
ORIGINAL ARTICLE

A comparative performance analysis of different activation
functions in LSTM networks for classification

Amir Farzad1 • Hoda Mashayekhi2 • Hamid Hassanpour2

Received: 3 August 2016 /Accepted: 4 October 2017 / Published online: 19 October 2017

� The Natural Computing Applications Forum 2017

Abstract In recurrent neural networks such as the long

short-term memory (LSTM), the sigmoid and hyperbolic

tangent functions are commonly used as activation func-

tions in the network units. Other activation functions

developed for the neural networks are not thoroughly

analyzed in LSTMs. While many researchers have adopted

LSTM networks for classification tasks, no comprehensive

study is available on the choice of activation functions for

the gates in these networks. In this paper, we compare 23

different kinds of activation functions in a basic LSTM

network with a single hidden layer. Performance of dif-

ferent activation functions and different number of LSTM

blocks in the hidden layer are analyzed for classification of

records in the IMDB, Movie Review, and MNIST data sets.

The quantitative results on all data sets demonstrate that

the least average error is achieved with the Elliott activa-

tion function and its modifications. Specifically, this family

of functions exhibits better results than the sigmoid acti-

vation function which is popular in LSTM networks.

Keywords LSTM � Neural network � Activation function �
Sigmoidal gate

1 Introduction

LSTM, introduced by Hochreiter and Schmidhuber [1], is a

recurrent neural network (RNN) architecture shown to be

effective for different learning problems especially those

involving sequential data [2]. The LSTM architecture

contains blocks which are a set of recurrently connected

units. In RNNs, the gradient of the error function can

increase or decay exponentially over time, known as the

vanishing gradient problem. In LSTMs, the network units

are redesigned to alleviate this problem. Each LSTM block

consists of one or more self-connected memory cells along

with input, forget, and output multiplicative gates. The

gates allow the memory cells to store and access infor-

mation for longer time periods to improve performance [2].

LSTMs and bidirectional LSTMs [3] are successfully

applied in various tasks especially classification. Different

applications of these networks include online handwriting

recognition [4, 5], phoneme classification [2, 3, 6], and

online mode detection [7]. LSTMs are also employed for

generation [8], translation [9], emotion recognition [10],

acoustic modeling [11], and synthesis [12] of speech. These

networks are also employed for language modeling [13],

protein structure prediction [14], analysis of audio and

video data [15, 16], and human behavior analysis [17].

Generally, the behavior of neural networks relies on

different factors such as the network structure, the learning

algorithm, the activation function used in each node, etc.

However, the emphasis in neural network research is on the

learning algorithms and architectures, and the importance

of activation functions has been less investigated [18–20].

The value of the activation function determines the deci-

sion borders and the total input and output signal strength

of the node. The activation functions can also affect the

complexity and performance of the networks and also the
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convergence of the algorithms [19–21]. Careful selection

of activation functions has a large impact on the network

performance.

The most popular activation functions adopted in the

LSTM blocks are sigmoid (log-sigmoid) and hyperbolic

tangent. In different neural network architectures, however,

other kinds of activation functions have been successfully

applied. Among the activation functions are the comple-

mentary log–log, probit and log–log functions [22], peri-

odic functions [23], rational transfer functions [24],

Hermite polynomials [25], non-polynomial functions

[26, 27], Gaussians bars [28], new classes of sigmoidals

[20, 29], and also combination of different functions such

as polynomial, periodic, sigmoidal, and Gaussian [30].

These activation functions upon application in LSTMs may

demonstrate good performance. In this paper, a total of 23

activations including the just mentioned functions are

analyzed in LSTMs.

The properties that should be generally fulfilled by an

activation function are as follows: The activation function

should be continuous and bounded [31, 32]. It should also

be sigmoidal [31, 32], or the limits for infinity should

satisfy the following equations [33]:

lim
x!�1

f ðxÞ ¼ a ð1Þ

lim
x!þ1

f ðxÞ ¼ b ð2Þ

with a\b ð3Þ

The activation function’s monotonicity is not a com-

pulsory requirement for the existence of the Universal

Approximation Property (UAP) [32].

In this paper we investigate the effect of the 23 different

activation functions, employed in the input, output, and

forget gates of LSTM, on the classification performance of

the network. To the best of our knowledge this is the first

study to aggregate a comprehensive set of activation

functions and extensively compare them in the LSTM

networks. Using the IMDB and Movie Review data sets,

the misclassification error of LSTM networks with differ-

ent structures and activation functions are compared. The

results specifically show that the most commonly used

activation functions in LSTMs do not contribute to the best

network performance. Accordingly, the main highlights of

this paper are as follows:

1. Compiling an extensive list of applicable activation

functions in LSTMs.

2. Applying and analyzing different activation functions

in three gates of an LSTM network for classification.

3. Comparing the performance of LSTM networks with

various activation functions and different number of

blocks in the hidden layer.

The rest of the paper is organized as follows: in Sect. 2, the

LSTM architecture and the activation functions are

described. In Sect. 3, the experimental results are reported

and discussed. The conclusion is presented in Sect. 4.

2 System model

In this section, the LSTM architecture and the activation

functions employed in the network are described.

