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Abstract In this work, a new step for the DNA microarray

image analysis pipeline is proposed using neural comput-

ing techniques. We perform the classification of the spots

into morphology-derived classes in order to assist the

segmentation procedure that is traditionally performed

after the gridding process. Our method consists of

extracting multiple features from each individual spot area

(or cell—derived from the gridding process) that are then

reduced to a presumably optimal subset using a feature

selection process, the sequential forward selection algo-

rithm. Classification is then realized by means of a neural

network ensemble with a tree-like structure, made up of

seven multi-layer perceptron networks. The architecture of

each neural network has been obtained through an

exhaustive automatic searching process that optimizes the

size of the network as a function of the classification error

rate. The neural ensemble classifier is tested on two sub-

grids extracted from real microarray DNA images and is

shown to achieve high accuracy rates over the seven dif-

ferent classes of spot. In addition, a dataset with more than

1000 samples of classes of spot has been generated and

made freely available.

Keywords DNA microarray images � Spot classification �
Neural networks ensemble � Optimization � Sequential
forward selection � Image processing

1 Introduction

Microarray technology has become one of the indispens-

able tools that many biologists use to monitor genome wide

expression levels of genes in a given organism. The gene

expression level indicates the synthesis of different mes-

senger ribonucleic acid (mRNA) molecule in a cell. Using

this gene expression level, it is possible to diagnose dis-

eases, identify tumours, select the best treatment to resist

illness and detect mutations [1]. Thus, it is important to

develop computational techniques that provide automatic

classification of genes for the diagnosis of particular

diseases.

In the literature of DNA microarray image processing,

different classes of spot have been defined with various

objectives, such as to assess the performance of the seg-

mentation algorithms or the simulation of microarray

images based on statistical models. Its classification is

traditionally performed by an expert in a visual way. The

automatic classification of real spot images as part of the

microarray image processing pipeline is not well developed

due to its complexity, the high level of degradation of these

images and the high values of intensities they present.

In this work, a new step for the DNA microarray

image analysis pipeline is proposed. Indeed, the main

contribution of this work is to propose a new method-

ology for microarrays DNA images processing. The

novelty consists of the fact of using the whole cell to

classify the type of spot. As it has been proved, this

approach helps the segmentation and subsequent identi-

fication of the spots. Even more, it can be used to

develop an adaptive segmentation algorithm using the

class of spot as input information. The segmentation is

then more accurate and the quantization step could be

also enhanced and made lighter.
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Another advantage of the proposed method is that it

works with many descriptors instead of a few of them. The

more relevant are selected by the well-known sequential

forward selection (SFS) algorithm [2] that reduces them to

a supposedly optimal subset. As a result, the developed

classifier is adapted to the specific characteristics of the

problem.

Classification is then performed by a neural ensemble

with a tree structure, made up of seven multi-layer per-

ceptron (MLP) neural networks. The configuration of each

neural network is estimated automatically by an exhaustive

evolutive searching process that optimizes the size of the

network as a function of the classification error rate. The

neural classifier is tested on sub-grids extracted from real

microarray DNA images and is shown to achieve high

accuracy rates. Considering the complexity of the problem,

these results confirm the efficiency of this approach.

Another contribution of this work is the generation of a

database that is created from the experiments considering

the six classes of spot defined in [3] and a seventh class

called empty spot or absent spot [4]. The database contains

725 samples for training and 336 for testing. It has been

made available for all researches with free access.

The paper is organized as follows. The rest of this

section establishes the framework of the research and the

background. Section 2 presents the definition of the spot

classes and details the generation of a new database of

microarray images that will be used as benchmark. Sec-

tion 3 explains the selection of features process. Section 4

describes the general architecture of the ensemble of

classifiers and the methodology used to configure and train

each one of its neural networks. Section 5 shows and dis-

cusses the results obtained with real images. Finally,

Sect. 6 summarizes the conclusions and future works.

1.1 Research framework and background

Learning the control of gene expression is critical for our

understanding of the relationship between genotype and

phenotype. The need for reliable assessment of transcript

abundance in biological samples has driven scientists to

develop technologies such as DNA microarray and more

recently RNA-Seq to meet this demand [5].

Microarray analysis has become a great source of

information for biologists to understand the workings of

DNA which is one of the most complex codes in nature.

The DNA microarrays are a substrate, with a matrix shape,

over which genetic material is deposited, generally fol-

lowing a regular pattern [6]. When the DNA of the samples

interacts with the reference genes of the microarray, a

hybridization process occurs. In the specialized literature,

the specific region where the hybridization process of a

particular gene occurs is called ‘‘spot’’. After the

hybridization process, two images of the whole microarray

are generated. Then they are combined in a final image of

RGB format. The final colour of a spot is a function of the

ratio between the intensities of the two dyes (red and green)

and, as a result, it indicates the relative abundance of the

corresponding gene in the samples [1]. The digital pro-

cessing of these images aims at obtaining measures of the

quantity of the material hybridized of each sample.

Ideally all spots are round and have the same diameter,

but in fact they vary in size and shape, and present artefacts

which distort the image [7] and, even sometimes, the

intensity of the spot is lower than the background [8].

Previous researches have tried to categorize this spot

variability through the definition of classes of generic

models, described by a set of parameters, with different

objectives. In [9], the authors identify four classes of spots.

In [10, 11], the problem of processing saturated spots is

presented, which corresponds to spots that register a

brightness higher than the detection capacity of the

scanner.

An interesting work is presented in [3], where the spot is

classified using the information of the whole cell. First, the

image of the cell is transformed to polar coordinates, the

radial/angular projections are obtained, the granulometric

curves are calculated and, finally, statistics are extracted

from those projections for categorizing the spots. The

authors in [12] also propose the idea of clustering over a

full image area in order to accomplish the segmentation of

cDNA microarray images.

