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Abstract The objective of this paper is to introduce a

method for computing weights of attributes in a decision

making problem under intuitionistic fuzzy environment.

Many weight generation methods exist in the literature

under intuitionistic fuzzy setting, but they have some

limitations which can be pointed out as: the entropy mea-

sures used in entropy weight methods are invalid in many

situations and also there are lots of entropy formulae for

intuitionistic fuzzy sets, which will be better to use, and

thus a confusion may arise; the other weight generation

methods may lose some information since it needs to

transform the intuitionistic fuzzy decision matrix into an

interval-valued decision matrix. This conversion distorts

experts original opinions. In this point of view, to over-

come these demerits, we develop a weight generation

method without changing the original decision information.

The proposed method maximizes the average degree of

satisfiability and minimizes the average degree of non-

satisfiability of each alternative over a set of attributes,

simultaneously. This leads to formulate a multi-objective

programming problem (MOPP) to compute the final com-

prehensive value for each alternative. The scenario of an

MOPP itself is subjective and can be modeled by fuzzy

decision making problem due to the conflicting objectives

and the way of human choice on conflict resolution. This

problem is solved by using particle swarm optimization

scheme, and the evaluation procedure is illustrated by

means of a numerical example. This work has also justified

the proposed approach by analyzing a comparative study.

Keywords Intuitionistic fuzzy set � Multi-objective

programming problem � Fuzzy optimization � Particle
swarm optimization

1 Introduction

An important generalization of the classical fuzzy set

theory is the theory of intuitionistic fuzzy set (IFS) intro-

duced by Atanassov [1]. During the last decades, IFS

theory has played a significant role for dealing with

incomplete or inexact information present in real-world

applications [2–6] including decision making problems. It

is observed from the decision making problems that the

weights of the attributes are determined usually before-

hand. However, the proper assessment of attribute weights

plays a vital role in multi-attribute decision making

(MADM) problem as the variation of weights may affect

on the final ranking order of the alternatives. In order to

compute the weights of the attributes under intuitionistic

fuzzy environment, several methods have been developed.

For example, based on the technique for order of prefer-

ence by similarity to ideal solution (TOPSIS) [7], a frac-

tional programming model is developed by Li et al. [8] to

determine attribute weights. By using TOPSIS method,

Yue [9] presented a new method for group decision making

problem with a weight determination process. On the basis

of maximizing deviation method, Wei [10] introduced two

optimization models to compute attribute weights where

the information about attribute weights is completely

unknown or partly known. In the same direction, Chou

et al. [11] and Yeh and Chang [12] developed a weighting
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system of attributes under group decision-making condi-

tions. Li [13] defined several linear programming models

by using IFSs to determine attribute weights by maximiz-

ing the comprehensive values of alternatives over attri-

butes. Lin et al. [14] provide a linear programming model

which is much simpler than Li’s [13] method to generate

weights of attributes. In terms of determining objective

weights, one of the most representative approaches is the

entropy method [15]. Ye [16] established a weight gener-

ation method where attribute weights are completely

unknown based on weighted correlation coefficient mea-

sure with entropy. Wu and Zhang [17] introduced a linear

programming model to determine the optimal weight of

criteria based on intuitionistic fuzzy weighted entropy. By

using gray relational analysis (GRA), Wei [18, 19] com-

puted weights of criteria in a decision making problem.

Although numerous weight computation methods have

been developed under intuitionistic fuzzy environment,

they have some limitations which can be listed as follows:

the entropy measure used in entropy weight methods

[15–17] is invalid in many situations, and also there are lots

of entropy formulae for IFSs, which will be better to use

and thus should be improved; the other weight generation

methods [13, 14] may loss some information since these

processes need to be transformed the intuitionistic fuzzy

decision matrix into an interval-valued decision matrix.

This conversion distorts experts original opinions. In this

point of view, without changing the original decision

information, we have developed a weight generation

method by maximizing the average degree of satisfiability

and minimizing the average degree of non-satisfiability of

each alternative over a set of attributes, simultaneously in

the form of multi-objective programming problem

(MOPP), which is nonlinear. A global optimization process

is required to solve this nonlinear problem. In this work, we

employ a recently developed optimization technique,

namely particle swarm optimization (PSO) to find the

compromise solution of MOPP under the intuitionistic

fuzzy environment. Then, an approach to MADM problem

in which the ratings of alternatives on the basis of attributes

are expressed as IFSs is developed with incomplete attri-

bute weights information.