2.1 LSTM architecture

We use a basic LSTM with a single hidden layer with an

average pooling and a logistic regression output layer for

classification. The LSTM architecture, illustrated in Fig. 1,

has three parts, namely the input layer, a single hidden

layer, and the output layer. The hidden layer consists of

single-cell blocks which are a set of recurrently connected

units. At time t, the input vector xt is inserted in the net-

work. Elements of each block are defined by Eqs. 4–9.

ft ¼ r Wf xt þ Uf ht�1 þ bf
� �

ð4Þ

it ¼ r Wixt þ Uiht�1 þ bið Þ ð5Þ
ot ¼ r Woxt þ Uoht�1 þ boð Þ ð6Þ

Ct

�
¼ tanh WCxt þ UCht�1 þ bCð Þ ð7Þ

Ct ¼ ft � Ct�1 þ it � ~Ct ð8Þ
ht ¼ ot � tanhðCtÞ ð9Þ

The forget, input, and output gates of each LSTM block

are defined by Eqs. 4–6, respectively, where ft, it, and ot
are the forget, input, and output gates, respectively. The

input gate decides which values should be updated, the

forget gate allows forgetting and discarding the informa-

tion, and the output gate together with the block output

selects the outgoing information at time t. ~Ct defined in

Eq. 7 is the block input at time t which is a tanh layer and

with the input gate, the two decides on the new information

that should be stored in the cell state. Ct is the cell state at

time t which is updated from the old cell state (Eq. 8).

Finally, ht is block output at time t.

The LSTM block is illustrated in Fig. 2. The three gates

(input, forget, and output gates), and block input and block

output activation functions are displayed in the figure. The

output of the block is recurrently connected back to the

block input and all of the gates. W and U are weight

matrices, and b is the bias vector. The � sign is the point-

wise multiplication of two vectors. Functions r and tanh

are point-wise nonlinear logistic sigmoid and hyperbolic

tangent activation functions, respectively.

2508 Neural Comput & Applic (2019) 31:2507–2521

123



2.2 Activation functions

Three main aspects of neural network have important roles

in network performance: the network architecture and the

pattern of connections between units, the learning algo-

rithm, and the activation functions used in the network.

Most of the researches on analysis of the neural networks

have focused on the importance of the learning algorithm,

whereas the importance of the activation functions used in

the neural networks has been mostly neglected [18–20].

We analyze the LSTM network in this paper by

changing the activation functions of the forget, input, and

output gates (sigmoidal gates of Eqs. 4, 5, and 6). We

compare 23 different activation functions in terms of their

effect on network performance when employed in sig-

moidal gates of a basic LSTM block for classification.

Sigmoid and hyperbolic tangent functions are the most

popular activation functions used in the neural networks.

However, some individual studies have considered other

activation functions in their research. We have compiled a

comprehensive list of 23 such functions as shown in

Table 1 and discussed below. We experimentally observed

that adding a value of 0.5 to some functions makes them

applicable as activation functions in the network. Changing

Fig. 1 The LSTM architecture

consisting of the input layer, a

single hidden layer, and the

output layer [2]

Fig. 2 A single LSTM block

with tanh block input and output

and with the sigmoidal gates

shown with r [2]. The � sign is

the point-wise multiplication

Neural Comput & Applic (2019) 31:2507–2521 2509

123



the range of the activation functions is previously observed

in other studies [41].

In Table 1, the first activation function is Aranda-Ordaz

introduced by Gomes et al. [18] which is labeled as Aranda.

The second to fifth functions are the bimodal activation

functions proposed by Singh et al. [36] and labeled as Bi-

sig1, Bi-sig2, Bi-tanh1, and Bi-tanh2, respectively. The sixth

function is the complementary log–log [22]. The next

function presents a modified version of cloglog, named

cloglogm [21]. Next come the Elliott, Gaussian, logarithmic,

and log–log functions, the 12th function is a modified

logistic sigmoid function proposed by Singh and Chandra

[20] labeled as logsigm. The logistic sigmoid comes next as

called log-sigmoid, followed by the modified Elliott func-

tion. The 15th function is a sigmoid function with roots [19],

called rootsig. The 16th to 19th functions are the Saturated,

the hyperbolic secant (Sech), and two modified sigmoidals

labeled as sigmoidalm and sigmoidalm2. The tunable acti-

vation function proposed by Yuan et al. [37] and labeled as

sigt is the 20th function. Next is a skewed derivative acti-

vation function proposed by Chandra et al. [38] labeled as

skewed-sig. The softsign function proposed by Elliott [39]

and the wave function proposed by Hara and Nakayamma

[40] come last. Some other activation functions such as

rectifier [43] were applied in the network but turned out to

be ineffective due to the exploding gradient problem.

Table 1 Label, definition, corresponding derivative and range of each activation function

No. Label Activation function Derivative function Range

1 Aranda [18] f ðxÞ ¼ 1� ð1þ 2exÞ�1=2
f 0ðxÞ ¼ exð2ex þ 1Þ�3=2 [0, 1]

2 Bi-sig1 [36] f ðxÞ ¼ 1
2

1
1þe�xþ1 þ 1

1þe�x�1

� �

f 0ðxÞ ¼
e1�x

ðe1�xþ1Þ2
þ e�x�1

ðe�x�1þ1Þ2

2

[0, 1]

3 Bi-sig2 [36] f ðxÞ ¼ 1
2

1
1þe�x þ 1

1þe�x�1

� �

f 0ðxÞ ¼
e�x

ðe�xþ1Þ2
þ e�x�1

ðe�x�1þ1Þ2

2

[0, 1]

