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Abstract In this study, the nanoparticles of sol–gel-synthe-

sized NiO were used as effective adsorbents for removing

Cr(VI) from aqueous solutions. To do so, the effect of four

initial parameters including Cr(VI) concentration, the amount

of NiO adsorbent, contact time, and pH on removing Cr(VI)

with sol–gel-synthesized NiO was studied. Using the results

of designing the experiment, the process of surface adsorption

by ANN was modelled. For modelling the results of Cr(VI)

removal process with NiO nanoparticles, a three-layered

ANN of feed-forward back-propagation having 4:10:1

topology was used. The findings indicated that the results

obtained from ANN correspond well with the data obtained

from response surface methodology and experimental data.

Keywords Adsorption � Cr(VI) � NiO nanoparticles �
Sol–gel method � Artificial neural network (ANN)

1 Introduction

Toxic heavy metal ions are highly soluble in aquatic envi-

ronments and can be absorbed by living organisms. Once

they enter the food chain, high concentrations of heavy

metal ions including chrome ion may accumulate in human

body [10]. Chrome ion is one of the most important metals

that exist in the sewage coming from different industries.

Chromium, in its trivalent and hexavalent forms, in the

environment may become toxic if its rate increases above

certain concentrations; high concentrations of Cr(VI) can be

more toxic than Cr(III). Therefore, different industries have

the responsibility of controlling the rate of chromium ions

in factory sewage as well as finding methods for purifying

their sewage [13, 25]. Different methods including sedi-

mentation, ion exchange, immersion, liquid–liquid extrac-

tion, reverse osmosis, electrochemical processes, biological

processes, and surface adsorption have been developed for

removing these metal ions from wastewater [6, 27]. A

comparison of the mentioned methods indicates the supe-

riority of surface adsorption to other methods of water

treatment the reason lies in the fact that surface adsorption

is simple, easy, feasible, and economical, especially if

cheap adsorbents are used [26, 20].

Most of the adsorbents are highly porous materials, and

surface adsorption happens mostly in hole walls or specific

parts inside the particles [30, 22]. Some of the different

types of adsorbents that are widely used in various indus-

tries include active carbon, active alumina, zeolites, and the

nanoparticles of metal oxides [30, 22, 11]. Among the

mentioned nanoparticles, the nanoparticles of metal oxides

have recently attracted a lot of attention because of their

special features; one of the most important intermediary

metal oxides is nickel oxide which has recently attracted a

lot of attention because of catalyst, electronic, and mag-

netic features of nickel oxide nanoparticles. The porous

nature of NiO nanoparticles allows metal cations to gain

the capability of surface adsorption through nickel oxide

nanoparticles. Response surface methodology (RSM)

includes a set of statistical and mathematical techniques
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which are useful in the process of development, improve-

ment, and optimization, and it is possible to change the

optimum state of several variables simultaneously using

the least possible amount of resources and quantitative

data.

Response surface methodology is one of the effective

methods in optimization of the process. The main advan-

tage of RSM lies in the fact that it reduces the number of

times an experiment has to be repeated in order to assess

multiple parameters and their mutual relationships.

Neural networks are composed of simple operational

neurons which act in parallel with each other. These neu-

rons are inspired by biological neural systems. An artificial

structure can be developed following the natural networks,

and by regulating the rate of each contact, labelled as

contact weight, the manner of the relationship between the

neurons can be determined. One or more neurons together

form one layer of the network. A network can consist of

one or more layers of this type.

After regulating or training the neural network, the use

of a particular input type leads to receiving a specific

response. As evident in Fig. 1, the network is adjusted

according to the match and correspondence between the

input and the target output. Adjustments continue until the

network output and the concerned output (target) corre-

spond to each other. Generally, a large number of these

input and output pairs are used until the network is trained

as a result of this continuous process, labelled as ‘‘moni-

tored learning’’.