The paper is organized as follows: in Sect. 2, primary

discussions of the various useful ideas including MOPP,

PSO, penalty function and IFSs are provided in brief. The

proposed approach to determine attribute weights under

intuitionistic fuzzy environment is presented in Sect. 3. In

Sect. 4, a numerical example is studied for clarifying our

proposed method and the comparison analysis is also

conducted. Finally, a concrete conclusion is drawn in

Sect. 5.

2 Preliminary

In this section, we carry out brief introductions to MOPP,

PSO, penalty function and IFSs that will be required for our

subsequent developments. We start by recalling the con-

cepts of MOPP.

2.1 Multi-objective programming problem

An MOPP is a design process that optimizes a vector of

objective functions in a systematic way by considering all

the objective functions simultaneously. A general MOPP

can be defined as follows:

maxðminÞ f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . .; fnðxÞÞ

subject to Aix� bi; i ¼ 1; 2; . . .;m

x� 0

ð1Þ

where f1ðxÞ; f2ðxÞ; . . .; fnðxÞ are n individual objective

functions, x 2 Rn is a vector of decision variables, Ai 2
Rm�n and bi 2 Rði ¼ 1; 2; . . .;mÞ. The MOPP is designed

here to find the decision variables x which optimizes a

vector of objective functions f ðxÞ ¼ ððf1ðxÞ; f2ðxÞ;
. . .; fnðxÞÞ in the feasible decision space. Due to the con-

flicting nature of objective functions, it is not necessary

that MOPP has an optimal solution that maximizes/mini-

mizes all the objective functions simultaneously. This is

the scenario of tradeoff between objective functions. This

leads us to find the best compromise solution, called Pareto

optimal solution [20]. Generally, by a Pareto optimal

solution, we mean a solution for which improvement of one

objective can be achieved only at the expense of another

[21]. Mathematically, it can be represented as follows:

Definition 1 [20] A solution vector x� 2 X is said to be a

Pareto optimal to MOPP if there does not exist any x 2 X

such that fiðxÞ� fiðx�Þ, for all i and fiðxÞ[ fiðx�Þ for at least
one i ¼ 1; 2; . . .;m.

In general, the solution procedure of an MOPP is classi-

fied into following two categories: classical methods and

evolutionary methods. From last few decades, many classi-

cal methods [20], such as weighted summethod, �-constraint

method, value function method, goal programming, inter-

active method, have been used to solve an MOPP. Most of

the classical methods are not efficient for solving an MOPP

due to get stuck at a suboptimal solution. To overcome this

situation, over the last decade, evolutionary algorithms, such

as genetic algorithm (GA) [22, 23], PSO [24–26], ant colony

optimization [27], have been extensively used in the field of

science and engineering disciplines.
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In order to cope with imprecise information present in

real-life problems, the study of MOPP is started in fuzzy

environment. Fuzzy MOPPs are studied by Bellman and

Zadeh [28], Zimmermann [29], Sakwa and Yano [30] and

many others. Cheng et al. [31] solved fuzzy multi-objective

linear programming problem by utilizing deviation method

and weighted max–min method. By extending the concept

of TOPSIS approach, a methodology [32] is developed for

solving multiple objective decision making problems.

Recently, Deep et al. [33] proposed an interactive method

by using GA for solving MOPP in fuzzy environment. GA

is also used by Sakwa and Yauchi [34] for the same pur-

pose. A more comprehensive detail of evolutionary algo-

rithms for MOPP can be found in [20].

2.2 Particle swarm optimization

In order to solve a nonlinear optimization problem, PSO is

one of the most successful and widely used algorithms. PSO,

introduced by Kennedy and Eberhart [24], is a population-

based stochastic global optimization method which is

inspired by bird flocking, fish schooling and swarming the-

ory. PSO is developed on the basis of communication and

interaction, i.e., information exchange between members,

called ‘particles,’ of the population, called ‘swarm.’ During

movement, each particle adjusts its best position (local best)

according to its own previous best position and the best

position attained by any neighbor particles (global best).

PSO starts with a swarm of particles whose positions are

initial solutions and the velocities are randomly initialized in

the search space. Based on the local best and global best

information, particles update their positions and velocities.

