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Abstract Hesitant fuzzy soft set (HFSS) allows each ele-

ment to have different number of parameters and the values

of those parameters are represented by multiple possible

membership values. HFSS is considered as a powerful tool

to represent uncertain information in group decision-mak-

ing process. In this study, we introduce the concept of

correlation coefficient for HFSS and some of its properties.

Using correlation coefficient of HFSS, we develop corre-

lation efficiency which shows the significance of the HFSS.

We also propose an algorithm to apply correlation coeffi-

cient in decision-making problem, where information is

presented in hesitant fuzzy environment. In order to extend

the application of HFSS, we propose correlation coefficient

in the framework of interval-valued hesitant fuzzy soft set

(IVHFSS). We also introduce correlation efficiency in the

context of IVHFSS. Then the proposed algorithm is

extended using IVHFSS for solving decision-making

problems. Finally, two examples that are semantically

meaningful in real life are illustrated to show the effec-

tiveness of the proposed algorithms.

Keywords HFSS � IVHFSS � Correlation coefficient �
Correlation efficiency � GDM

1 Introduction

In statistical analysis, the correlation coefficient imparts a

vital role to measure the strength of the linear relationship

between two variables, whereas in fuzzy set theory the

correlation measure determines the degree of dependency

between two fuzzy sets. It has been proved to be an

important measure in data analysis, medical diagnosis,

pattern recognition, and especially for decision-making

problems [1–6]. An extensive review of decision-making

techniques and applications is given in [7]. Hung and Wu

[8] first defined the correlation coefficient of fuzzy num-

bers using the concept of expected value. Gerstenkorn and

Manko [9] introduced the correlation coefficients of

intuitionistic fuzzy sets (IFSs) which was later analyzed

by Szmidt and Kacprzyk [4]. Bustince and Burillo [10]

and Hong [11] further extended the concepts of correla-

tion and correlation coefficient for interval-valued intu-

itionistic fuzzy sets (IVIFSs). Hung and Wu [12] proposed

a method to find the correlation coefficients of IFSs by

means of centroid. HFS was introduced by Torra and

Narukawa [13] and Torra [14]. In order to aggregate

hesitant fuzzy information, Yu [15] proposed Heronian

mean (HM) aggregation operator and solved a multi-cri-

teria decision-making (MCDM) problem using the pro-

posed HM operator. In [16], Feng et al. studied induced

hesitant fuzzy Hamacher correlated geometric (IHFHCG)
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operator and applied it in real-life problems. Chen et al.

[17] derived some correlation coefficient formulas for

hesitant fuzzy sets (HFSs) and applied them to clustering

analysis in hesitant fuzzy environments. They also

developed correlation coefficient formulas for interval-

valued HFSs (IVHFSs) and then demonstrated their

applications in clustering analysis. For the purpose of

defining correlation coefficients of HFSs and IVHFSs, the

authors considered that both HFSs and IVHFSs have same

length and their values are arranged in ascending order.

When the HFSs and IVHFSs do not have same length, the

shorter one is extended up to the length of longer one.

Meng et al. [18], in their paper, proposed some new

correlation coefficients of IVHFSs, where they did not

consider the lengths of interval-valued hesitant fuzzy

elements (IVHFEs) and the arrangement of their interval

values. The authors proposed Shapely weighted correla-

tion coefficient when the elements of a set are correlative.

Correlation measures for hesitant fuzzy information and

their properties were proposed by Xu and Xia [19]. Tong

and Yu [20] emphasized on multiple attribute decision-

making (MADM) problems that simultaneously determine

attribute weights and decision maker (DM) preferences,

and proposed a MADM approach in hesitant fuzzy envi-

ronment based on extended distance and correlation

coefficient measure. The relationship between entropy,

similarity measure, and distance measure for hesitant

fuzzy sets (HFSs) and interval-valued hesitant fuzzy sets

(IVHFSs) was investigated by Farhadinia [21]. In [22],

Jun introduced interval neutrosophic hesitant fuzzy set

(INHFS) and then defined correlation coefficients of

INHFSs. The authors investigated the relationship

between the similarity measures and the correlation

coefficients of INHFSs. Furthermore, they proposed a

MADM method based on the correlation coefficients

under interval neutrosophic hesitant fuzzy environment.