Neural networks are used for performing complicated

functions in different aspects; this includes pattern identi-

fication (neural networks have proper performance in

recognition of patterns), for example, classification of

benign and malignant tumours based on information such

as cell size, tumour thickness and mitosis (with data con-

taining 699 samples each of which contains 9 characteris-

tics of tumours), so the normal line or graphical interface

for recognition of nprtool pattern or graphical interface of

nprtool neural networks can be used to solve, for example

(Kia, Soft Computing in MATLAB), identity clarification,

and speech; it can be noted that general regression neural

networks (GRNNs) have been applied to phoneme

identification and isolated word recognition in clean speech

[3] and image processing. In this context, the application of

neural networks, image processing, and CAD-based envi-

ronment facilitates automatic road extraction and vector-

ization from high-resolution satellite images [1]. To clarify

the issue, it should be added that neural networks are

successful in controlling dynamic systems. Their ability to

estimate their comprehensive capabilities of multilayer

perceptron networks make it as a proper option to model

nonlinear systems and to implement the controlling sys-

tems. One of the desirable and important features of a

neural network is its ability to learn from the environment

in order to improve its performance. Learning is a dynamic

and repeated process which reforms the network parame-

ters. This process is the response to the signals that the

network receives from its environment [9]. In other words,

artificial neural networks (ANNs) are the processors that

are trained to perform particular tasks. Therefore, coupling

a computational ANN with a simulated affective system is

necessary in order to explore the interaction between the

two. In most of the topologies, learning leads to change in

synaptic efficiency. In other words, it changes the contact

among the neurons in the layers. After determining the

weights and biases, it is the time to train the neurons. The

process of training needs a set of examples of the expected

behaviour from the network including the network input

and target. In the process of training, the weightings and

biases are regulated so that the function of network effi-

ciency will be minimized.

In order to determine the optimal number of the hidden

groups, a set of topologies are used in which the number of

the nodes change. Measurement of network performance

and efficiency is obtained by MSE using Eq. 1 [2, 15].

MSE ¼
Pi¼N

i¼1 ðYi;pred � Yi;expÞ2

N
ð1Þ

in which N is the number of points (nodes), Yi, pred is the

network prediction, Yi,exp is the experimental response, and

i is an index of the data.

All artificial neural networks are trained using a

suitable gradient such as conjugate gradient, quasi-

Newton and Lenvenberg–Marquardt algorithm. The main

purpose of teaching is, in fact, minimizing the error

function which searches a set of weights and contact

biases and causes the artificial neural networks to pro-

duce output values which are near or equal to the target

values. In feed-forward neural networks, the input

information from the outer signals is calculated by input

neurons, and the signal information in the output neuron

is obtained. In return phase, the changes in the strength

of the contacts occur according to the differences in the

predictions and the observed information in the output

neuron [12].Fig. 1 Compatibility between the input and output
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If the transfer function is in sigmoidal hidden layers, all

samples must be in the range of 0.2–0.8. Therefore, all sets

of the data (Xi) have turned into the new value of Ai as

shown in Eq. 2 [15, 12, 24]

Ai ¼ 0:2 þ 0:6 ðXi � minðXiÞÞ
max ðXiÞ � minðXiÞ

ð2Þ

In order to prevent random correlation, according to the

original weightings, each topology is repeated several times.

Network performance can stabilize the number of the

defined nodes in the hidden layer. Neural networks are

widely applied in the area of modelling of chemical pro-

cesses; for example, Daneshvar et al. used neural networks

for modelling the elimination of basic yellow 28 through

electrocoagulation. They studied the effect of some param-

eters such as current density, original pH of the solution,

electrolyse time, the original concentration of the colour, the

distance between the electrodes, and solution conductivity.

The comparison between the results predicted through the

suggested ANN model in this study corresponded to the

results obtained from the laboratory data [7].

Padma Sree et al. used neural networks and response

surface methodology approach for modelling and opti-

mization of Cr(VI) adsorption from waste water using ragi

husk powder. They used ANN model for the adsorption of

chromium (VI) developed by a single-layer feed-forward

back-propagation network with 14 neurons in the hidden

layer to obtain minimum mean squared error [18]. Behin

et al. performed a comparative study between ANN and

RSM. They investigated the effects of four independent

variables using a three-level four-factor central composite

experimental design. This design was utilized to train a

feed-forward multilayered perceptron artificial neural net-

work with a back-propagation algorithm. A comparison

between the results obtained from the model and experi-

mental data indicated high correlation coefficients and

showed that the two models were able to predict reactive

red 33 removal by employing O3/UV process [4].