In each iteration, the velocity and position of the particle

are updated according to the following equations.

viðk þ 1Þ ¼ nðkÞðxviðkÞ þ c1:ri1ðkÞ:ðxliðkÞ � xiðkÞÞ
þ c2:ri2ðkÞ:ðxgi ðkÞ � xiðkÞÞÞ

ð2Þ

xiðk þ 1Þ ¼ xiðkÞ þ viðk þ 1Þ ð3Þ

where i(=1,2,...,n) represents the number of particles in

population and n is the population size; viðk þ 1Þ is the

velocity of ith particle in the ðk þ 1Þth iteration; nðkÞ is the
constriction factor which controls and constricts velocities

of particles; x is the inertia weight; ri1 and ri2 are random

numbers generated from a uniform distribution in the

interval [0,1]; c1 and c2, called ‘cognitive’ and ‘social’

parameter, respectively, are positive constants; xiðk þ 1Þ is
the position of ith particle in the ðk þ 1Þth iteration. So, at

each generation, Eq. (2) is performed as a new velocity,

whereas Eq. (3) represents the new position of particles.

The performance of each particle is evaluated according

to fitness function which is problem dependent. Generally,

in optimization problem, the objective function is treated as

the fitness function.

From the applicability point of view, in this work, we

utilize PSO as a tool to solve the nonlinear constrained

optimization problem. The constrained optimization prob-

lem is changed into the equivalent unconstrained problem

by using penalty function approach which is discussed in

the next subsection. Now, a brief description of a pseudo

code of PSO algorithm is given below.

2.3 Penalty function

Constrained optimization problems have two types of

solutions, one is feasible which satisfies all the given

constraints, whereas another one is infeasible which vio-

lates at least one of them. In order to solve a constrained

optimization problem, one of the successful approaches is

to use of penalty function [35]. In the penalty function

approach, constrained optimization problem is reduced to

unconstrained optimization problem by introducing a

penalty function and making a single-objective function.

The idea behind this method is that penalty function

assigns zero penalty if the point is feasible one and it

assigns positive penalty if the point is infeasible. The

penalty function can be defined as

Definition 2 [36] A function P : Rn ! R is called a

penalty function if P satisfies following properties:

1. P(x) is continuous;

2. PðxÞ� 0 8x 2 Rn;

3. PðxÞ ¼ 0 8 feasible x;

4. limPðxÞ ¼ 1 if jxj ! 1.

Now, the constrained problem (1) can be transformed to

unconstrained optimization problem by using a penalty

function as

maxFðxÞ ¼ f ðxÞ þ aðkÞPðxÞ ð4Þ

Algorithm: Pseudo code of particle swarm optimization (PSO)

Step-1: Select objective function: f ðxÞ; x ¼ ðx1; x2; . . .; xnÞ as a
fitness function

Step-2: Set iteration number k ¼ 0

Step-3: Initialize particle position and velocity for each particle

Step-4: Initialize the particle’s best known position to its initial

position, i.e., xliðkÞ ¼ xiðkÞ
Step-5: Repeat

Step-6: Set iteration number k ¼ k þ 1

Step-7: Update the best known position xliðkÞ of each particle and

the swarm’s best known position x
g
i ðkÞ

Step-8: Evaluate particle velocity and position according to

Eqs. (2) and (3)

Step-9: Continue until termination criterion met
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where k is the current iteration number, aðkÞ is the penalty
parameter and aðkÞ[ 0; aðkÞ� aðk þ 1Þ 8k, in practice

fakg is taken as fa1 ¼ 1; a2 ¼ 10; a3 ¼ 100; a4 ¼
1000; . . .:g and penalty function P(x) is defined as

PðxÞ ¼
Xm

i¼1

ðqiðxÞÞr ð5Þ

where qiðxÞ ¼ maxf0; giðxÞg, giðxÞ ¼ Aix� bi and r is the

power of a penalty function. In general r is taken as r ¼ 1

or r ¼ 2.

2.4 Intuitionistic fuzzy set

An important generalization of classical fuzzy set theory

[37] is the theory of IFS [1] which comprehensively por-

trays the uncertainty of human beings when providing

expert’s opinion over the objects. The definition of IFS is

given in below.

An IFS a in the universe X can be expressed as a set of

ordered triplets, a ¼ fðx; laðxÞ; maðxÞÞ : x 2 Xg, where la :
X ! ½0; 1� is the degree of belongingness and ma : X !
½0; 1� is the degree of non-belongingness of x in a. They

satisfy the relation 0� laðxÞ þ maðxÞ� 1 8x 2 X. Each

fuzzy set is a special case of IFS, and it can be represented

as a ¼ fðx; laðxÞ; 1� laðxÞÞ : x 2 Xg. The quantity

paðxÞ ¼ 1� laðxÞ � maðxÞ is called the degree of hesitation
(indeterminacy) of x in a. When paðxÞ ¼ 0 8x 2 X, IFS

becomes fuzzy set.

For the sake of simplicity now onwards, we will write an

IFS a as a ¼ ðla; maÞ throughout the paper.

3 An approach to MADM problem
with incomplete attribute weight information

In this section, we consider a framework for MADM

problem with incomplete attribute weight information

where ratings of alternatives over attributes are given as

IFSs.

3.1 Problem formulation

Now, a MADM problem with IFSs is presented in which

information of attribute weights is partly known. A multi-

attribute single-expert decision process is designed with

n attributes C ¼ fC1;C2; . . .;Cng to evaluate m number of

alternatives A ¼ fA1;A2; . . .;Amg. Assume that w ¼

ðw1;w2; . . .;wnÞT be the weight vector of attributes, where

wj 2 ½0; 1�, j ¼ 1; 2; . . .; n which are partly known andPn
j¼1 wj ¼ 1.

Suppose, IFS aij ¼ ðlaij ; maijÞ denotes the expert’s

assessment corresponding to jth attribute Cjðj ¼ 1; 2; . . .; nÞ
to evaluate ith alternative Aiði ¼ 1; 2; . . .;mÞ.

The MADM process can be described in the following

way:

Step 1: Construction of decision matrix

A MADM problem with IFSs can be represented

concisely in a matrix form as follows:

where each aij is IFS aij ¼ ðlaij ; maijÞ.
Step 2: Computation of comprehensive values of each

alternative

The comprehensive values for each alternative

are calculated by weighted intuitionistic fuzzy

arithmetic mean operator [38]. Let Zi be the

comprehensive values corresponding to the

alternative Aiði ¼ 1; 2; . . .;mÞ, with

Zi ¼ ðPi;QiÞ ¼
�
1�

Yn

j¼1

ð1� lwj

aij
Þ;
Yn

j¼1

mwj

aij

�
ð6Þ

where Pi ¼ 1�
Qn

j¼1ð1� lwj
aijÞ represents the

membership degree of the comprehensive value

(called the degree of satisfiability) and Qi ¼Qn
j¼1 m

wj
aij represents the non-membership degree

of the comprehensive value (called the degree of

non-satisfiability) of the alternative Ai.

3.2 Estimation of attribute weights by constructing

MOPP

In this subsection, an attribute weight determination

method in a decision making process is developed by

maximizing the degree of satisfiability and minimizing the

degree of non-satisfiability. The methodology consists of

following two steps:
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Step 3: MOPP formulation

Sometimes, it may happen that decision maker

only possesses partial information about attribute

weights due to the increasing complexity of real-

world decision situations. Based on the weighted

intuitionistic fuzzy arithmetic values, we select

the optimal weight vector w ¼ ðwjÞTðj ¼
1; 2; . . .nÞ to maximize membership degree of

the comprehensive values and minimize the non-

membership degree of the comprehensive values

of alternatives for all the attributes. For each

alternative Aiði ¼ 1; 2; . . .;mÞ, the final

comprehensive value can be computed through

the following multi-objective programming

model (Model-1):

Model� 1 : ai ¼ max
w

Pi ¼ 1�
Yn

j¼1

ð1� lwj

aij
Þ

bi ¼ min
w

Qi ¼
Yn

j¼1

mwj

aij

subject to w 2 H;

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n

where H is the set of incomplete information

about attribute weights. The objective function

maxw Pi implicates that average membership

values for each alternative are maximized, i.e.,

the degree of satisfiability of each alternative

over a set of attributes is maximized. The

objective function minw Qi represents that aver-

age non-membership values for each alternative

are minimized, i.e., the degree of non-satisfia-

bility of each alternative over a set of attributes

is minimized.

Step 4: Fuzzy MOPP formulation

In the MOPP scenario, it is worth noticing that

multiple objectives conflict with each other and

thus, in multi-objective optimization there is no

optimal solution for all the objectives. Thus, the

notion of Pareto optimality [20] or efficiency has

been introduced in MOPP instead of the

optimality concept for single-objective

optimization. Decisions with Pareto optimality

or efficiency cannot be uniquely determined.