The task of spot segmentation falls within the category

of classification, that is, assigning pixels into spot and non-

spot classes. In the case of a segmentation based on clas-

sifiers, the class of spot predicts the morphology of it.

Therefore, a pixel can have a higher or lower probability of

belonging to a spot according to the correlation between

the spatial position, its intensity level and the intensity of

its neighbours. In [13], a classification-based segmentation

approach for cDNA microarray images is proposed. Pixels

are classified into spot, background and noise, a process

that directly leads to the final segmentation. Other similar

works are shown in [14–16]. The paper by Biju and Mythili

[17] presents a fuzzy clustering algorithm for cDNA

microarray image spots segmentation. In our case, we have

used up to seven classes of spot.

Regarding the use of neural networks (NN), they are a

well-established tool for classification problems. Some of

the examples found in the literature where this computing

technique has been applied to microarray classification are

the following, among others. Wang et al. [8] propose a

method of segmenting microarray images using a series of

artificial neural networks, which are based on multi-layer

perceptron (MLP) and Kohonen networks. In [18], authors

apply extreme learning machine (ELM)-based microarray
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data classification. But the goal in this case is not just to

predict the class labels but to make clear what lead to the

results, i.e. the genes involving with a specific disease.

Therefore, they are mainly focused on the sequence feature

selection problem.

A paper by Nanni et al. [19] develops a spot quality

control strategy using a random sub-space ensemble of

neural networks and a feature selection algorithm. They

combine the random sub-space ensemble of Levenberg–

Marquardt neural net classifiers and the SVM trained using

the features selected by the Pudil’s method. They aim at

microarray spot quality classification, and thus, they work

with only two categories: good and bad. In [20], the authors

introduce a new approach for classifying DNA microarray

data based on artificial neural networks and a dimensional

reduction technique, the artificial bee colony (ABC) algo-

rithm. They use this evolutive algorithm as an optimization

technique for selecting the set of genes, from a DNA

microarray, that best described a particular disease. After

that, this information is used to train three types of ANN

(multi-layer perceptron (MLP), radial basis function (RBF)

and support vector machine (SVM)) for classifying the

DNA microarrays associated with this disease. This is quite

different from our work where we first calculate as many

features as possible to then apply the SFS algorithm to

reduce the number of them.

To summarize, microarray image segmentation is an

important and still challenging problem. Although many

microarray image segmentation (clustering) methods have

been proposed in the literature, there has been little pro-

gress on developing efficient algorithms to segment a

microarray image and it is still an open problem [21].

2 Materials

This work uses the definition of classes presented in [3]. It

represents the majority of the cases observed in the data-

bases of microarray images. It also includes the ‘‘absent

spot’’ class, which consists, in general terms, in the cells

that do not contain any spot, and whose intensity corre-

sponds to the microarray background [4]. Examples of

these classes are shown in Fig. 1.

The formal definition of these classes begins with the

following function [3]:

f : E ! T ¼ tmin; tmin þ 1; . . .; tmaxf g ð1Þ

where f corresponds to the grey intensity function of thewhole

microarray image, E is a discrete space (E � Z2) and T is a

sorted set of discrete grey values. For an image of 16 bits,

tmin = 0 and tmax = 216–1 = 65,535. The function f(x) is the

value of intensity of the image at the point x = (x, y).

Zi � E is the cell that contains the spot i, defined as the

area whose pixels are closest to this spot centre than any

other. Based on this, fi is defined as:

fi : Zi ! T ð2Þ

which corresponds to the intensity function of the pixel x,

where fi(x) = f(x). That is, fi is a restrictive form of f(x) for

the region defined by Zi.

The generic model of intensity distribution for any spot i

is given by the equation:

fi xð Þ ¼ aisi x� xci
� �

þ ni xð Þ ð3Þ

where si(y) corresponds to the morphological form of the

distribution of the spot I considering a cylindrical model, in

(a) Regular (b) Cracking (c) Saturated

(d) Doughnut (e) Egg (f) Fragmented (g) Empty

Fig. 1 Spot classes

Neural Comput & Applic (2019) 31:2311–2327 2313

123



which ai represents the height of the cylinder associated

with the spot i, xc
i corresponds to the coordinates of the spot

centre and ni(x) is the function that describes the noise

presented in the image. The function that represents the

noise has two components that identify two different

sources of noise:

ni xð Þ ¼ ng xð Þ þ nli xð Þ ð4Þ

where ng(x) represents the background signal at x, descri-

bed by a Gaussian function, and ni
l(x) represents the noise

signal of the local background associated with local aspects

such as an inhomogeneous lighting and the presence of

artefacts.

The morphological function si is built as follows:

si yð Þ ¼ ri hð Þti yð Þ ð5Þ

where ri(h) corresponds to a function in polar coordinates

that represents the contour of the spot. This defines a closed

border:

si yð Þ ¼ ti yð Þ : x� xci
�� ��� ri hð Þ

0 : x� xci
�� ��[ ri hð Þ

�
ð6Þ

in which ti(y) is a spatial function of the spot intensities

(texture).

Finally, according to the particular distribution of the

functions ri(h) and ti(y), seven main classes (topologies) of

spots are defined (Fig. 1):

• Regular spot This type of spot has a circular shape and

a homogeneous distribution of intensities. Both the

function of the radius, ri(h), and the global variation of

intensities, aiti(y), are modelled by normal distributions.

For the whole microarray, it is considered that the

average value of the radius varies uniformly within a

small interval. The range of values of the coefficient ai
is also represented by a uniform distribution in the

range [tmin, tmax].