4 Bi-tanh1 [36]* f ðxÞ ¼ 1
2
tanh x

2

� �
þ tanh xþ1

2

� �� �
þ 0:5 f 0ðxÞ ¼ sech2ðxþ1

2
Þþsech2ðx

2
Þ

4
[- 0.5, 1.5]

5 Bi-tanh2 [36]* f ðxÞ ¼ 1
2
tanh x�1

2

� �
þ tanh xþ1

2

� �� �
þ 0:5 f 0ðxÞ ¼ sech2ðxþ1

2
Þþsech2ðx�1

2
Þ

4
[- 0.5, 1.5]

6 Cloglog [22] f ðxÞ ¼ 1� e�ex f 0ðxÞ ¼ ex�ex [0, 1]

7 Cloglogm [21]* f ðxÞ ¼ 1� 2e�0:7ex þ 0:5 f 0ðxÞ ¼ 7ex�0:7ex=5 [- 0.5, 1.5]

8 Elliott [39] f ðxÞ ¼ 0:5x
1þ xj j þ 0:5 f 0ðxÞ ¼ 0:5

ð1þjxjÞ2
[0, 1]

9 Gaussian f ðxÞ ¼ e�x2 f 0ðxÞ ¼ �2xe�x2 [0, 1]

10 Logarithmic*
f ðxÞ ¼

lnð1þ xÞ þ 0:5 x� 0

� lnð1� xÞ þ 0:5 x\0

�

f 0ðxÞ ¼

1

xþ 1
x� 0

1

1� x
x\0

8
><

>:

[- ?, ??]

11 Loglog [21]* f ðxÞ ¼ e�e�x þ 0:5 f 0ðxÞ ¼ e�e�x�x [0.5, 1.5]

12 Logsigm [20]*
f ðxÞ ¼ 1

1þe�x

� �2

þ0:5
f 0ðxÞ ¼ 2e�x

ðe�xþ1Þ3
[0.5, 1.5]

13 Log-sigmoid f ðxÞ ¼ 1
1þe�x f 0ðxÞ ¼ e�x

ðe�xþ1Þ2
[0, 1]

14 Modified Elliott [41] f ðxÞ ¼ xffiffiffiffiffiffiffiffi
1þx2

p þ 0:5 f 0ðxÞ ¼ 1

ðx2þ1Þ3=2
[- 0.5, 1.5]

15 Rootsig [19]* f ðxÞ ¼ x

1þ
ffiffiffiffiffiffiffiffi
1þx2

p þ 0:5 f 0ðxÞ ¼ 1ffiffiffiffiffiffiffiffi
x2þ1

p
þx2þ1

[- 0.5, 1.5]

16 Saturated* f ðxÞ ¼ xþ1j j� x�1j j
2

þ 0:5 f 0ðxÞ ¼
xþ1
xþ1j j�

x�1
x�1j j

2

[- 0.5, 1.5]

17 Sech f ðxÞ ¼ 2
exþe�x f 0ðxÞ ¼ � 2ðex�e�xÞ

ðexþe�xÞ2
[0, 1]

18 Sigmoidalm [20]*
f ðxÞ ¼ 1

1þe�x

� �4

þ0:5
f 0ðxÞ ¼ 4e�x

ðe�xþ1Þ5
[0.5, 1.5]

19 Sigmoidalm2 [42]*
f ðxÞ ¼ 1

1þe�x=2

� �4

þ0:5 f 0ðxÞ ¼ 2e�x=2

ðe�x=2þ1Þ5
[0.5, 1.5]

20 Sigt [37] f ðxÞ ¼ 1
1þe�x þ 1

1þe�x 1� 1
1þe�x

� �
f 0ðxÞ ¼ 2ex

ðexþ1Þ3
[0, 1]

21 Skewed-sig [38]* f ðxÞ ¼ 1
1þe�x

� �
1

1þe�2x

� �
þ 0:5 f 0ðxÞ ¼ ðe2xþ2exþ3Þe3x

ðexþ1Þ2ðe2xþ1Þ2
[0.5, 1.5]

22 Softsign [39]* f ðxÞ ¼ x
1þ xj j þ 0:5 f 0ðxÞ ¼ 1

ð1þjxjÞ2
[- 0.5, 1.5]

23 Wave [40] f ðxÞ ¼ ð1� x2Þe�x2 f 0ðxÞ ¼ 2xðx2 � 2Þe�x2 [- 0.055, 1]

* 0.5 added to the original function
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2.3 Methodology

To evaluate the effect of different activation functions on

the classification performance, we vary the activation of

the input, output, and forget gates which we refer to as

sigmoidal gates, and keep the tanh units unchanged. In

each configuration, all the three sigmoidal gates are iden-

tical and chosen from the set of activation functions

introduced in Table 1.

To train the network, the back propagation through time

algorithm (BPTT) [34] is used with either ADADELTA

[35] or RMSprop [44] as the optimization method. ADA-

DELTA is a gradient descent-based learning algorithm

which is proposed as an improvement over Adagrad [45]

and adapts the learning rate per parameter over time.

RMSprop is also an extension of Adagrad that deals with

its radically diminishing learning rates. The two opti-

mization methods are popular for LSTM networks and

achieve faster convergence rates [46, 47].

The mini-batch method is used for the training and test

phases. The network is trained and tested three times for

each activation function with the same train and test data.