In the present study, the nickel oxide nanoparticles

synthesized by sol–gel method were used as the adsorbent

in order to remove Cr(VI) as a poisonous pollutant existing

in industrial sewage, and according to the optimized results

about the effect of the operational parameters, modelling

was conducted using artificial neural networks with an

experimental design.

2 Experiments

2.1 Materials and methods

All the materials used in this study were of analytical-grade

type and were bought from the Merck, and the synthetic

nickel oxide nanoparticles were obtained by sol–gel

method. Cr(VI) solution was used as the pollutant, and HCl

0.1 M and NaOH 0.1 M were used for regulating pH [32].

2.2 Adsorption experiments

Adsorption experiments were carried out by adding dif-

ferent amount of the adsorbents and pollutants at a tem-

perature of 20 � 1 �C ith different pH levels and time

intervals. The reaction vessels were placed on stirring

device with a stable speed of 1000 rpm. The solution was,

then, centrifuged (Hettich EBA, Kirchlengern, Germany) at

a rate of 4000 rpm for 5 min to isolate the adsorbents. The

filtrate was analysed through UV/V in a spectrophotometer

at maximum wavelength (350 nm) of Cr(VI). Finally, the

percentage of adsorption is calculated using Eq. 3 in the

following way:

R% ¼ ðC0 � CiÞ
C0

� 100 ð3Þ

where C0 and Ci are the initial and the final concentrations

of Cr(VI), respectively.

2.3 Designing the experiment by RSM

Response surface methods (with DX 7 software) were used

to obtain the main and interactional effects of the inde-

pendent variables affecting the response in the process of

adsorption of Cr(VI) on NiO nanoparticles. The study is

characterized by the central composition design (CCD) and

a quadratic model. In this method, the effect of four

independent factors on response including the volume of

NiO, the concentration of Cr(VI) adsorbent, pH, and con-

tact time was studied [32, 28]. The ranges and levels of

these factors are shown in Table 1.

2.4 Modelling the results of Cr(VI) adsorption

process by NiO nanoparticles by an artificial

neural network

Modelling the results of Cr(VI) adsorption process was

carried out with NiO nanoparticles by an artificial neural

Table 1 Factors and their levels in designing the experiments by

RSM

Factor Ranges and levels

-a -1 ?1 þa

Initial concentration of Cr(VI) (mg L-1) 10 20 40 50

Dosage of NiO (g) 0.2 0.3 0.5 0.6

Time (min) 5 10 20 25

pH 3.5 5 8 9.5
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network using the results of designing the experiment

(with MATLAB 2010 software). Optimization of ANN

topology was the next important step in the model. The

number of neurons in the hidden layer was determined

according to the minimum prediction error of the net-

work. Hence it may be considered the parameter for the

neural network design. In order to determine the number

of neurons in the hidden layer, different topologies were

examined in which the number of nodes varied from 2 to

15. Figure 3 shows that the network MSE is minimum

for the inclusion of 10 nodes in the hidden layer.

Therefore, based on the mean square error (MSE)

function, a three-layered feed-forward back-propagation

artificial neural network with a topology of 4:10:1 was

used (Fig. 2). This network is composed of 4 neurons in

Fig. 2 Optimal structure of

artificial neural network

Table 2 Ranges of the variables in modelling surface adsorption of

Cr(VI) by NiO nanoparticles

Variable Range

Input layer –

The original concentration of Cr(VI) (mg L-1) -10 to 50

The original amount of NiO (mg L-1) 0.2–0.6

Contact time (min) 5–25

pH initial 3.5–9.5

Output layer –

Cr(VI) percentage of surface adsorption 100–0

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
SE

Number of  Hidden Neurons

Fig. 3 Variation of mean square error vs number of neurons in

hidden layer
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the input layer, 10 neurons in the hidden layer, and one

neuron in the output layer.

The input variables are shown in Fig. 2. In order to

determine the optimal number of neurons in the hidden

layer of different topologies, experiments were conducted

with 1–10 neurons. The maximal value of correlation

coefficient in the number of neurons is 10. In the present

study, one sigmoidal function in the hidden layer was

selected as the transfer function, and one linear function in

the output layer was selected. The ranges of the data used

are shown in Table 2. The ranges of the variables used in

modelling surface adsorption of Cr(VI) by NiO nanopar-

ticles are shown in Table 2.

One of the main problems of modelling is the fact that in

ANN modelling, there is a need for a large amount of

experimental data. In the present study, for training ANN

the results from RSM and the mathematical equation

obtained by this method were used for the first time. In this

line, in training ANN in RSM using 4 parameters at 5

levels generally 625 data sets were considered out of which

Fig. 4 X-ray diffraction of NiO

nanoparticles prepared by

sol–gel method

Fig. 5 TEM micrograph of NiO nanoparticles prepared by sol–gel

method

Fig. 6 SEM image of NiO nanoparticles prepared by the sol–gel

method
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535 data sets were selected for training, evaluating, and

testing the network, and for simulation, 30 samples of the

data used in designing RSM were used. Out of 535 data

sets, randomly 60% were selected for training, 20% for

evaluating, and 20% for testing.

3 Results and discussion

3.1 Characterization of NiO nanoparticles

The XRD pattern of NiO nanoparticles shows five primary

peaks at 2O– = 37, 43, 63, 75, and 790. The crystallite size

of NiO nanoparticles was estimated by Debye–Scherrer

Fig. 7 EDX spectra of NiO nanoparticles prepared by sol–gel

method

Fig. 8 BET plot of NiO nanoparticles prepared by sol–gel method

Fig. 9 BJH plot of NiO nanoparticles prepared by sol–gel method

Table 3 The results of the experiments designed by RSM

Number of

experiment

A: Cr

(mg L-1)

B: NiO

(g)

C: time

(min)

D: pH Experimental

responses

REXP %

1 30.00 0.40 15.00 6.50 40.83

2 40.00 0.30 20.00 5.00 32.32

3 50.00 0.40 15.00 6.50 31.12

4 30.00 0.40 15.00 6.50 39.88

5 40.00 0.50 20.00 5.00 46.1

6 40.00 0.30 10.00 5.00 30.24

7 30.00 0.40 15.00 3.50 52.02

8 30.00 0.60 15.00 6.50 55.81

9 20.00 0.30 10.00 5.00 62.48

10 20.00 0.30 20.00 8.00 67.14

11 20.00 0.30 10.00 8.00 60.43

12 10.00 0.40 15.00 6.50 89.37

13 20.00 0.50 10.00 8.00 74.23

14 20.00 0.50 10.00 5.00 77.45

15 40.00 0.30 20.00 8.00 31.78

16 20.00 0.30 20.00 5.00 68.02

17 30.00 0.40 15.00 6.50 40.89

18 30.00 0.40 15.00 6.50 41.25

19 40.00 0.30 10.00 8.00 30.23

20 30.00 0.20 15.00 6.50 30.02

21 20.00 0.50 20.00 5.00 81.03

22 30.00 0.40 15.00 9.50 39.4

23 30.00 0.40 15.00 6.50 37.15

24 40.00 0.50 20.00 8.00 43.72

25 30.00 0.40 15.00 6.50 37.95

26 30.00 0.40 15.00 6.50 41.01

27 30.00 0.40 25.00 6.50 41.03

28 40.00 0.50 10.00 8.00 42.38

29 40.00 0.50 10.00 5.00 44.32

30 20.00 0.50 20.00 8.00 78.02
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equation. The average crystallite size of NiO nanoparticles

prepared by sol–gel method was about 7 nm. Figure 4

illustrates the typical XRD pattern of NiO nanoparticles

prepared by sol–gel method. Typical TEM image of NiO

nanoparticles is shown in Fig. 5. There is a good agreement

between the TEM and XRD results for the particle size.

The average size of NiO nanoparticles, as measured by

TEM, was found to be lower than 10 nm. The SEM

micrograph in Fig. 6 reveals that NiO nanoparticles have

uniform size distribution.

The data in Fig. 7 show the EDX spectra for NiO

nanoparticles prepared by the sol–gel method, which

clearly show the peaks of Ni and O.