• Cracking spot These spots have a cracked appearance,

presenting dark regions or lines on its surface. The

function of the radius ri(h) has the same normal

distribution as a regular spot. The distribution of

intensities is expressed as ti yð Þ ¼ ~ti yð Þ � vi yð Þ, where
~ti yð Þ follows the same model of a regular spot and

vi(y) corresponds to a cracked function whose value is

greater than zero if y belongs to the cracked region. The

distribution of vi(y), the morphology of the lines

(number, length, etc.) and the spatial position are

difficult to model, but typically the thickness of the

lines is lower than the spot radius.

• Saturated spot These spots represent a uniform level of

intensity equals to the maximum values allowed, being

ai = tmax. The texture function does not present

variations (ti(y) = 1) and the contour function of the

spot ri(h) presents the same normal distribution as a

regular spot.

• Doughnut spot These spots have a circular hole in their

centre. The distribution of the intensities is a combi-

nation of two normal functions: one for the central

region, ti
low(y), with a mean value of 0, and another for

the peripheral region, ti
high(y), with a mean value of 1.

The contour is defined by two functions that have

normal distribution similar to the regular spot: one for

the contour of the central region, ri
in(h) and another for

the peripheral region, ri
out(h).

• Egg spot These spots have the reverse situation than the

doughnut spot. The function that represents the inten-

sities of the central region, ti
high(y), has an average

intensity higher than the function that represents the

intensities of the peripheral region, ti
low(y).

• Fragmented spot These spots present degenerated or

irregular borders, with a significant standard deviation

dr in relation to the mean. This type of spot presents, in

addition, a smaller area than a typical spot. The

function of intensities ti(y) is modelled as a normal

distribution.

• Empty spot The cell does not have any spot, so that the

intensity function fi(x) corresponds to the function of

intensities of the microarray background. Following the

Angulo model, in this case ri(h) should be equal to 0 for
all h.

2.1 Creation of a database of microarray images

The size and structure of the database can be crucial in

order to get good classification results [22]. In this work,

the microarray images database consists in a set of images

of cells in a greyscale extracted from the original

microarray images. They are saved with 16-bit tiff format.

Therefore, the image resolution is 216 and the average size

of cells is 21 9 21 pixels.

The sources of the DNA microarray images are two

databases widely known and with free access: the Prince-

ton University Microarray Database (PUMAdb)1 and the

Stanford Microarray Database.2 The experiments from

which the images were extracted are: Mus musculus (id

experiment: 58012, 57133, 57129), Acyrthosiphon pisum

(id experiment: 101767, 101769, 102673, 102675,

102380), Mycobacterium tuberculosis H37rv (id experi-

ment: 83716), Francisella tularensis (id experiment:

59225), Chlamydomonas reinhardtii (id experiment:

45603) and Arabidopsis thaliana (id experiment: 16673).

1 Available at https://puma.princeton.edu/.
2 Available at http://smd.princeton.edu/.
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The two databases of cell images generated have 725

microarray images for training and 336 images for testing.

That is, a total number of 1061 images that cover the whole

spectrum of spot classes are now available for the scientific

community interested in DNA microarray images

processing.3

The technique used for the gridding is based on the

statistical analysis of the one-dimensional projection of the

image. This type of algorithm obtains the sum of all

intensities over a set of adjacent lines (rows or columns),

each result called the projection vector. Then the local

extremes (maximum intensities for the signals and mini-

mum for the background) are detected inside the projection

vector. These local extremes represent an approximation to

the centre of the spots. From these estimations, horizontal

and vertical lines are generated, whose intersections indi-

cate the positions where the spots are located in the

microarray. The specific implementation used in this paper

is based on [23].

When the training database was created, one of our

objectives was to balance the distribution of the classes.

The ground truth for the database was created by an expert

who classified the images comparing them with the classes

defined by Angulo. The final percentage of images of each

class in the database is the following: regular 24%,

cracking 18%, saturated 2%, doughnut 16%, egg 17%,

fragmented 15% and empty 8%. The low proportion of

saturated spots is due to the relative scarcity of this type of

spot in the microarray images. However, as this type of

spot is the easiest one to be classified, this fact does not

affect the performance of the classifier. The total number of

cells images chosen for the training database was 725. This

dataset has been proved to be sufficient for the study.

Another goal was the generation of a free access

repository of images for the research community3. The

creation of a database is a laborious and tedious task;

therefore, the availability of this database will allow the

researchers to save a lot of time for their research, as well

as to boost this research line and to facilitate the uniformity

of criteria.

3 Feature selection process

Feature selection is a major problem in microarray spot

quality classification methods [19]. The process of feature

selection involves extracting a set of descriptors from the

cell images, based on their intensities, and then selects

those which optimize the separability of the classes. In our

case, this process is repeated for each class independently.

However, because of the nature of the problem, a pre-

processing of the images is usually required before the

extraction of the descriptors [24]. In this work, the pre-

processing has been carried out as follows.

3.1 Pre-processing of cell images

In our work, the pre-processing consists of scaling the

relative intensity of certain classes of spots. Due to the

wide range of the microarray images intensities, a great

number of spots remain invisible when the images are

visualized. In order to visualize all the spots, each cell must

be transformed to a greyscale (0–256) at local level (it

means a transformation from 216 to 28 bits). The algorithm

is applied on each colour channel separately once they have

been converted to greyscale with a bit depth of 16 bits.

Only then the spot morphology is revealed, which is a

critical point in order to assign the corresponding class

during the creation of the database. Therefore, to keep the

consistency between the database generation and the

automatic classification process, it was decided, for certain

classes of spots, to carry out a transformation to a grey-

scale, previously to the process of feature extraction. This

applies to regular, cracking, doughnut, egg and fragmented

spot classes. The other classes of spot are better catego-

rized in the original space of intensities, with values

between 0 and 65,535, and therefore, no transformation is

required to extract the features. This applies to saturated

and empty spot classes.