The initial network weights and the batches are chosen

randomly in each experiment. The error interval is reported

using the results of the three experiments of each config-

uration. The train and validation errors are measured at the

end of each batch. The dropout method with probability of

0.5 is used to prevent overfitting [48]. The network is

trained until a low and approximately constant classifica-

tion error based on training data is observed, and also the

validation error is stable for 10 consecutive batches. The

test errors at this stage are reported.

3 Experimental results

To analyze the performance of the LSTM network, two sets

of experiments are designed with different types of data

sets. In both set of experiments different architectures of

LSTM are evaluated and in each configuration the input,

output, and forget gates of the LSTM blocks use an iden-

tical activation function from Table 1. In what follows, we

describe the analysis results.

Table 2 Average train errors

per each activation function for

the Movie Review data set

Activation function No. of hidden blocks

2 4 8 16 32 64 Average test error (95% CI)

Aranda 11.8 8.43 7.16 4.06 6.03 7 23.24 (22.45–24.02)

Bi-sig1 11.53 9.1 6.66 5.53 6.1 5.3 23.85 (23.45–24.25)

Bi-sig2 9.03 8 7.93 6.96 8.16 7.16 23.72 (22.9–24.53)

Bi-tanh1 7.4 5.96 6.86 4.73 6.2 7.76 23.1 (22.44–23.76)

Bi-tanh2 9.86 8.33 7.53 7.26 8.1 8.13 23.1 (22.8–23.41)

Cloglog 8.26 7.46 6.13 5.4 4.56 8.73 23.3 (22.66–23.95)

Cloglogm 9.7 7.26 7.83 8.33 9.1 7.32 22.62 (21.11–24.13)

Elliott 9.36 10.5 5.86 6.7 7.56 7.46 23.2 (22.02–24.37)

GAUSSIAN 6.83 6.03 8.26 4.66 8.2 6.15 23.53 (23.13–23.93)

Logarithmic 11.23 9.4 7.7 5.93 7.13 8.53 23.12 (22.33–23.9)

Loglog 8.56 6.6 6.76 6.43 5 2.96 23.9 (23.65–24.15)

Logsigm 7.86 7.63 7.03 4.53 5.3 5.26 23.01 (22.46–23.56)

Log-sigmoid 10.7 10.06 6.56 4.73 3.93 4.46 23.52 (23.16–23.87)

Modified Elliott 9.46 9.06 6.5 5.53 5.66 6.12 22.52 (21.05–23.98)

Rootsig 11.53 9.5 6.53 6.43 6.16 6.84 23.22 (22.17–24.27)

Saturated 10.26 10.43 7.23 7.83 4.56 7.5 23.06 (22.25–23.87)

Sech 10.53 7.43 8.1 5.03 5.1 5.83 23.85 (23.04–24.66)

Sigmoidalm 9.46 9 6.53 7.13 8.1 8.1 23.33 (23.04–23.62)

Sigmoidalm2 9.06 7.53 7.2 8.66 5.76 5.63 24.48 (24.04–24.91)

Sigt 8.3 7.23 6.06 6.16 6.26 6.83 23.24 (22.63–23.84)

Skewed-sig 8.83 8.1 7.63 6.8 6.86 7.06 23.09 (22.97–23.20)

Softsign 11.86 8.26 6 4.93 5 6.66 22.85 (22.34–23.36)

Wave 10.93 7.6 5.56 7.66 7.23 4.53 23.9 (22.98–24.82)

The minimum train error for each function is shown in bold face. The last column shows the test error for

the network configuration which produced the least training error in each row. The minimum test error is

italic
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3.1 First set of experiments

In the first set of experiments, we use two movie review

data sets. The first one [49] is referred to as Movie Review1

in this paper, and the other is the IMDB large movie review

data set2 [50]. The Movie Review data set consists of

10,662 review sentences, with equal number of positives

and negatives. From this data set, we use a total of 8162

sentences in the training and the rest are used in the test

phase. Both sets contain equal number of positive and

negative sentences. From the IMDB data set, we use 2000

sentences for training the network (with portion of 5% for

validation set) and 500 sentences for testing the perfor-

mance. Again, the number of positive and negative sen-

tences is equal and the sentences have a maximum length

of 100 words.

The mini-batch method is used with the batch size for

the training and test phases set to 16 and 64, respectively.

The batch sizes have been chosen based on experiment for

producing a better performance. We use the backpropa-

gation through time algorithm (BPTT) with ADADELTA

as the optimization method, with the epsilon parameter set

to 1e-6. Hyperparameters are not tuned specifically for

each configuration of LSTM and are identical in all

experiments. The test misclassification error is used to rank

the activation functions. Each experiment is repeated three

times.

Table 2 illustrates the average training error values on

the Movie Review data set for different configurations. In

these set of experiments, the number of LSTM blocks in

the hidden layer increases exponentially from 2 to 64 and

the number of epochs on each run is set to 20 (in each

epoch, all the training data are exposed to the network in

mini-batches). For each activation function, the average

test error for the configuration which has produced the least

train error is shown in the last column. The test errors for

all configurations are presented in ‘‘Appendix.’’ As

observed, on this data set the modified Elliott has the least

average test error (22.52%). Overall, the modified Elliott

(with range of [- 0.5, 1.5]), cloglogm ([- 0.5, 1.5]),

Table 3 Average train errors

per each activation function for

the IMDB data set

Activation function No. of hidden blocks

4 8 16 32 64 128 256 Average test error (95% CI)

Aranda 3.46 1.3 2.23 1 1.03 1.1 3.16 13.6 (12.28–14.91)