However, for practical applications, one solution

needs to be selected, which will satisfy the

different goals to some extent. Such a solution is

called best compromise solution. In this aspect,

due to the imprecision or fuzziness inherent in

human judgments, it is quite natural to assume

that the decision maker may have a fuzzy goal

for each of the objective functions. The fuzzy

goals of the decision maker for each of the

objective functions can be incorporated in the

problem formulation of MOPP via fuzzy sets,

which are characterized by membership

functions [39].

In order to construct the membership function of each

objective, first we solve the following two crisp single-

objective optimization problems (one is maximization and

one is minimization) separately. Therefore, for each

objective Piði ¼ 1; 2; . . .;mÞ, the following two single-ob-

jective optimization problems are solved:

max=min Pi

subject tow 2 H;
Xn

j¼1

wj ¼ 1;wj � 0; j ¼ 1; 2; . . .; n

to get two individual values aLi (minimum value of the

objective function Pi) and aUi (maximum value of the

objective function Pi) for every objective function Pi. In

the same way, for each objective Qiði ¼ 1; 2; . . .;mÞ, the
following two single-objective optimization problems are

solved:
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max=min Qi

subject to w 2 H;
Xn

j¼1

wj ¼ 1;wj � 0; j ¼ 1; 2; . . .; n

to generate two individual values bLi (minimum value of

the objective function Qi) and bUi (maximum value of the

objective function Qi) for every objective function Qi.

In the present study, for easy understanding and obvious

computational advantage, simple linear membership func-

tions lPi
and lQi

ði ¼ 1; 2; . . .;mÞ corresponding to the

objective functions Pi and Qiði ¼ 1; 2; . . .;mÞ, respectively,
are introduced to represent the goal of each objective

function as follows:

lPi
ðwÞ ¼

1; for Pi � aUi ;

1� aUi � Pi

aUi � aLi
; for aLi �Pi � aUi ;

0; otherwise

8
>>><

>>>:
ð7Þ

and

lQi
ðwÞ ¼

1; for Qi � bLi ;

1� Qi � bLi
bUi � bLi

; for bLi �Qi � bUi ;

0; otherwise

8
>>><

>>>:
ð8Þ

The membership functions lPi
ðwÞ (Fig. 1) and lQi

ðwÞ
(Fig. 2) represent the degree of satisfactions of the decision

maker corresponding to the objective functions Pi and Qi,

respectively, as a value between zero and one. Having

elicited the membership functions lPi
ðwÞ and lQi

ðwÞði ¼
1; 2; . . .;mÞ for each of the objective functions Pi and

Qiði ¼ 1; 2; . . .;mÞ, respectively, through the interaction of

decision maker, the MOPP (Model 1) can be transformed

into the fuzzy MOPP defined by

maxðlP1
ðwÞ; lP2

ðwÞ; . . .; lPm
ðwÞ; lQ1

ðwÞ; lQ2
ðwÞ; . . .; lQm

ðwÞÞ

One of the important steps in fuzzy MOPP is the aggre-

gation of membership values of the objective functions to

reduce it into a single-objective optimization problem. The

aforementioned fuzzy MOPP can be reduced into the sin-

gle-objective optimization problem based on the concept of

aggregation operator in the following way:

max f ðlP1
ðwÞ; lP2

ðwÞ; . . .; lPm
ðwÞ; lQ1

ðwÞ; lQ2
ðwÞ; . . .; lQm

ðwÞÞ

where f represents an aggregation function. It is to be noted

that the value of f ðlP1
ðwÞ; lP2

ðwÞ; . . .; lPm
ðwÞ; lQ1

ðwÞ;
lQ2

ðwÞ; . . .; lQm
ðwÞÞ can be interpreted as the overall

degree of satisfaction of decision makers’ fuzzy goals.

However, one may use arithmetic mean, geometric mean,

minimum operator, product operator as an aggregation

function f. To aggregate the objective functions, among the

several choices, weighted arithmetic mean [40] and mini-

mum operator [31] are often used in the literature. Inspired

by the work [28, 29, 31], we use minimum operator as an

aggregation function which may be given as follows:

f ðlP1
ðwÞ; lP2

ðwÞ; . . .; lPm
ðwÞ; lQ1

ðwÞ; lQ2
ðwÞ; . . .; lQm

ðwÞÞ
¼ minðlP1

ðwÞ; lP2
ðwÞ; . . .; lPm

ðwÞ; lQ1
ðwÞ; lQ2

ðwÞ; . . .; lQm
ðwÞÞ

Hence, eliciting the choice of aggregation function f, the

aforementioned optimization problem (Model 1) turns into

the following single-objective nonlinear optimization

problem (Model 2) defined as follows:

Model-2 :max k

subject to k� lPi
ðwÞ ði ¼ 1; 2; . . .;mÞ;

k� lQi
ðwÞði ¼ 1; 2; . . .;mÞ;

w 2 H;
Xn

j¼1

wj ¼ 1;wj � 0; j ¼ 1; 2; . . .; n

k 2 ½0; 1�

where k ¼ mini¼1;::;mflPi
ðwÞ; lQi

ðwÞg is the satisfactory

level.

As Model-2 is nonlinear in nature with multiple vari-

ables, it is really a difficult task to find out the gradient

vector and thus it requires some effective methods and

algorithms for finding the global solution. One of the most

useful processes that exists in the literature to find out the
Fig. 1 Membership function for the min type objective functions

Fig. 2 Membership function for the min type objective functions
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global solution of the nonlinear optimization problem is the

evolutionary algorithmic (EA) approach [41]. The advan-

tage of this EA technique is that it does not require any

kind of pre-assumptions, such as continuity, differentia-

bility of objective functions [39].

In the present work, we employ a recently developed EA

technique, namely PSO [24], to solve Model-2. In order to

solve Model-2, first we convert the constrained optimiza-

tion problem into unconstrained optimization problem by a

penalty function. The PSO is implemented by utilizing the

algorithm in Matlab R2013a. The solutions of the above

optimization problem (Model-2) provide weights of the

criteria. If ðw�; k�Þ is a global optimal solution of Model-2,

then it implies that the maximum degree of overall satis-

faction k� is achieved for the solution w�.

3.3 Computation of the final aggregated values

for each alternative and ranking

of the alternatives

Final weighted aggregated values of alternatives Ai are

determined by utilizing weights of the attributes derived

from the above optimization problem and the weighted

intuitionistic fuzzy arithmetic mean operator [38] (Eq. 6).

3.4 Ranking of the alternatives

Finally, ranking of all the alternatives is done according to

the non-increasing order of the score function [42] defined

as follows:

SðZiÞ ¼ Pi � Qi; i ¼ 1; 2; . . .;m ð9Þ

4 Numerical example

In this section, a numerical example is considered to

illustrate the feasibility and effectiveness of the proposed

weight generation method of attributes in a decision mak-

ing problem under intuitionistic fuzzy environment.

An investment company wants to invest money in the

best possible option (adapted from [2]). The three possible

alternatives to invest money are: (1) A1 is a car company;

(2) A2 is a food company; (3) A3 is a computer company.

The investment company must take a decision according to

the following three attributes: C1: the risk analysis; C2: the

growth analysis; C3: the environmental impact analysis.

The ratings of the alternatives over the attributes are

evaluated by utilizing IFSs. Now, the weights of attributes

and ordering of the alternatives are computed as follows.

Step 1: Construction of decision matrix

Ratings of the alternatives over the attributes are

given in the following matrix:

Step 2: Computation of comprehensive values of each

alternative

The comprehensive value of each alternative is

calculated by weighted intuitionistic fuzzy

arithmetic mean operator. Let Z1; Z2 and Z3 be

the comprehensive values corresponding to the

alternatives A1;A2 and A3, respectively, and

Z1 ¼ ðP1;Q1Þ ¼ ð1� 0:3w10:5w20:6w3 ; 0:2w10:3w20:4w3Þ
Z2 ¼ ðP2;Q2Þ ¼ ð1� 0:4w10:2w20:3w3 ; 0:3w10:2w20:1w3Þ
Z3 ¼ ðP3;Q3Þ ¼ ð1� 0:2w10:4w20:2w3 ; 0:1w10:4w20:2w3Þ

where w1;w2 and w3 are the weights of the

attributes C1;C2 and C3, respectively. Attribute

weights w1;w2 and w3 are computed as follows:

Step 3: MOPP formulation

Assume that the information about attribute

weights wj is partly known and the partial weight

information is given as follows:

H ¼ f0:25�w1 � 0:75; 0:15�w2

� 0:6; 0:2�w3 � 0:35g:

By using Model-1, described in Sect. 3.2, we

have,

maxP1 ¼ 1� 0:3w10:5w20:6w3

maxP2 ¼ 1� 0:4w10:2w20:3w3

maxP3 ¼ 1� 0:2w10:4w20:2w3

minQ1 ¼ 0:2w10:3w20:4w3

minQ2 ¼ 0:3w10:2w20:1w3

minQ3 ¼ 0:1w10:4w20:2w3

subject to 0:25�w1 � 0:75;

0:15�w2 � 0:60;

0:20�w3 � 0:35;

w1 þ w2 þ w3 ¼ 1;

wj � 0; j ¼ 1; 2; 3
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Step 4: Fuzzy MOPP formulation

To get a maximum value and a minimum value of

each objective function, we have solved 2� 6 ¼
12 crisp single-objective optimization problems

(one maximization and oneminimization for each

single optimization problem) by PSO scheme and

the values are shown in Table 1.

The membership functions corresponding to objective

functions, for describing the fuzziness involved in each

objective, are defined as follows:

lP1
ðxÞ ¼

1; for P1 � 0:6280;

1� 0:6280� P1

0:6280� 0:5309
; for 0:5309�P1 � 0:6280;

0; otherwise

8
>><

>>:

ð10Þ

lP2
ðxÞ ¼

1; for P2 � 0:7421;

1� 0:7421� P2

0:7421� 0:6596
; for 0:6596�P2 � 0:7421;

0; otherwise

8
>><

>>:

ð11Þ

lP3
ðxÞ ¼

1; for P3 � 0:7781;

1� 0:7781� P3

0:7781� 0:7072
; for 0:7072�P3 � 0:7781;

0; otherwise

8
>><

>>:

ð12Þ

lQ1
ðxÞ ¼

1; for Q1 � 0:2441;

1� Q1 � 0:2441

0:2997� 0:2441
; for 0:2441�Q1 � 0:2997;

0; otherwise

8
>><

>>:

ð13Þ

lQ2
ðxÞ ¼

1; for Q2 � 0:24;

1� Q2 � 0:2400

0:2823� 0:2400
; for 0:2400�Q2 � 0:2823;

0; otherwise

8
>><

>>:

ð14Þ

lQ3
ðxÞ ¼

1; for Q3 � 0:1414;

1� Q3 � 0:1414

0:2462� 0:1414
; for 0:1414�Q3 � 0:2462;

0; otherwise

8
>><

>>:

ð15Þ

So, by utilizing Eqs. (10)–(15) and Model-2, the single-

objective optimization problem can be formulated as:

max k

subject to k� lP1
; k� lP2

; k� lP3
;

k� lQ1
; k� lQ2

; k� lQ3
;

0:25�w1 � 0:75;

0:15�w2 � 0:60;

0:20�w3 � 0:35;

w1 þ w2 þ w3 ¼ 1;

wj � 0; j ¼ 1; 2; 3;

k 2 ½0; 1�

After simplification, we will get,

max k

subject to 0:0971kþ 0:3w10:5w20:6w3 � 0:469

0:0825kþ 0:4w10:2w20:3w3 � 0:3404

0:0709kþ 0:2w10:4w20:2w3 � 0:2928

0:0556kþ 0:2w10:3w20:4w3 � 0:2997

0:0423kþ 0:3w10:2w20:1w3 � 0:2823

0:1048kþ 0:1w10:4w20:2w3 � 0:2468

0:25�w1 � 0:75;

0:15�w2 � 0:60;

0:20�w3 � 0:35;

w1 þ w2 þ w3 ¼ 1;

wj � 0; j ¼ 1; 2; 3

k 2 ½0; 1�

This is a nonlinear optimization problem. By using PSO

scheme we get,

w1 ¼ 0:444;w2 ¼ 0:35 and w3 ¼ 0:206:

Step 5: Computation of the final aggregated values for

each alternative.

By utilizing the weight values of the attributes

and the weighted intuitionistic fuzzy arithmetic

mean operator [38], the final aggregated values of

the alternatives Aiði ¼ 1; 2; 3Þ are
Z1 ¼ ð0:6194; 0:2659Þ; Z2 ¼ ð0:7042; 0:2076Þ;
Z3 ¼ ð0:7451; 0:1874Þ

Table 1 Optimization values

Objective functions

Optimization P1 P2 P3 Q1 Q2 Q3

maximization 0.6280 0.7421 0.7781 0.2997 0.2823 0.2462

minimization 0.5309 0.6596 0.7072 0.2441 0.2400 0.1414
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Step 6: Ranking of the alternatives.

By utilizing Eq. (9), the score values of

alternatives are computed as follows:

SðZ1Þ ¼ 0:3535; SðZ2Þ ¼ 0:4966; SðZ3Þ ¼ 0:5577

Ranking order is: A3 [A2 [A1, i.e., the most

desirable alternative is A3.

4.1 Comparison analysis

4.1.1 Comparison analysis with GA

To further illustrate the effectiveness of the proposed

method, we solve the above investment option selection

problem (described in Sect. 4) by using GA [20]. In order

to compare performance of the proposed weight generation

method, we employ GA to solve above optimization

problems and then compute the ranking of alternatives by

following the same steps as in the proposed decision

making process. Based on the alternatives’ final perfor-

mances, ranking order of the alternatives in each of the

cases is presented in Table 2.

It is observed from Table 2 that the ranking order of

attribute weights as well as the ranking order of alterna-

tives, obtained by using GA and PSO are same.

4.1.2 Comparison analysis with existing weight generation

methods

In this section, we compare the proposed weight compu-

tation method with other existing approaches, such as Li’s

process [13], Lin et al. process [14], GRA process [18],

knowledge-based process [2] and maximizing deviation

process [10] by using the investment option selection

problem described in Sect. 4. The above MADM example

is solved by the aforementioned approaches, and the results

are shown in Table 3.

As can be seen from Table 3, the ranking order of

attribute weights and the ranking order of the alternatives

obtained by different methods are same as it did by the

proposed method and all of them identify A3 as the most

desirable company to invest money. The foregoing dis-

cussion ensures that in the case of weight generation in

decision making problem, the proposed method works

well. This observation verifies the effectiveness of the

proposed method. Moreover, the ranking results obtained

by different existing methods and proposed methods are

depicted in Fig. 3.

Hence, from the aspects of theoretical analysis and

particular application viewpoint it is clear that the proposed

weight generation method is able to cope with the situa-

tions where attribute weight information is partly known.

5 Conclusion

This study has presented a weight determination method in

a decision making process with intuitionistic fuzzy setting.

The weight generation methods that exist in the literature

under intuitionistic fuzzy environment have some short-

comings: some weight generation methods are invalid in

many situations and thus should be improved; the other

weight generation methods may lose some information due

to that they need to be transformed the intuitionistic fuzzy

decision matrix into an interval-valued decision matrix.

Under these circumstances, without changing the original

decision information, we have developed a weight deter-

mination method by maximizing the average degree of

satisfiability and minimizing the average degree of non-

satisfiability of each alternative over a set of attributes,

simultaneously. We have formulated an MOPP to compute

the final comprehensive values for each alternative, and

this MOPP is modeled by fuzzy decision making problem

and solved by using PSO technique. Finally, we have

considered a numerical example to describe effectiveness

and applicability of the proposed weight generation

method.

Table 2 Optimization values obtained using PSO and GA

Method Weight vector Ranking of alternatives

GA w ¼ ð0:4443; 0:3495; 0:2062ÞT A3 [A2 [A1

PSO w ¼ ð0:4440; 0:3500; 0:2060ÞT A3 [A2 [A1

Table 3 Optimization values

obtained using existing methods
Method Weight vector Ranking of alternatives

Max. deviation [10] w ¼ ð0:4150; 0:3551; 0:2299ÞT A3 [A2 [A1

Lin et al. [14] w ¼ ð0:4208; 0:3766; 0:2027ÞT A3 [A2 [A1

Li’s method [13] w ¼ ð0:4159; 0:3425; 0:2416ÞT A3 [A2 [A1

GRA method [18] w ¼ ð0:4294; 0:3211; 0:2495ÞT A3 [A2 [A1

Knowledge method [2] w ¼ ð0:4145; 0:3655; 0:220ÞT A3 [A2 [A1

Proposed method w ¼ ð0:4440; 0:3500; 0:2060ÞT A3 [A2 [A1
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Although the proposed weight generation approach is

illustrated by a selection problem of an investment com-

pany, it can also be applied to any other areas of decision

problems where uncertainty and hesitation are involved in

the evaluation process. This will be the topic of our future

research work.
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