3.2 Set of features

The problem of optimal feature selection is still open, each

method making a specific approximation to solve it [25]. In

our case, we have worked with a wide and general

framework. A total number of 363 features of intensities

were computed for each spot image of the database. These

features are grouped into the following categories [26]:

• Basic features Simple intensity information related to

the mean intensity in the region; standard deviation,

kurtosis and skewness of the intensity in the region; in

the image, mean first derivative in the boundary of the

region (gradient) and second derivative (Laplacian) in

the region. Additionally, five contrast measurements

can be extracted in order to analyse the difference of

intensity between object and background. There are 11

basic intensity features that have been taken into

account.

• Statistical textures Texture information extracted from

the distribution of the intensity values based on the

Haralick approach [27]. They are computed using co-

occurrence matrices that represent second-order texture

information (the joint probability distribution of
3 Available at http://new.litrp.cl/index.php/data-repository.
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intensity pairs of neighbouring pixels in the image),

where mean and range—for five different pixel dis-

tances in eight directions—of the following variables

were measured: (1) angular second moment, (2)

contrast, (3) correlation, (4) sum of squares, (5) inverse

difference moment, (6) sum average, (7) sum entropy,

(8) sum variance, (9) entropy, (10) difference variance,

(11) difference entropy, (12, 13) information measures

of correlation and (14) maximal correlation coefficient.

A total of 2 9 14 9 5 = 140 statistical features have

been considered.

• Local binary patterns Texture information extracted

from occurrence histogram of local binary patterns

(LBP) computed from the relationship between each

pixel intensity value with its eight neighbours. The

features are the frequencies of each one of the

histogram bins. LBP are very robust in terms of

greyscale and rotation variations [28]. Other LBP

features such as semantic LBP can be used in order

to bring together similar bins. We use 59 uniform LBP

features and 31 semantic LBP features, giving a total

number of 90 features for this category.

• Filter banks Texture information extracted from image

transformations such as discrete Fourier transform—

magnitude and phase—discrete cosine transform (DCT)

[29] and Gabor features based on 2D Gabor functions,

i.e. Gaussian-shaped bandpass filters, with dyadic

treatment of the radial spatial frequency range and

multiple orientations. They represent an appropriate

choice for tasks requiring simultaneous measurement in

both space and frequency domains (usually eight scales

and eight orientations). Additionally, the maximum, the

minimum and the difference between both are com-

puted. We use 16 DCT features, 16 Fourier features and

8 9 8 ? 3 Gabor features, i.e.

16 ? 2 9 16 ? 67 = 115 features were extracted

using filter banks.

• Invariant moments Information of shape and intensities

based on the Hu moments [30], with a total of 7

features for this category.

3.3 Features selection

Data pre-processing and feature selection enhance the

performance of the classifiers [18]. That is why, after

computing the features previously described over each of

the images of the database, on the whole cell, the more

relevant subsets of features were selected for each class of

spot using the well-known sequential forward selection

(SFS) algorithm. This technique carries out a ‘‘bottom-up’’

search strategy that, starting from an empty feature subset

and adding one feature at a time, achieves the best feature

subset that can be obtained with the desired cardinality. It

should be noted that due to the large number of initial

characteristics (363), the application of an exhaustive

search to find the set of optimal characteristics is not

possible as it would lead to analyse 2^363 possible

combinations.

In particular, the SFS adds to, or removes from, one

feature at a time that most/less contributes to the correct

classification. It is based on an error function that mini-

mizes the amount of attributes while optimizing the clas-

sification. Finally the smallest possible set of features that

optimizes the classification process is obtained [2].

Specifically, the classification criteria used in the SFS

toolbox we have used are called SP100. With this method,

the decision line is set so that the sensitivity is 100%, that

is, you favour the class that interests you most, instead of

placing the line decision in the middle of the overlapping

region between classes as it is traditionally done.

The SFS is based on an error function that minimizes the

number of attributes while optimizing the classification

process. This error function maximizes the ratio: Sp = TN/

(FP ? TN) where TN = true negative and FP = false

positive, that is, minimizes the number of false positives.

The feature selection process was applied to the training

database (725 spot images). It is worth remarking that the

testing was performed on a different dataset (336 images).

Indeed, they are two different databases with different

origin. The repository of 725 spots was generated from

different microarray images in order to have enough sam-

ples of all the classes for the training of the networks. The

repository of the test dataset (336 spots) is generated from

the two real images shown in Figs. 6 and 8. Each real

image has 168 spots.

4 Artificial neural networks ensemble

One of the goals of microarray data analysis is to cluster

genes or samples with similar expression profiles together,

to make meaningful biological inference about the set of

genes or samples. Since traditional classifiers have not

reached sufficient sensitivity and specificity, another pos-

sible way is combining the classifiers in ensembles. In this

paper, we take advantage of neural networks, which have

been proved efficient for microarray image processing [20],

combining multi-layer perceptron (MLP) as a multi-class

classifier.

The MLP has been selected for several reasons. The

main reason is that a neural network is equivalent to a

universal function approximator [31], with the property of

being able to separate initially non-linearly separable data.

In particular, a MLP with a single hidden layer allows to

reduce the training error as much as desired by increasing
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the number of neurons in the hidden layer. In addition, the

MLP training algorithm is well defined and is equivalent to

a nonlinear optimization problem without constraints.

Therefore, considering the neural network as an opti-

mization problem, we can define cost functions that allow

the automatic estimation of network parameters [32], with

fast convergence searching algorithms [33]. Therefore,

both the estimation of the configuration parameters and the

training of the network can be carried out automatically.

4.1 Structure of the classifier

To address the problem of DNA microarray image classi-

fication, a hierarchical classifier is proposed. It is made up

of 7 sub-classifiers, each one being specialized on detecting

a specific class of spot. The tree-like structure of the

classifier is justified by the fact that it facilitates the work

of the sub-classifiers, having now to discriminate a more

specific set of spot classes as it goes deep through the

different levels of the classifier, increasing the percentage

of hits. This structure is reinforced by the pre-processing

applied to the images of some spot classes, as explained in

the previous section.

The sequence of sub-classifiers was selected based on

the knowledge obtained from experts and from some

experiments. During some classification experiments, it

was observed that certain kinds of spot are better dis-

criminated on the 16 bits original image resolution (satu-

rated and empty spot). This is because what most

characterizes these two classes from the rest is its intensity

level in the original scale of 216 bits, which, besides being

the classes with the highest rate of success, suggests clas-

sification these two classes first. For other classes, the best

results are obtained using the greyscale of 8 bits. This way

the consistency with the visual classification performed by

the human expert on the training set is maintained. In fact,

the expert performs the same processing before the clas-

sification to visualize the morphology of the spots that

would, otherwise, remain largely invisible.

Therefore, based on the analysis of the problem and the

obtained results, the classifier has been structured in three

levels. In the first level, a sub-classifier determines whether

the spot belongs to the empty class. If this is true, the

classification process ends; otherwise, the image is passed

to the second level. At this level, the image is processed by

a sub-classifier that determines whether the spot belongs to

the saturated class. If this condition is met, the classifica-

tion process ends; otherwise, the image goes to the third

level. At this last level, the image is processed by five sub-

classifiers in a parallel way. Each one of them determines

the level of membership of the spot to a specific class. In a

competitive decision framework, the sub-classifier which

brings the highest score assigns the class to the spot. The

five sub-classifiers of this level correspond to regular,

cracking, doughnut, egg and fragmented classes. Figure 2

illustrates the architecture of the classifier.

Each sub-classifier is implemented by a multi-layer

perceptron (MLP) neural network, with linear activation

function in the output layer and sigmoid function in the

hidden layer, as this architecture corresponds to a universal

function approximator [31]. This structure has been widely

applied to classification in different fields [32, 35]. Theo-

retically, it is possible to reduce the classification error as

much as you want by increasing the number of neurons in

the hidden layer.

Every neural network of the classifier has as many

inputs as features have been selected by the SFS algorithm.

In addition, the networks have only a single output that will

be close to 1 if the input belongs to the corresponding class

or close to 0 otherwise. If the level of membership for each

class is very close to each other, the algorithm still selects

the highest. The fact that a spot had similar membership

Fig. 2 Architecture of the neural classifier
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value to different classes would mean that it presents mixed

characteristics, and that could lead to a definition of new

classes of spots.

4.2 Neural networks optimization algorithm

With the purpose of obtaining neural networks with good

generalization ability, the training process is performed

controlling the over fitting, using the smallest possible

number of neurons in the hidden layer. In order to deter-

mine this number of neurons of each neural network that

gives an accurate classification, and at the same time

keeping the network as simple as possible, an iterative

searching procedure is adopted. The details of this proce-

dure are the following:

• It works with a set of Ni spot samples by class, being

i an integer number between 1 and 7 that represents the

class.

• The iterative process starts with an initial configuration

of one neuron in the hidden layer and gradually

increases the size of this layer by adding one neuron

each iteration. A maximum number of neurons, M, is

set as the limit for this process. In this paper, M was set

to 25.

• Each iteration generates a predefined number of

networks, K, with the same number of neurons in the

hidden layer, but with different weights values assigned

randomly to each of them. In this paper, K was set to

1000.

• Each one of these networks is trained independently. To

train and test the network performance, the samples are

randomly chosen. For the training, validation and

testing sets, the 70, 15 and 15% of the total samples

were selected, respectively.

• The ‘‘repeated random sub-sampling validation’’ or

random cross-validation strategy is used to end the

training. Over the epochs, the classification error of the

training set decreases gradually. The training stops

when the classification error of the validation set starts

to increase. This strategy also contributes to avoid the

overfitting of the network.

• In case the training does not stop by the previous

criterion, a maximum of training epochs, E, is used as a

limit. For this paper E was set to 1000.

• After an iteration ends, from all of the K networks

generated, the one with the lowest error rate is selected.

This error rate is defined as the average of the

quadratics errors of the network in the three sets

(training, validation and testing), calculated after

finishing its training process.

• After the M iterations, there are M selected networks

that represent the best one of each iteration. From all of

these, the one with the lowest error rate is chosen as the

final classifier.

4.3 Training

The maximum values of the parameters used for training

the neural network have been selected empirically, by trial

and error, using the previous experience of the authors and

information found in the literature. They were deliberately

enlarged to cover the largest possible number of cases.

Each net is independently trained as a binary classifier

with the Bayesian regularization backpropagation algo-

rithm [33]. If the training procedure is understood as an

optimization process with nonlinear restrictions, then this

algorithm has the following characteristics:

• Cost function F = bED ? aEW, where ED is the sum of

the squared errors, EW is the sum of the squares of the

network weights, and a and b are the parameters of the

objective function. The parameters a and b are

computed automatically according to a procedure

described in [33].

• The searching method corresponds to the Levenberg–

Marquardt algorithm [34], which allows a fast classi-

fication error convergence.