Liao et al. [23] proposed a novel correlation coefficient

formula to measure the relationship between two HFSs.

Correlation coefficients of dual hesitant fuzzy sets

(DHFSs) was defined by Tyagi [24], where (DHFS) is a

generalized form of a hesitant fuzzy set (HFS) which

negates the effects of uncertainty inherent in the collected

data. A set of aggregation operators under dual hesitant

fuzzy environment was developed by Yu [25] and Yu

et al. [26]. Wang et al. [27] defined the correlation mea-

sures for dual hesitant fuzzy information [28] and dis-

cussed their properties. Zhu and Xu [29] focused on the

information loss problem of HFSs and developed exten-

ded hesitant fuzzy sets (EHFSs) as an extension of HFSs

to overcome this problem. The concept of correlation

measure for hesitant fuzzy linguistic term set (HFLTS)

was investigated by Liao et al. [30]. Motivated by the

work found in [30], Das et al. [31] proposed correlation

coefficient in the context of hesitant fuzzy linguistic term

soft set (HFLTSS) and applied it in decision-making

problems.

Recently, Das and Kar [32] have introduced HFSS as a

hybridization of HFS and soft set [33]. The authors ana-

lyzed some basic operations and applied it in decision-

making problems. Since then many researchers [34–37]

have contributed on the development on HFSS. In [36],

Chen defined generalized HFSS and studied some of their

properties. In [37], Ismat and Tabasam used TOPSIS

(Technique for Order Preference by Similarity to Ideal

Solution) in the context of HFSS. As an extension of HFS,

Wei et al. [38] introduced IVHFS. Combining IVHFS with

soft set, Zhang et al. [39] proposed interval-valued hesitant

fuzzy soft set (IVHFSS) which permits the membership

degrees to have a few different intervals. When the real-life

decision-making problems cannot be expressed by exact

values, then IVHFSS can solve it. Peng and Yong [40]

discussed in detail about the various operations and prop-

erties of IVHFSS, and finally they presented a decision-

making algorithm using TOPSIS method. Recently, Das

and Kar [41, 42] and Das et al. [43–46] have introduced

some hybridized soft sets and applied them in decision-

making problems.

Presently, measuring correlation coefficient of various

fuzzy sets has drawn more attention of a number of

researchers because correlation measure has proved its

potential to decision-making paradigm in uncertain envi-

ronment. But when some parameters are associated with

the set elements, i.e., in case of soft sets, no idea of cor-

relation coefficient is given. As per our knowledge, there is

no research work on the application of the correlation

coefficient of soft sets to multi-criteria decision-making

problems in the existing literature. This is very much

essential to derive the degree of cohesiveness among the

soft sets, as soft sets have a huge impact on decision-

making process. As we know, when the correlation coef-

ficient of a soft set with the other soft sets will be high,

importance of that soft set will be more. This idea moti-

vates us to find out the correlation measure of hesitant

fuzzy soft sets. HFSs are useful in situations, where each

element of a set is permitted to have a few different

membership values, which can arise in a GDM problem.

Following example narrates the necessity of HFS. Suppose

three experts discuss about the membership degree that an

alternative satisfies a criterion. Some experts may assign

the membership value as 0.3, some other assigns 0.5, while

the rest assigns 0.7. No consistency is found among these

experts. For such a case, the satisfactory membership

degrees are represented by a hesitant fuzzy element {0.3,

0.5, 0.7}, which is different from fuzzy number 0.3 (or

0.5), the interval-valued fuzzy number [0.3, 0.7] and the

intuitionistic fuzzy number (0.3, 0.5). Thus the HFS can
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reflect all possible opinions of the group members. How-