Bi-sig1 1.9 1.4 1.2 1.3 1.3 1.23 1.16 13.93 (12.68–15.18)

Bi-sig2 1.73 2.4 1.76 1.43 1.46 1.63 1.4 13.93 (11.48–16.38)

Bi-tanh1 2.1 1.16 1.93 1.13 1.96 1.03 4.03 13.93 (12.18–15.67)

Bi-tanh2 4.9 1.86 1.23 1.66 1.83 1 1.2 14.06 (12.81–15.31)

Cloglog 2.13 2.7 1.53 1.36 2.66 1.5 1.23 13.4 (11.67–15.12)

Cloglogm 4.33 2.5 2.4 2.63 1.4 1.16 1.33 13.13 (12.37–13.89)

Elliott 1.53 1.5 0.93 1.2 1.06 1.26 4.16 14.06 (12.91–15.21)

Gaussian 3.13 1.6 2.66 2.36 5.23 18.46 11.7 14.8 (10.38–19.21)

Logarithmic 1.56 3.06 1.5 1.13 1 1.06 2.73 13.6 (13.6–13.6)

Loglog 4.73 2.4 2.5 3.3 3.2 22.33 24.3 19.6 (7.76–31.43)

Logsigm 1.8 3.86 1.63 1.26 1.16 3.16 11.3 14.53 (13.38–15.68)

Log-sigmoid 1.3 1.5 1.4 2.46 2.56 1.43 1.23 13.6 (12.73–14.46)

Modified Elliott 2.3 3.43 1.66 5.1 1.66 1.56 1.43 12.46 (10.22–14.7)

Rootsig 1.76 1.83 1.23 1.63 1.06 1.36 1.06 13.4 (12.08–14.71)

Saturated 3.86 1.9 1.63 1.83 1.6 1.15 1.16 13.06 (10.71–15.41)

Sech 1.1 2.1 2.26 1.23 3.1 6.36 22.06 17.73 (14.99–20.46)

Sigmoidalm 1.36 1.66 2.63 2.3 3.16 1.03 2.53 13.6 (12.1–15.09)

Sigmoidalm2 1.6 2.76 2.13 1.1 1.06 1.96 1.36 14.13 (13.37–14.89)

Sigt 1.73 1.53 1.03 4.16 1.23 2.13 3.13 15.2 (12.71–17.68)

Skewed-sig 3.3 2.36 2.43 1.66 1.73 3.23 17.7 16.06 (12.87–19.26)

Softsign 2.5 1.26 2.4 1.8 1.3 1.23 3.5 13.13 (12.09–14.16)

Wave 7 8.73 10.36 4.6 12.8 35.2 31.06 16.2 (13.92–18.47)

The minimum train error for each function is shown in bold face. The last column shows the test error for

the network configuration which produced the least training error in each row. The minimum test error is

italic

1 http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polari

tydata.tar.gz.
2 http://ai.stanford.edu/amaas/data/sentiment/.
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softsign ([- 0.5, 1.5]), logsigm ([0.5, 1.5]), and saturated

([- 0.5, 1.5]) functions when used as activation present the

least average error values which are 22.52, 22.62, 22.85,

23.01, and 23.06%, respectively. The optimum number of

LSTM blocks on the hidden layer when using modified

Elliott was 16 units, while for cloglogm, softsign, logsigm,

and saturated it was 4, 16, 16, and 32 units, respectively.

Interestingly log-sigmoid stands in rank 17 among all

functions, with the average error of 23.52%. For the Movie

Review data set, training errors have negative correlation

with number of units for most functions (although the

correlations are mostly weak). Most activations perform

poorly with a very low number of units (e.g., 2). But, as

number of units increase, the sensitivity of error values to

number of units is less observed and the standard deviation

of error values for most activations is less than 2.

Results of the training error values for the IMDB data set

are illustrated in Table 3 including the average test error for

the best configuration of each activation. The number of

LSTM units in the hidden layer was modified exponentially

from 4 to 256. The number of epochs on each run was 50. On

this data set, similar to the first data set,modifiedElliotthad the

least average error (12.46%). After modified Elliott (with

range of [- 0.5, 1.5]), the saturated ([- 0.5, 1.5]), cloglogm

([- 0.5, 1.5]), and softsign ([- 0.5, 1.5]), functions have the

least average error values of 13.06, 13.13, and 13.13%,

respectively. The optimum number of LSTM blocks on the

hidden layer for modified Elliott was 256 units, while for

cloglogm, saturated, and softsign it was 128, 128, and 128

units, respectively. Interestingly again, the log-sigmoid does

not appear in the four best results and rank of this activation

function is 10 out of 23 with the average error of 13.6%. For

the IMDB data set, no solid pattern of correlation is observed

between error values and number of units.

Most functions produced best training results with 16 and

256 blocks for the Movie Review and IMDB data sets,

respectively. Average test and train errors, and average

number of convergence epochs for Movie Review and

IMDB data sets are represented in Tables 4 and 5, respec-

tively. Note that in each epoch all of the train data are

represented to the network in a sequence of mini-batches.

The number of actual (average) iterations is reported in

parentheses. To test the significance of the results, ANOVA

tests were conducted for results of 16 and 256 blocks for the

Movie Review and IMDB data sets, respectively. The

obtained p values were 3.33e-6 and 7.61e-11, which being

less than 0.05 indicate the significance of the results.

Results show that for both data sets, the activation

function modified Elliott has the best performance. Using

this activation function for large data sets, we may need to

Table 4 Average test and train

errors for Movie Review data

set, and average number of

convergence epochs for 16

blocks in hidden layer of LSTM

Activation function Average test error Average train error Average convergence epochs

Aranda 23.24 4.06 17.66 (144,140.92)

Bi-sig1 23.52 5.53 16.66 (135,978.92)

Bi-sig2 23.72 6.96 9.66 (78,844.92)

Bi-tanh1 23.1 4.73 10 (81,620)

Bi-tanh2 23.1 7.26 12.33 (100,637.46)

Cloglog 23 5.4 10.33 (84,313.46)

Cloglogm 23.01 8.33 12.33 (100,637.46)

Elliott 23.33 6.7 15.33 (125,123.46)

Gaussian 23.53 4.66 13.66 (111,492.92)

Logarithmic 23.12 5.93 14.33 (116,961.46)

Loglog 23.1 6.43 10.66 (87,006.92)

Logsigm 23.01 4.53 11.66 (95,168.92)

Log-sigmoid 23.78 4.73 16.33 (133,285.46)

Modified Elliott 22.52 5.53 12.33 (100,637.46)

Rootsig 23.1 6.43 12.66 (103,330.92)

Saturated 22.8 7.83 13 (106,106)

Sech 23.85 5.03 14.66 (119,654.92)

Sigmoidalm 23.7 7.13 10.66 (87,006.92)

Sigmoidalm2 23.88 8.66 10 (81,620)

Sigt 23.36 6.16 10.33 (84,313.46)

Skewed-sig 23.09 6.8 8.66 (70,682.92)

Softsign 22.85 4.93 15.33 (125,123.46)

Wave 22.82 7.66 12 (97,944)

The number of iterations reported in parenthesis
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tune the hyperparameters such as using a smaller epsilon

parameter in ADADELTA optimization method. Interest-

ingly, the log-sigmoid activation function which is com-

monly used in neural networks and in LSTM networks does

not produce the best results and the modified Elliott func-

tion demonstrates better results when employed in the

sigmoidal gates. Additionally, it was observed that sig-

moidal activations with range of [- 0.5, 1.5] result in a

more accurate network than those in the range of [0, 1] in

LSTM network. The maximum length of sentences for the

Movie Review and IMDB data sets used in the experiments

were 64 and 100, respectively. When applied on the IMDB

data set, LSTM network required more hidden blocks and

even more epochs per run. This can be justified by the

greater complexity of this data set.

The error levels measured in current study are consistent

with some other studies in the literature. Lenc and Hercig

[51] report a 38.3% error for classification of Movie

Review with LSTM. Dai and Le [52] report an error of

13.5% for classification of IMDB data with LSTM. The

overall error difference for all functions is at most 2 and

5% in Movie Review and IMDB data sets, respectively. In

the experiments, the difference in the best measured error

values of the modified Elliott function and the popular log-

sigmoid function is 0.36 and 1.14 for the Movie Review

and IMDB data sets, respectively. Although being small,

these values can be meaningful according to the specific

application.

3.2 Second set of experiments

For the second experiment we use the MNIST3 data set of

handwritten digits. The mini-batch method is again used

with the batch size for the training and test phases set to

128. The batch sizes have been chosen based on experi-

ment. We use the RMSprop as the optimization method,

with the learning rate set to 0.001.

The MNIST data set of handwritten digits has a training

set of 60,000 examples (with 5000 examples for valida-

tion), and a test set of 10,000 examples. The image sizes

are 28 9 28 pixels. We use the one-hot method to predict

10 digits (0–9) or equivalently 10 classes.

Table 6 illustrates the average training error values for

the MNIST data set with the test error being reported for

the best configuration of each activation function. In these

set of experiments, two configurations of 64 and 128

LSTM blocks in the hidden layer are considered, and the

number of epochs for each run is set to six. As observed, on

Table 5 Average test and train

errors for IMDB data set, and

average number of convergence

epochs for 256 blocks in hidden

layer of LSTM

Activation function Average test error Average train error Average convergence epochs

Aranda 13.93 3.16 23 (46,000.0)

Bi-sig1 13.93 1.16 28 (56,000.0)

Bi-sig2 13.93 1.40 23 (46,000.0)

Bi-tanh1 15.2 4.03 35 (70,000.0)

Bi-tanh2 13.8 1.20 29 (58,000.0)

Cloglog 13.4 1.23 26 (52,000.0)

Cloglogm 13 1.33 27 (54,000.0)

Elliott 13.73 4.16 25 (50,000.0)

Gaussian 20.93 11.70 45 (90,000.0)

Logarithmic 13.33 2.73 22 (44,000.0)

Loglog 35.93 24.3 44 (88,000.0)

Logsigm 25.93 11.30 47 (94,000.0)

Log-sigmoid 13.6 1.23 25 (50,000.0)

Modified Elliott 12.46 1.43 28 (56,000.0)

Rootsig 13.4 1.06 23 (46,000.0)

Saturated 12.86 1.16 29 (58,000.0)

Sech 32.2 22.06 47 (94,000.0)

Sigmoidalm 14.2 2.53 19.66 (39,320.0)

Sigmoidalm2 14.6 1.36 24 (48,000.0)

Sigt 15.53 3.13 46 (92,000.0)

Skewed-sig 29.93 17.70 47 (94,000.0)

Softsign 13 3.50 20 (40,000.0)

Wave 34.93 31.06 45 (90,000.0)

The number of iterations reported in parenthesis

3 http://yann.lecun.com/exdb/mnist/.
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this data set Elliott and softsign have the least average error

(1.66%). Overall, the softsign (with range of [- 0.5, 1.5])

and Elliott (with range of [0, 1]), rootsig ([- 0.5, 1.5]), Bi-

tanh2 ([- 0.5, 1.5]), Gaussian ([0, 1]), Bi-sig1 ([0, 1]), Bi-

sig2 ([0, 1]), and modified Elliott ([- 0.5, 1.5]) functions

when used as activation present the least average error

values which are 1.66%, 1.66, 1.9, 1.93, 1.96, 2, 2.03, and

2.03% respectively. The optimum number of LSTM blocks

on the hidden layer for softsign, Elliott, rootsig, Bi-tanh2,

Gaussian, Bi-sig1, Bi-sig2, and modified Elliott was 128

units, and it seems that most of the activation functions

worked better with this number of units Interestingly, log-

sigmoid stands in rank 10 with the average error of 2.16%.

Average test and train errors, and average number of con-

vergence epochs for theMNIST data set, for 128 blocks in the

hidden layer are represented in Table 7. The ANOVA result

for all experiments with 128 blocks is 3.7e-21 which shows

the results are significant. The error levels are consistent with

the study of Arjovsky et al. [53]. which report a classification

error of 1.8% for MNIST data with LSTM.

3.3 Discussion

In this paper we aggregated a list of 23 applicable activation

functions that can be used in place of the sigmoidal gates in a

LSTM network. We compared performance of the network

using these functions with different number of hidden blocks,

in classification tasks. The results showed the following:

1. Overall, the results on both data sets suggest that less-

recognized activation functions (such as Elliott, mod-

ified Elliott, and softsign which are interestingly all in

the Elliott family) can produce more promising results

compared to the common functions in the literature.

2. Activation functions with the range of [- 0.5, 1.5] have

generally produced better results, and this indicates that

a wider range of codomain (than the sigmoidal range of

[0, 1]) can yield a better performance.

3. The log-sigmoid activation function which is mostly

used in LSTM blocks produces weak results compared

to other activation functions.

Burhani et al. [41] in their study on denoising autoen-

coders reported a similar result that the modified Elliott has

a better performance and less error than log-sigmoid acti-

vation function. In addition, in the first set of experiments

we found cloglogm to be the second best activation which

is consistent with Gomes et al. [21] stating that cloglogm

shows good results for forecasting financial time series.

The top activations (Elliott family and cloglogm) along

with the popular log-sigmoid activation are displayed in

Fig. 3. According to the diagram, modified Elliott, softsign,

and cloglogm are much steeper than log-sigmoid around

zero and also have a wider range. In Fig. 4 performance

comparison of these five functions in term of the average

error value for the Movie Review, IMDB, and MNIST data

sets, respectively, for 16, 256 and 128 blocks is illustrated.

There are two widely known issues with training the

recurrent neural networks, the vanishing and the exploding

gradient problems [54]. The LSTM networks alleviate the

gradient vanishing problem by their special design. The gra-

dient exploding problem can, however, still occur. A gradient

norm clipping strategy is proposed by Pascanu et al. [55] to

deal with exploding gradients. Gradient clipping is a tech-

nique to prevent exploding gradients in very deep networks.A

common method is to normalize the gradients of a parameter

vector when its L2 norm exceeds a certain threshold [55].

Although we have not performed gradient norm clipping in

training theLSTMnetwork, themethod suggests that gradient

exploding problem is closely related to norm of the gradient

matrix and smaller norms are preferred.

Table 6 Average train errors per each activation function for the

MNIST data set

Activation function No. of hidden blocks

64 128 Average test error (95% CI)

Aranda 2.11 1.82 2.10 (1.85–2.34)

Bi-sig1 1.95 1.76 2.00 (1.75–2.24)

Bi-sig2 1.86 1.73 2.03 (1.65–2.41)

Bi-tanh1 2.48 2.56 3.03 (2.74–3.32)

Bi-tanh2 1.93 1.72 1.93 (1.55–2.31)

Cloglog 2.23 1.88 2.26 (1.88–2.64)

Cloglogm 2.18 2.06 2.13 (1.75–2.51)

Elliott 1.75 1.62 1.66 (1.28–2.04)

Gaussian 2 1.75 1.96 (1.67–2.25)

Logarithmic 2.6 3.14 2.80 (2.14–3.45)

Loglog 4.81 7.68 5.46 (4.94–5.98)

Logsigm 4.25 4.21 4.53 (3.59–5.47)

Log-sigmoid 2.15 2 2.16 (1.59–2.74)

Modified Elliott 2.21 2.1 2.03 (1.74–2.32)

Rootsig 2 1.9 1.90 (1.65–2.14)

Saturated 3.32 3.76 3.43 (3.14–3.72)

Sech 2.3 2.22 2.06 (1.68–2.44)

Sigmoidalm 2.13 2.22 2.23 (1.47–2.99)

Sigmoidalm2 2.56 2.42 2.66 (2.14–3.18)

Sigt 2.41 2.37 2.76 (2.47–3.05)

Skewed-sig 4.89 4.56 4.73 (4.35–5.11)

Softsign 1.7 1.62 1.66 (1.52–1.81)

Wave 2.37 2.25 2.26 (1.88–2.64)

The minimum train error for each function is shown in bold face. The

last column shows the test error for the network configuration which

produced the least training error in each row. The minimum test error

is italic
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We evaluated the norm of the gradient matrix in the

second set of experiments, and interestingly observed that

the norm of the gradient matrix for the Elliott activation

was low and in fact the second lowest among all the acti-

vations. The norms of the gradient matrix after conver-

gence are presented in Table 8. As observed, the norm of

gradient matrix for most of the activation functions

achieving lower classification errors is considerably low

(less than 0.1).

The tanh function is one of the most popular activation

functions which is widely used in LSTM networks [2]. From

a conceptual point of view, two tanh activations in LSTM

blocks squash the block input and output and can be con-

sidered to have a different role from the three gates. How-

ever, they can indeed have a significant effect on the overall

network performance and can be replaced by other activa-

tions which fulfill the properties mentioned in Sect. 1 of the

manuscript. This change will specifically affect the gradient,

range, and derivative of the activation functions and blocks.

Analyzing the effect of other activation functions when used

in place of tanh activations is left for future work.

Some follow-up studies have proposed modifications on

the initial LSTM architecture. Evaluating different activa-

tion functions on these architectures can serve as an

interesting future study. Gers and Schmidhuber [56]

introduced peephole connections that cross directly from

the internal state to the input and output gates of a node.

According to their observations, these connections improve

performance on timing tasks where the network must learn

to measure precise intervals between events. Another line

of research is the alternate and similar architectures which

are popular along with the LSTM. The bidirectional

Table 7 Average test and train

errors for MNIST data set, and

average number of convergence

epochs for 128 blocks in hidden

layer of LSTM

Activation function Average test error Average train error Average convergence epochs

Aranda 2.1 1.82 3.55 (195,413.3)

Bi-sig1 2.00 1.76 3.95 (217,600.0)

Bi-sig2 2.03 1.73 3.94 (216,746.7)

Bi-tanh1 2.50 2.56 4.01 (220,586.7)

Bi-tanh2 1.93 1.72 3.43 (183,893.3)

Cloglog 2.26 1.88 3.90 (214,613.3)

Cloglogm 2.13 2.06 4.12 (226,560.0)

Elliott 1.66 1.62 3.97 (218,453.3)

Gaussian 1.96 1.75 3.50 (192,853.3)

Logarithmic 2.70 3.14 4.25 (234,240.0)

Loglog 8.16 7.68 4.19 (230,400.0)

Logsigm 4.53 4.21 4.22 (232,533.3)

Log-sigmoid 2.16 2.00 3.14 (172,800.0)

Modified Elliott 2.03 2.10 4.15 (228,266.7)

Rootsig 1.90 1.90 3.39 (186,880.0)

Saturated 3.83 3.76 4.11 (226,133.3)

Sech 2.06 2.22 3.79 (208,640.0)

Sigmoidalm 2.36 2.22 3.54 (194,986.7)

Sigmoidalm2 2.66 2.42 3.27 (180,053.3)

Sigt 2.76 2.37 3.90 (215,040.0)

Skewed-sig 4.73 4.56 4.26 (234,666.7)

Softsign 1.66 1.62 4.16 (229,120.0)

Wave 2.26 2.25 3.48 (191,573.3)

The number of iterations reported in parenthesis

Fig. 3 The modified Elliott, cloglogm, log-sigmoid, softsign, and

Elliott activation functions
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recurrent neural network (BRNN) is first proposed by

Schuster and Paliwal [57]. This architecture involves two

layers of hidden nodes, both of which are connected to

input and output. The first hidden layer has recurrent

connections from the past time steps, and in the second

layer direction of recurrent of connections is flipped. A

gated recurrent unit (GRU) was proposed by Cho et al. [58]

to make each recurrent unit to adaptively capture depen-

dencies of different time scales. These modifications can

improve performance of the network.

4 Conclusions

In LSTM blocks, the two most popular activation functions

are sigmoidal and hyperbolic tangent. In this study we

evaluated the performance of a LSTM network with 23

different activation functions that can be used in place of

the sigmoidal gates. We varied the number of hidden

blocks in the network and employed three different data

sets for classification. The results exposed that some less-

recognized activations such as the Elliott function and its

modifications can yield less error levels compared to the

most popular functions.

More research is needed to study other parts and details

of an LSTM network such as the effect of changing the

hyperbolic tangent function on the block input and block

output. Variants of the LSTM network can also be ana-

lyzed. Additionally, larger data sets and different tasks can

be employed to further analyze the network performance

considering different configurations.
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activation functions for MNIST,

IMDB and Movie Review data

sets with 128, 256, and 16

blocks, respectively

Table 8 Norm of gradient

matrix for MNIST data set in

increasing order

Activation function Gradient norm Activation function Gradient norm

Sigmoidalm2 0.0172 Gaussian 0.1206

Elliott 0.0234 Bi-sig2 0.1228

Bi-tanh2 0.0346 Logarithmic 0.1304

Aranda 0.0346 Sech 0.1646

Saturated 0.0443 Sigmoidalm 0.2171

Modified Elliott 0.047 Skewed-sig 0.2885

Sigt 0.0548 Logsigm 0.4368

Rootsig 0.0634 Cloglogm 0.4824

Bi-sig1 0.0798 Cloglog 0.5623

Softsign 0.0964 Loglog 0.8145

Log-sigmoid 0.1004 Wave 0.9476

Bi-tanh1 0.1098
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