5 Results and discussion

First of all, regarding the feature selection process, a total

number of 363 intensity features in the greyscale were

computed for each cell image of the training database

(725). In particular, the Balu toolbox was used to compute

the descriptors.4 For the regular class, 57 features were

selected; for the cracking class, 30 features; for the satu-

rated class, one feature; for the doughnut class, 30 features;

for the egg class, 16 features; for the fragmented class, 31

features and, finally, for the empty class, one feature. After

applying the SFS algorithm, the description of the features

selected for each class and the corresponding success rate

(Sp value, last row) are presented in Table 1. The classi-

fication accuracy has been obtained at the end of the

selection process for the best set of features selected by

SFS algorithm. It is given by the value of the Sp function

(between 0 and 1), as defined in Sect. 3.3. The best value

corresponds to Sp = 1 (FP = 0) and the worst one occurs

when there are many false positives.

From these results (Table 1), it can be deduced that the

Hu and Haralick features are not selected for any class, and

the features that have been selected to classify the regular,

4 Available at http://dmery.ing.puc.cl/index.php/balu.
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cracking, doughnut, egg and fragmented classes are mainly

the local binary patterns. In detail, the percentage of LBP-

based characteristics selected for each of the classes is as

follows: regular, 51%; cracking, 43%; doughnut, 47%; egg,

44% and fragmented, 32%.

One of the peculiarities of this type of descriptors that

makes them especially robust is that they compare relative

intensities between pixels, giving consistent results under

different grey levels. This is especially useful for the

above-mentioned spots, which are principally defined by

their morphology, but at the same time they present a great

variety of intensity level for the same class.

In the cases of the saturated and empty spots, they are at

the opposite ends of the range of intensities, which explains

why the use of a single feature is enough to differentiate

them.

In particular, for the empty spot the selected feature is

the standard deviation of the image intensities. For the

saturated spot, the selected feature is the standard deviation

of the x and y axis profiles regarding the centre of gravity

of the image.

These results may mean that the discarded features do

not provide significant information for the classification of

the spots. Perhaps they are redundant, and on the contrary,

the selected features captured the nature of the problem in a

more effective way.

Once the relevant features have been considered, the

iterative algorithm that finds the best network (minimizing

the number of neurons in the hidden layer) for each spot

class is applied. Figure 3 shows the evolution of the

number of neurons for each neural classifier during this

optimization process. Tests were performed covering a

range between 1 and 25 neurons for the hidden layer, which

corresponds to the number of bars in the figures. Each bar

represents the error rate given by the best network selected

for each configuration. Then, from these 25 networks

selected, the one with the lowest error rate was chosen as

the classifier for each spot class.

Table 2 details the best number of neurons of the hidden

layer of these classifiers. Figure 4 shows their configura-

tion, with the number of neurons of the input, hidden and

output layers. As it was expected, the results show a direct

relation between the complexity of the class and the

number of neurons in the hidden layer.

5.1 Results of the classification process

Table 3 shows the performance of the classifier selected

for each spot class in terms of percentage of hits and

misses in the classification during the training. The hit

rate corresponds to the addition of the true positives (TP)

and the true negatives (TN) given by each network; the

error rate corresponds to the addition of the false posi-

tives (FP) and the false negatives (FN). For the outputs,

a threshold value of 0.5 was used. If the output of the

network is greater or equal than the threshold, then the

spot is assigned to that class; otherwise, if the output is

smaller than the threshold, the spot belongs to the other

class. These rates are obtained for the three datasets used

(training, validation and testing) and correspond to the

best selected networks.

Precision and recall values were calculated for the test

set (Table 3). Results prove that for new data (that have not

been used for training), the precision of the classifier is

quite high, being 1 for some of the classes and greater than

0.9 in all the cases. The same good results are obtained for

the recall indicator.

The whole classifier (the ensemble of the neural net-

works) has been applied to 725 images of the training set.

The output was compared to the ground truth, and statistics

of hits and errors were calculated. Table 4 summaries these

results. Out of these 725 images of the training dataset,

only three of them were erroneously classified, giving a

global hit percentage of 99.59%.

Even more, for testing the effectiveness of the classifier,

two sub-grids that had not been used for the training were

Table 1 Description of the

types of features selected for

each class and the success rate

given by the SFS algorithm

Descriptor Class

Regular Cracking Saturated Doughnut Egg Fragmented Empty

Basic 4 1 1 2 1 4 1

Haralick 0 0 0 0 0 0 0

LBP 29 13 0 14 7 10 0

DCT 8 3 0 3 1 5 0

Fourier 7 5 0 4 6 6 0

Gabor 9 8 0 7 4 6 0

Hu 0 0 0 0 0 0 0

Total 57 30 1 30 16 31 1

Sp value 0.876 0.973 1 0.980 0.997 0.950 1
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Fig. 3 Evolution of the error rate of the best networks and the number of neurons of the hidden layer
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selected. After the gridding process, individual cells were

extracted and two different testing databases were gener-

ated. Each image of these databases was assigned to its

corresponding class by a human expert. Each database

contains 168 cell images, giving a total number of 336

images for this testing dataset.

The classifier was tested with each testing database

independently, and its hits and errors were registered.

Figures 5 and 6 illustrate the images associated with the

first series of testing, while Figs. 7 and 8 show the images

associated with the second testing database.

In both testing databases, the classifier obtained a high

hit rate. The results were 95.8 and 91.1% success for test

sets 1 and 2, respectively.

In this first series of experiments, Fig. 5a shows the

selected sub-grid. It is noteworthy that, to make it clearer,

this image has been scaled from the original 16 bits to 8 bits

(256 grey levels) at local level (sub-grid). This way the spots

that otherwise will be invisible are now shown. Indeed, in

Fig. 5c it is possible to see how in the original image the

intensity of the pixels has been scaled to 8 bits at individual

cell level, and therefore, all the spots are now visible.