ever, HFS is restricted in the sense that when an alternative

is defined, it must be defined for all the given criteria/

attributes/parameters. But HFSS is soft or more relaxed as

an alternative may not be associated with all the given

criteria. Decision makers select the criteria as per their own

intuitions. Thus importance of using HFSS in decision-

making problem is inevitable and it is very much necessary

to develop some theories for HFSS. But little has been done

about this issue. However, one of the main limitations of

HFSS/HFS is that it permits membership to have exact

values. But in real-life decision-making problems, exact

membership values are often found to be inadequate or

insufficient to represent human thoughts properly. Human

judgements can be well expressed by fuzzy values which

permits an interval instead of exact value. So in this paper,

we present IVHFSS to overcome those limitations. To

explore the degree of importance of IVHFSS, we introduce

correlation coefficients of IVHFSS.

In this paper, we mainly discuss the correlation mea-

sures of HFSS and IVHFSS. To do this, the remainder of

the paper is organized as follows. Section 2 presents some

basic concepts related to HFSs, HFSSs and correlation

measures of HFSs. In Sect. 3 we introduce correlation

coefficient for HFSSs and obtain some properties. Sec-

tion 4 firstly defines correlation efficiency. Then we pro-

pose a decision-making algorithm based on HFSSs,

correlation measures, correlation efficiency, and hesitant

fuzzy-ordered weighted averaging (HFOWA) operator.

One real case study is performed to demonstrate the need

of the proposed algorithm under hesitant fuzzy environ-

ments in Sect. 5. The idea of correlation coefficient rele-

vant with IVHFSS is given in Sect. 6 followed by an

algorithmic approach in Sect. 7. Section 8 includes a case

study relevant with IVHFSS. Comparative study is given in

Sect. 9. Finally Sect. 10 summarizes this study and pre-

sents future challenges.

2 Preliminaries

This section introduces some concepts related to HFS,

HFSS, and HFSM.

2.1 HFS, HFSS, and HFSM

Definition 1 [13, 14] A HFS M on a fixed set X is defined

in terms of a function hMðxÞ that returns a subset of [0, 1]

when applied to X. The HFS M is represented by M ¼
f\x; hMðxÞ[ jx 2 Xg; where hMðxÞ is a set of values in

[0, 1] which denotes the possible membership degrees of

the element x 2 X to the set M. Xia and Xu [47] defined

h ¼ hMðxÞ as hesitant fuzzy element (HFE) and the set of

all HFEs by H.

Different HFEs may have different numbers of values. A

HFE hMðxÞ with k number of values is defined as hkMðxÞ;
where k is a positive integer. In HFS, the membership

degree of an element is represented by several possible

values between 0 and 1. HFSs are useful in situations,

where the decision makers hesitate in giving their prefer-

ences over the elements.

Example 1 Let X ¼ fx1; x2; x3g be a fixed set. hMðx1Þ ¼
f0:5; 0:4; 0:6g; hMðx2Þ ¼ f0:7; 0:5g; and hMðx3Þ ¼ f0:2;
0:3; 0:8; 0:7g be the HFEs of xiði ¼ 1; 2; 3Þ to the set M.

Then the HFS M is considered as

M ¼ fðx1; f0:5; 0:4; 0:6gÞ; ðx2; f0:7; 0:5gÞ;
ðx3; f0:2; 0:3; 0:8; 0:7gÞg:

Torra and Narukawa [13] and Torra [14] defined some

operations on HFEs. Let h, h1, and h2 are HFEs, then

ð1Þ hc ¼
[

c2h f1� cg; ð2Þ h1 [ h2

¼
[

c12h1;c22h2
maxfc1; c2g; ð3Þ h1 \ h2

¼
[

c12h1;c22h2
minfc1; c2g:

Xia and Xu [47] defined some operations on the HFEs h, h1
and h2 as given below.

ð1Þ hk ¼ [c2hfckg; k[ 0; ð2Þ kh ¼ [c2hf1� ð1� cÞkg; k[ 0;

ð3Þ h1 � h2 ¼ [c12h1;c22h2fc1 þ c2 � c1c2g;
ð4Þ h1 � h2 ¼ [c12h1;c22h2fc1c2g:

Definition 2 [47] For a HFE h, sðhÞ ¼ 1
#h

P
c2h c is called

the score function of h, where #h is the number of ele-

ments in h. For any two HFEs h1 and h2, if sðh1Þ[ sðh2Þ,
then h1 [ h2; if sðh1Þ ¼ sðh2Þ then h1 ¼ h2.

One can note that sðhÞ computes the average value of all

elements in h. Thus it expresses the average opinion of

decision makes. When the average value is higher, the

higher will be the score, resulting in a better HFE. But in

some special cases, this comparison method fails to dif-

ferentiate between two HFEs.

For the purpose of decision making using HFEs, Xia and

Xu [47] proposed some aggregation operators for HFEs,

two of them are defined below, in Definitions 3 and 4. Let

hjðj ¼ 1; 2; . . .; nÞ be a collection of HFEs, w ¼
ðw1;w2; . . .;wnÞT is the weight vector of hjðj ¼ 1; 2; . . .; nÞ
with wj 2 ½0; 1� and

Pn
j¼i wj ¼ 1:

Definition 3 [47] A hesitant fuzzy weighted averaging

(HFWA) operator is a mapping Hn ! H such that
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HFWAðh1; h2; . . .; hnÞ ¼
Xn

j¼1

wjhj

¼ [c12h1;c22h2;...;cn2hn 1�
Yn

j¼1

1� cj
� �wj

( )
:

If w ¼ 1=n;1=n;. . .; 1=nð ÞT ; then HFWA operator is

reduced to hesitant fuzzy averaging (HFA) operator:

HFAðh1; h2; . . .; hnÞ ¼
Xn

j¼1

1

n
hj ¼ [c12h1;c22h2;...;cn2hn

1�
Yn

j¼1

1� cj
� �1

n

( )
:

Definition 4 [47] Let hrðjÞ be the jth larget among the

collection of HFEs hj; j ¼ 1; 2; . . .; n: Here rð1Þ; rð2Þ;
. . .; rðnÞ is considered as a permutation of 1; 2; . . .; n; such

that hrðj�1Þ � hrðjÞ for all j ¼ 1; 2; . . .; n: A hesitant fuzzy-

ordered weighted averaging (HFOWA) operator is a

mapping HFOWA:Hn ! H such that

HFOWA h1; h2; . . .; hnð Þ ¼
Xn

j¼1

wjhrðjÞ

¼ [crð1Þ2h1;crð2Þ2h2;...;crðnÞ2hn 1�
Yn

j¼1

1� crðjÞ
� �wj

( )
:

The HFOWA operator is based on the concept of

ordered weighted averaging (OWA) operator, where the

HFEs are initially reordered and then combined with their

weights.

Definition 5 [32] Let X be a fixed set, eHðXÞ be the set of
all HFSs of X, E be a set of parameters, and A � E: A

HFSS over X is defined by the set of ordered pairs

eFfAg;E
� �

; where eFfAg is a mapping given by,eFfAg : E !
eHðXÞ: For any parameter e 2 A; eFfAgðeÞ is considered a

HFS, which can be expressed as eFfAgðeÞ ¼
f\x; hMðxÞ[ jx 2 Xg; where hMðxÞ is a set of values in

[0, 1].

In MADM, HFSS is considered to be more flexible for

representing the decision makers’ opinions as it allows

them to select a subset of attributes as among the given set

of attributes according their own intuition in an unbiased

manner.

Example 2 Let X be set of three shirts, i.e., X ¼ fx1; x2;
x3g. Let E ¼ fe1; e2; e3g ¼ {bright, colorful, light}. Sup-

pose eFfAgðe1Þ ¼ fx1; ð0:3; 0:2; 0:7Þg; fx2; ð0:5; 0:8Þg; fx3;ð

ð0:3; 0:4; 0:6ÞgÞ;eFfAgðe2Þ ¼ fx1; ð0:4; 0:7Þg; fx2; ð0:4; 0:1;ð
0:5Þg; fx3; ð0:4; 0:9ÞgÞ; and eFfAgðe3Þ ¼ fx1; ð0:5; 0:4;ð
0:2Þg; fx2; ð0:4; 0:1Þg; fx3; ð0:3; 0:6ÞgÞ. Thus HFSS is rep-

resented as

eFA;E
� �

¼

e1; fx1; ð0:3; 0:2; 0:7Þg; fx2; ð0:5; 0:8Þg; fx3; ð0:3; 0:4; 0:6Þgð Þh i

e2; fx1; ð0:4; 0:7Þg; fx2; ð0:4; 0:1; 0:5Þg; fx3; ð0:4; 0:9Þgð Þh i

e3; fx1; ð0:5; 0:4; 0:2Þg; fx2; ð0:4; 0:1Þg; fx3; ð0:3; 0:6Þgð Þh i

8
>><

>>:

9
>>=

>>;
:

Definition 6 [32] HFSS can be represented well by

HFSM. If X ¼ fx1; x2; . . .; xmg and E ¼ fe1; e2; . . .; eng;
then HFSM is defined as F ¼ ðfijÞm	n where fij ¼
hkMðxi; ejÞ; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n: Here k[ 0 is

the number of values which may be different for different

HFE. Table 1 presents a HFSM.

Example 3 Let us consider Example 2. According to

Definition 6, the corresponding HFSM is given below.

F ¼ ðfijÞm	n

¼
ð0:3; 0:2; 0:7Þ ð0:4; 0:7Þ ð0:5; 0:4; 0:2Þ
ð0:5; 0:8Þ ð0:4; 0:1; 0:5Þ ð0:4; 0:1Þ

ð0:3; 0:4; 0:6Þ ð0:4; 0:9Þ ð0:3; 0:6Þ

2
4

3
5:

2.2 Correlation measure of hesitant fuzzy set

Let X ¼ fx1; x2; . . .; xmg be a discrete universe of dis-

course, A and B are two HFSs on X denoted as A ¼
ðxi; hAðxiÞÞ j xi 2 X; i ¼ 1; 2; . . .;mf g and B ¼
ðxi; hBðxiÞÞ j xi 2 X; i ¼ 1; 2; . . .;mf g: Membership values

of a HFE are not usually given in any specific order. For

convenience, Chen et al. [17] arranged them in a decreas-

ing order. For a HFE h, let r : ð1; 2; . . .; nÞ ! ð1; 2; . . .; nÞ
be a permutation satisfying hrðiÞ � hrðiþ1Þ; i ¼
1; 2; . . .; n� 1; such that hrðiÞ be the ith largest value in h.

Since the number of values in different HFEs are normally

different, to compute the correlation coefficients between

two HFSs, the number of values in the corresponding HFEs

are considered to be equal. Let li ¼ max lðhFðxi; ekÞÞ;f
lðhGðxi; ekÞÞg; 8xi 2 X; where lðhAðxiÞÞ and lðhBðxiÞÞ,
respectively, represent the number of values in HFEs hAðxiÞ
and hBðxiÞ: When lðhAðxiÞÞ 6¼ lðhBðxiÞÞ; the HFE which has

Table 1 Tabular representation of HFSM

E1 E2 � � � Em

x1 hkEðx1; e1Þ hkEðx1; e2Þ � � � hkEðx1; enÞ
x2 hkEðx2; e1Þ hkEðx2; e2Þ � � � hkEðx2; enÞ

..

. ..
. ..

. ..
. ..

.

xn hkEðxm; e1Þ hkEðxm; e2Þ � � � hkEðxm; enÞ

1026 Neural Comput & Applic (2019) 31:1023–1039
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less number of values, some values are added to make it

same. In this work, if lðhAðxiÞÞ\lðhBðxiÞÞ; then hAðxiÞ is

extended by adding its final value, i.e., the minimum value

until it has the same length as hBðxiÞ:

Definition 7 [17] For a HFS A ¼ ðxi; hAðxiÞÞ j xi 2f
X; i ¼ 1; 2; . . .;mg; the informational energy of the set A is

defined as: IHFSðAÞ ¼
Pm

i¼1
1
li

Pli
j¼1 h

2
ArðjÞðxiÞ

� �
:

Definition 8 [17] For two HFSs A and B, their correla-

tion is defined by

CHFSðA;BÞ ¼
Xm

i¼1

1

li

Xli

j¼1

hArðjÞðxiÞ:hBrðjÞðxiÞ
 !

:

For any two HFSs A and B, the correlation satisfies

ð1ÞCHFSðA;AÞ ¼ IHFSðAÞ;
ð2ÞCHFSðA;BÞ ¼ CHFSðB;AÞ:

Definition 9 [17] Correlation coefficient between two

HFSs A and B is given as

qHFSðA;BÞ¼
CHFSðA;BÞ

CHFSðA;AÞ½ �
1
2: CHFSðB;BÞ½ �

1
2

¼
Pm

i¼1
1
li

Pli
j¼1hArðjÞðxiÞ �hBrðjÞðxiÞ

� �

Pm
i¼1

1
li

Pli
j¼1h

2
ArðjÞðxiÞ

� �h i1
2�
Pm

i¼1
1
li

Pli
j¼1h

2
BrðjÞðxiÞ

� �h i1
2

:

The correlation coefficient between two HFSs A and B,

qHFSðA;BÞ satisfies the following properties.

ð1Þ qHFSðA;BÞ ¼ qHFSðB;AÞ
ð2Þ 0
 qHFSðA;BÞ
 1

ð3Þ qHFSðA;BÞ ¼ 1; if A ¼ B

Example 4 Let A and B be two hesitant fuzzy sets in

X ¼ fx1; x2; x3g; where A ¼ ðx1; f0:4; 0:3gÞ; ðx2; f0:7;f
0:5; 0:2gÞ; ðx3; f0:8; 0:6; 0:3gÞg; and B ¼ ðx1; f0:7; 0:4gÞ;f
ðx2; f0:6; 0:2; 0:1gÞ; ðx3; f0:5; 0:3; 0:2gÞg:

Now

CHFSðA;AÞ ¼ IHFSðAÞ ¼
X3

i¼1

1

li

Xli

j¼1

h2ArðjÞðxiÞ
 !

¼ 1

2
0:42 þ 0:32
� �

þ 1

3
0:72 þ 0:52 þ 0:22
� �

þ 1

3
0:82 þ 0:62 þ 0:32
� �

¼ 0:75

Similarly

CHFSðB;BÞ ¼ IHFSðBÞ ¼
X3

i¼1

1

li

Xli

j¼1

h2ArðjÞðxiÞ
 !

¼ 1

2
0:72 þ 0:42
� �

þ 1

3
0:62 þ 0:22 þ 0:12
� �

þ 1

3
0:52 þ 0:32 þ 0:22
� �

¼ 0:59

Therefore

CHFSðA;BÞ ¼
X3

i¼1

1

li

Xli

j¼1

hArðjÞðxiÞ:hBrðjÞðxiÞ
 !

¼ 1

2
0:4	 0:7þ 0:3	 0:4ð Þ

þ 1

3
0:7	 0:6þ 0:5	 0:2þ 0:2	 0:1ð Þ

þ 1

3
0:8	 0:5þ 0:6	 0:3þ 0:3	 0:2ð Þ

¼ 0:59

Hence

qHFSðA;BÞ ¼
CHFSðA;BÞ

CHFSðA;AÞ½ �
1
2: CHFSðB;BÞ½ �

1
2

¼ 0:88

3 Correlation measure for HFSS

In this section, we introduce the concept of correlation,

informational energy, and correlation coefficient in the

framework of HFSSs and then discuss their properties. Our

proposed definitions are basically extensions of the work

done by Chen et al. [17] in the context of HFS. Let ðF;AÞ
and ðG;BÞ be two HFSSs defined on the set of elements

fx1; x2; . . .; xmg and parameters fe1; e2; . . .; eng:
hArðjÞðxi; ekÞ; j ¼ 1; 2; . . .; li be the ordered (decreasing) set

of membership values in the HFE hðxi; ekÞ; i ¼
1; 2; . . .;m; k ¼ 1; 2; . . .; n: Here li ