in storm weather. a The tracing results of SO5, b the tracing results of SNO2
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Fig. 11 Results of KLa5 and Qa in rainy weather. a The values of KLa5, b the values of Qa
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Fig. 12 Results of KLa5 and Qa in storm weather. a The values of KLa5, b the values of Qa
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Fig. 13 Effluent qualities of IMOOC in different weather. a Dry weather, b rain weather, c storm weather
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For the sake of comparison, four other controllers have

been designed for the treatment process: the L/A control

law [18], the intelligent multi-objective nonlinear model

predictive control (iMO-NMPC) [27], the virtual reference

feedback tuning (VRFT) [31], and the NSGA?PI [26]. To

ensure a fair comparison, the optimal parameters of the

controllers are the same as in the initial papers. The details

of the comparisons are shown in Tables 5, 6 and 7. The AE

consumption used is AE = 724 €/d in the open-loop con-

trol condition as in [13] and [20].

As Table 5 indicates, a lower PE value is achieved with

the proposed IMOOC algorithm [71.4 (- 8.6%)]. The best

EQ [6048.25 (- 1.10%)] is achieved when the proposed

IMOOC algorithm is employed in the dry weather case.

Meanwhile, Tables 6 and 7 illustrate the details of the

different algorithms in both rainy and storm weather. These

results show that the proposed IMOOC algorithm can

control the SO5 and SNO2 in WWTPs with better perfor-

mance. The best PE and EQ are achieved by IMOOC. The

proposed IMOOC algorithm also yields better AE than the

MODE?PI, the L/A control law, the VRFT, and the

NSGA?PI.

5 Conclusion

The aim of this paper is to design an IMOOC algorithm for

optimizing and controlling DO concentration and the

nitrogen nitrate concentration in WWTPs. The perfor-

Table 6 Comparison of

different algorithms in rainy

weather

Controllers AE (€/d) PE (€/d) EQ (mg/L) IAE (mg/L)

IMOOC 671 (- 7.3%) 73.2 (- 5.7%) 8090.32 (- 1.03%) 0.161 (8.1%)

MODE?PI 678 (- 6.4%) 74.2 (- 4.4%) 8111.21 (- 0.77%) 0.161 (8.1%)

L/A control law [18] 721 (- 0.3%)* 77.1 (- 0.6%) 8122.13 (- 0.64%) 0.010 (0.5%)*

iMO-NMPC [27] 641 (- 11.5%)* 77.2 (- 0.5%)* 8113.88 (- 0.24%) 0.096 (4.81%)

VRFT [31] 686 (- 5.2%)* 76.4 (- 1.5%)* 8114.12 (- 0.75%) 0.076 (3.8%)

NSGA?PI [26] 674 (- 7.0%) 75.8 (- 2.3%) 8098.68 (- 0.93%) 0.160 (8.0%)*

*The results are also listed in the original papers

Table 2 Effluent qualities Of IMOOC in dry weather

Effluents qualities Limitation Maximum Mean Minimum

NH (mg/l) 4 4.0 3.9 3.7

COD (mg/l) 100 55.2 49.6 44.1

SS (mg/l) 30 19.2 16.5 9.3

Ntot (mg/l) 18 18 16.7 12.6

BOD (mg/l) 10 10 8.7 1.1

Table 3 Effluent qualities of IMOOC in rainy weather

Effluents qualities Limitation Maximum Mean Minimum

NH (mg/l) 4 4.0 3.9 3.6

COD (mg/l) 100 54.7 49.4 45.3

SS (mg/l) 30 18.9 15.2 9.9

Ntot (mg/l) 18 18 16.2 11.2

BOD (mg/l) 10 10 8.2 0.9

Table 4 Effluent qualities of IMOOC in storm weather

Effluents qualities Limitation Maximum Mean Minimum

NH (mg/l) 4 4.0 3.9 3.6

COD (mg/l) 100 54.1 48.6 45.9

SS (mg/l) 30 18.9 15.6 9.9

Ntot (mg/l) 18 18 16.3 10.7

BOD (mg/l) 10 10 8.3 0.6

Table 5 Comparison of

different algorithms in dry

weather

Controllers AE (€/d) PE (€/d) EQ (mg/L) IAE (mg/L)

IMOOC 669 (- 7.6%) 71.4 (- 8.6%) 6048.25 (- 1.10%) 0.158 (7.9%)

MODE?PI 678 (- 6.4%) 74.2 (- 4.4%) 6067.15 (- 0.79%) 0.158 (7.9%)

L/A control law [18] 637 (- 12.1%)* 76.1 (- 2.2%) 6076.43 (- 0.64%) 0.134 (6.7%)*

iMO-NMPC [27] 672 (- 7.2%)* 76.2 (- 1.8%)* 6101.12 (- 0.24%) 0.078 (3.9%)*

VRFT [31] 668 (- 7.6%)* 75.8 (- 2.3%)* 6112.10 (- 0.06%) 0.102 (5.1%)

NSGA?PI [26] 673 (- 7.1%) 75.1 (- 3.2%) 6087.68 (- 0.46%) 0.140 (7.0%)*

*The results are also listed in the original papers
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mance is evaluated using environmental, economic and

technical criteria. The present results conclude that the

performance of WWTPs can be improved using the pro-

posed IMOOC algorithm. The key findings of this study

can be summarized in the following points:

(1) One of the key factors of the IMOOC algorithm is to

find the optimal set-points of SO5 and SNO2 for the

plant. In our case, the AMODE algorithm is

proposed using the adaptive adjustment strategies

to select the suitable scaling factor and crossover rate

in the searching process. Moreover, the AMODE

algorithm developed in this research is shown to

yield more performance than the other multi-objec-

tive algorithms.

(2) Another key factor of the IMOOC algorithm is to

solve the multi-objective optimal solutions for both

effluent qualities and operation consumption. The

proposed IMOOC algorithm provides a framework

for optimal control with the AMODE algorithm.

AMODE algorithm can handle multiple objectives

for IMOOC.

(3) This simulation study can be seen as an essential step

before implementing the methodology in a real

plant, since the generation of data was done as

realistically as possible. This is very important and in

fact can improve the robustness of the real WWTPs.
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