Table 2 Number of neurons of

the hidden layer for each class
Spot class Regular Cracking Saturated Doughnut Egg Fragmented Empty

# Neurons 16 23 1 16 16 25 6

(a) Regular (b) Cracking

(c) Saturated

(d) Doughnut (e) Egg

(f) Fragmented (g) Empty

Fig. 4 Representation of the neural classifier of each class of spot
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Figure 5b shows how the gridding algorithm success-

fully generates the array containing the individual cells

where the spots are confined. The gridding appears on the

image of the sub-grid.

The class to which the spot belongs is represented by the

colour of the cell border (Fig. 5c). The colour code is as

follows: red for ‘‘regular’’ spot class, yellow for ‘‘dough-

nut’’, green for ‘‘cracking’’, light blue for ‘‘egg’’, blue for

‘‘saturated’’, fuchsia for ‘‘fragmented’’ and, finally, white

border for ‘‘empty’’ spot class. These are the target classes

to be identified by the classifier. It can be observed the

prevalence of the ‘‘doughnut’’ spot class in this first series

of experiments, followed by the ‘‘regular’’ and ‘‘empty’’

classes. Indeed, the distribution of these target classes in

this first grid, in order of importance, is the following:

doughnut 81.6%, regular 11.3% and empty 7.1%.

It can be also pointed out that the distribution of the

minority classes is not random, but it tends to form clusters

within the image. Specifically, it can be seen that the cells

of the ‘‘empty’’ class are mostly concentrated in the last

row of the grid, suggesting that these cells have been left so

intentionally as part of the experiments. However, some of

them are also presented in other rows, where other spots

would be expected.

In the image, the empty cells show two different tex-

tures. Empty cells with granular texture only contain

microarray background signal. The other type of empty cell

looks mostly black due to the presence of noise. That is,

noise intensity is greater than the background signal.

Therefore, when applying the change of scale, the

background is displayed with a uniform intensity, and only

the noise signal is highlighted. Figure 5d shows how the

classifier has successfully detected both types of empty

cells. Most errors found correspond to ‘‘doughnut’’ spots

wrongly classified as ‘‘regular’’ or ‘‘cracking’’.

Results of the classification are shown in Fig. 6, where

95.2% of the spots were rightly classified for this test set

(blue squares).

There are two doughnut spots misclassified (red squares)

in the central part of the image. It could be due to the

irregular and granular appearance, associated with spots of

very low intensities. A third doughnut spot wrongly clas-

sified as regular in the row below it is better defined, but

the contrast between its inner and external regions is weak.

Three more doughnut spots, located at the top of the image,

have in common the characteristic of having very thin

borders with irregular intensity level. Besides, their central

areas do not present a sharp contrast regarding the outer

rings. Finally, two ‘‘regular’’ spots, one at the bottom of the

image and the other near the centre, were misclassified as

‘‘doughnut’’. In these cases, the spots have a granular

centre (low intensity) and some higher intensity pixels at

the border but without defining a crisp ring.

The same analysis has been done to the results of the

classifier on test set 2. Again we have obtained the gridding

image from the original one. Figure 7a, b shows the classes

of spot of each cell and the output of the classifier. The

distribution of the target classes in this grid, in order of

importance, is the following: regular 90.4%, empty 4.8%,

doughnut 3%, cracking 1.2% and fragmented 0.6%.

Table 3 Results of each classifier, true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN), for the training,

validation and testing sets

Class Training Validation Test

Hits % Error % Hits % Error % Hits % Error % Precision Recall

TP TN FP FN TP TN FP FN TP TN FP FN

Regular 28.8 71.2 0.0 0.0 22.2 74.7 2.0 1.0 23.2 73.7 1.0 2.0 0.96 0.92

Cracking 22.7 77.3 0.0 0.0 14.1 85.9 0.0 0.0 14.1 83.8 1.0 1.0 0.93 0.93

Saturated 1.5 98.5 0.0 0.0 5.0 95.0 0.0 0.0 1.0 99.0 0.0 0.0 1 1

Doughnut 16.5 83.5 0.0 0.0 15.9 84.1 0.0 0.0 14.0 86.0 0.0 0.0 1 1

Egg 18.8 81.3 0.0 0.0 15.0 85.0 0.0 0.0 15.0 85.0 0.0 0.0 1 1

Fragmented 15.9 84.1 0.0 0.0 16.8 83.2 0.0 0.0 11.2 87.9 0.0 0.9 1 0.93

Empty 7.7 92.3 0.0 0.0 8.3 91.7 0.0 0.0 9.2 90.8 0.0 0.0 1 1

Precision and recall are also listed

Table 4 Summary of the

performance of the classifier
Regular Cracking Saturated Doughnut Egg Fragmented Empty

% Success 99.59 99.86 100 100 100 99.72 100

% Error 0.41 0.14 0 0 0 0.28 0
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Unlike in the previous test, and as already mentioned,

the majority class is now the ‘‘regular’’ one, followed by

the ‘‘empty’’ and ‘‘doughnut’’ classes, with only few cases

of ‘‘fragmented’’ and ‘‘cracking’’ spots. It can be seen how

again the minority classes tend to appear in clusters and the

cells of the ‘‘empty’’ class mainly in the last row, thus

confirming the assumption that they have been placed that

way during the experiments.

Figure 8 shows the final results in test set 2, where the

hits are represented by blue squares and errors by red

squares. Most of the errors correspond to ‘‘regular’’ spots

classified as ‘‘cracking’’ ones. This result may be due to the

Fig. 5 Sub-grid of the first series of testing (a, b), with the target

classes (c) and the output of the neural classifier (d). Spot colour code:
regular red square, doughnut yellow square, cracking green square,

egg light blue square, saturated blue square, fragmented fuchsia

square and empty white border square (colour figure online)
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granular aspect associated with low intensity spots; in

addition some of them have noise. At the top of the image,

there is a ‘‘fragmented’’ class spot whose fragmentation is

really low that has been classified as a regular one. Also at

the top part of Fig. 8, there is a ‘‘cracking’’ spot with the

peculiarity that it is quite ‘‘regular’’, crossed by a well-

defined dark line, right in the middle, which leads the

classifier to mistakenly think that it belongs to the

‘‘doughnut’’ class. In the second row from the bottom of

Fig. 9, there is a ‘‘regular’’ spot classified as ‘‘doughnut’’.

This spot shows a very thin ring in its border. In the same

row, there is a ‘‘regular’’ spot classified as ‘‘egg’’. This spot

shows a small positive gradient in its intensities, from its

border towards its centre.

As a general conclusion, the difference performance of

the classifier on both testing series can be explained by the

prevalence of different classes of spot in each one of the

sub-grids. In the sub-grid of the first series the more

abundant spot class is the doughnut one (Fig. 5), in which

the classifier showed a very high hit rate during the training

process. Nevertheless, in the sub-grid of the second testing

set (Fig. 7), the more abundant spot class is the regular one,

in which the classifier showed a slightly lower performance

during the training. However, Fig. 8 shows how only very

few spots were wrongly classified.

5.2 Evaluation of the classification robustness

For generalization purposes in the classification stage, we

present an analysis that shows the robustness of the net-

work models. In particular, a random cross-validation

analysis is carried out to show that the performance of the

models is independent of the set of data used for the gen-

eration of the neural networks.

Fig. 6 Hits (blue squares) and errors (red squares) in the first series

of testing (colour figure online)

Fig. 7 Sub-grid of the second series of testing, target classes (a) and
results of the neural classifier (b). Spot colour code: regular red

square, doughnut yellow square, cracking green square, egg light

blue square, saturated blue square, fragmented fuchsia square and

empty white border square (colour figure online)

2324 Neural Comput & Applic (2019) 31:2311–2327

123



Once the optimum number of neurons in the hidden

layer is found, 1000 network models are estimated con-

sidering different sets for training (70%), validation (15%)

and test (15%), each time. The validation set is used to stop

the network training, while the test set is used to measure

the classification performance. The sets are selected by

randomly sampling the training dataset.

Figure 9 shows the error percentage over the test set for

the 7 networks (1 = regular, 2 = cracked, 3 = saturated,

4 = doughnuts, 5 = egg, 6 = fragmented and

7 = empty). It can be observed that in all the networks the

average error and the standard deviation are very small

(below 0.4), being the 3rd one the best. This means that the

descriptors are appropriate for our purpose.

6 Conclusions and future works

This work provides a pipeline for the processing of DNA

microarray images. A new computing method for classi-

fying the spots into morphology-derived classes is pro-

posed. The classification is performed without previous

segmentation, after the gridding process. The high accu-

racy classification rates obtained when tested on sub-grids

extracted from real microarray DNA images prove the

efficiency of this novel approach. A main conclusion is that

the use of this classifier can be used to improve the seg-

mentation process of DNA microarray images.

One of the main contributions is that we perform the

classification of the spots into morphology-derived classes

in order to assist the segmentation procedure that is tradi-

tionally performed after the gridding process. A new

approximation for the classification of spots is presented,

applying the idea of using the information of the whole

cell, without segmentation.

Besides, instead of computing a reduced number of

descriptors and showing its discriminant value for the clas-

sification, we perform the calculation of a great number of

descriptors that are then reduced to a presumably optimal

subset using the sequential forward selection algorithm [2].

Another contribution is that, based on the expert

knowledge of the DNA microarray images classification,

an ensemble of neural networks has been designed. This

supervised neural classifier has a tree-like structure made

up of seven MLPs. Each branch of the tree corresponds to a

neural network specialized in the detection of a specific

class. Besides, the configuration of each network has been

optimized using an iterative algorithm that minimizes the

classification error. Every MLP has been independently

configured and trained.

The performance of the competitive classifier is vali-

dated with real microarray DNA images, where the final

sub-classifiers compete for spot allocation to one class or to

another. The neural classifier predicts the spot class with a

very high degree of reliability.

The pre-processing of the images, using different scales of

grey intensities depending on the class of spot to be detected,

as well as the extraction of multiple features from each indi-

vidual cell that has been later reduced to a supposedly optimal

subset by the sequential forward selection algorithm, has

helped to improve the performance of the classifier.

Another useful contribution of this work is the generation

of two databases of cell images, 725 microarray images for

training and 336 images for testing. That is, a total number

of 1061 images that covers the whole spectrum of spot

classes are now available for the scientific community

interested in DNA microarray images processing.5

Fig. 8 Hits (blue squares) and errors (red squares) in the second

series of testing (colour figure online)

Fig. 9 Classification performance of the test set with 1000 partitions

5 Available at http://www.litrp.cl.
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The very good results of this approach encourage further

work. The classification errors manifest that the separation

between classes is not always well defined, and there are

spots that have characteristics of more than one class. This

suggests considering the fuzzy approach, dealing with

degree of belonging to different classes at the same time.

Special attention must be paid to the effect of noise in the

images, mainly for certain spot classes, such as the

cracking one.

As the analysis of microarray experiment could lead to

quantification of thousands of genes, another possible

future research line is to consider how to improve and

make lighter this quantification by developing adaptive

segmentation algorithms [36].

Even if it is not one of the goals of this paper, as future

works the performance of the proposed method could be

evaluated against other techniques.
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