The BET and BJH plots of nitrogen adsorption onto NiO

nanoparticles are shown in Fig. 8. The specific surface area

and total pore volume of NiO nanoparticles were

109.36 m2g-1 and 0.1993 cm3g-1, respectively. The plot

of the pore size distribution (Fig. 9) was determined by

using BJH method from the desorption branch of the iso-

therm. The pore size distribution of NiO nanoparticles was

measured as 3.09 nm.

3.2 Designing the experiment by RSM

In this method, the effects of 4 independent factors were

studied. One of these factors is the effect of time dura-

tion of the process because equilibrium characteristics,

referred to as adsorption isotherms, describe how the

adsorbate interacts with the adsorbent. Research results

indicate that the time duration of the process needs to

reach an equilibrium [21, 23]. The designed experiments

and the respective experimental results are shown in

Table 3.

Table 4 Comparison the results predicted by RSM and the obtained

laboratory data

Number of the

experiment

RRSM % REXP %

1 40.30 40.83

2 31.29 23.32

3 33.15 31.12

4 40.30 39.88

5 44.42 46.1

6 29.43 30.24

7 53.9 52.02

8 60.85 55.81

9 60.29 62.48

10 62.5 67.14

11 57.31 60.43

12 97.18 89.37

13 70.2 74.23

14 74.20 77.45

15 29.49 31.78

16 65.36 68.02

17 40.30 40.89

18 40.3 41.25

19 27.53 30.23

20 34.82 30.02

21 78.68 81.08

22 38.4 39.4

23 47.35 37.15

24 41.16 43.72

25 40.85 37.95

26 40.30 41.01

27 40.30 41.03

28 40.24 42.38

29 43.91 44.32

30 74.03 78.02

Design-Expert® Software
R1

Color points by value of
R1:

89.37

30.02

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

27.00

44.75

62.50

80.25

98.00

27.53 44.94 62.36 79.77 97.18

Fig. 10 Match between the

experimental data with the

responses from response surface

method
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The results of the experiments designed by response

surface methodology and the results predicted by this

method are given in Table 4.

As evident in Fig. 10, there is good correspondence

between these two values. In Fig. 10, the curve for the

frequency of normal distribution has been calculated to

study the validity of the experiments. Moreover, in Fig. 10,

the curve for the frequency of normal linearity has been

drawn. The normal distribution curve for residuals indi-

cates the accuracy of the model.

For analysing the responses, the analysis of variance

was used the results of which are given in Table 5. The

correlation coefficient (R2) of this analysis can be

noted. The correlation coefficient close to 1 is desirable.

It can also refer to the P and F. P value is the possi-

bility that uses the deviation rate to control the

importance of each one of the rates, due to the vari-

ability of stochastic process. F value is the standard to

compare the variance of a phrase with the variance of

the residual.

The value of R2 shows that 95.97% of the changes in the

efficiency of elimination results from the independent

variables, and this model cannot account for only 4.03% of

the changes.

3.3 Modelling the surface adsorption of Cr(VI)

using artificial neural network (ANN)

Nowadays, RSM and ANN approaches are applied for

optimizing and process modelling [5, 8, 14, 16, 19, 29]. A

comparison of the predictive and generalization capabili-

ties, sensitivity analysis, and optimization abilities of ANN

and RSM techniques revealed that the ANN model fitted

the data better and had a higher predictive capability than

RSM, even with the limited number of experiments. In

order to calculate training, evaluation, and testing errors,

all the data have been transformed into the original scale so

that they could be compared with the original values. Also,

Fig. 11 shows the best validation performance versus a

number of epochs of network.

Figure 12 shows the comparison between the values

obtained from RSM and the calculated values of the output

variable using ANN with 10 neurons in the hidden layer.

The results in Fig. 12 show that, considering the high

number of the input data, ANN could be trained by the

data from RSM because the values of correlation coeffi-

cient (R2) and the slope of the obtained line are equal to

one, and the distance from the starting point of the

obtained line is almost zero. High correspondence

Table 5 Analysis of variance from response modelling procedure

Source Sum of squared df Mean square F value P value Prob[F Situation

Model 8455.84 14 603.99 25.52 0.0001 Significant

A—Cr 6150.72 1 6150.72 259.88 0.0001

B—NiO 1016.47 1 1016.47 42.95 0.0001

C—time 48.54 1 48.54 2.05 0.1726

D—pH 64.28 1 64.26 2.71 0.1202

AB 0.032 1 0.032 1.33E-003 0.9714

AC 10.35 1 10.35 0.44 0.5184

AD 1.15 1 1.15 0.049 0.8285

BC 1.82 1 1.82 0.077 0.7856

BD 3.12 1 3.12 0.13 0.7214

CD 0.011 1 0.011 4.439E-004 0.9835

A2 1059.64 1 1059.64 44.77 0.0001

B2 97.26 1 97.26 4.11 0.0608

C2 23.56 1 23.56 1.00 0.3342

D2 183.83 1 182.83 7.72 0.0140

Residual 355.01 15 23.67

Lack of fit (LOF) residual 347.27 10 34.73 22.45 0.0015 Not significant

Pure error 7.73 5 1.55

Cor total 8810.85 29

R2 = 0.9597

Radj.
2 = 0.9221
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between the experimental results and the results from

ANN indicates appropriate training of the network. To

ensure the appropriate training of the network, 30 samples

of the data which were not used in ANN will be used for

simulation; the results of comparison between the data

from ANN with RSM results and the experimental results

are shown in Figs. 13 and 14. The value of R2 near to 0.9

indicates the correspondence between the experimental

data and the data predicted by ANN. The results of the

present study are similar to those obtained in the fol-

lowing studies: Khayet studied artificial neural network

model for desalination by sweeping gas membrane dis-

tillation. The agreement between the target (experimental

Fig. 11 Best validation performance versus a number of epochs of network

Fig. 12 Comparison of the data from RSM and ANN for the set of

experiments

Fig. 13 Simulation of the data from RSM by ANN

Fig. 14 Simulation of the experimental data by ANN
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observations) and the network output (predictions) for

training, validation, and test sets is studied. The overall

correlation coefficient including training, validation, and

test, is R2 = 0.80, while the correlation coefficient for

validation is higher (R2 = 0.93). These values reveal a

satisfactory prediction of the experimental data by means

of the developed ANN of MLP (3:9:1) type [16]. So

Yetilmezsoy studied artificial neural network (ANN)

approach for modelling of Pb(II) adsorption from aqueous

solution by Antep pistachio (Pistacia vera L.) shells; the

proposed ANN model showed a precise and an effective

prediction of the experimental data with a satisfactory

correlation coefficient of 0.93 for five operating variables

[31].

After appropriate training of ANN was ensured, the

matrix of the network weightings was obtained and is

reported in Table 6 in which W1 is the weight between the

input and hidden layer, and W2 refers to the weights

between the hidden and output layers. The weights are the

coefficients between the artificial neurons which act like

the synaptic power between the axons and dendrites in real

biological neurons. Therefore, each of the neurons decides

which proportion of the input signal should enter the body

of the neuron. In fact, by the use of neural networks matrix,

the significance of the relationship between different input

variables and the output variable is specified.

4 Conclusion

In the present study, the adsorption efficiency of the

nanoparticles of nickel oxide synthesized by sol–gel

method in elimination of the pollutants from aqueous

solutions was studied. The BET analysis showed that the

specific surface area and total pore volume of NiO

nanoparticles were 109.36 m2g-1 and 0.1993 cm3 g-1,

respectively. So, due to its high surface area and natural

porosity, NiO can interact with heavy metal ions and is a

good candidate for the adsorption process. The effect of

different operational parameters including the original

concentration of Cr(VI), the dosage of NiO adsorbent,

contact time, and pH at a temperature of 20 � 1 �C on the

removal of Cr(VI) by sol–gel-synthesized NiO was studied.

Based on the results obtained from designing the experi-

ment, modelling the efficiency of the process of surface

adsorption by artificial neural network was conducted. One

of the effective parameters in artificial neural network

model is the number of neurons in the hidden layer.

Therefore, by changing the number of neurons in the hid-

den layer to 10, the least possibility of error happens. The

results showed that the data obtained from ANN fit well

with the data from RSM and the experimental data.
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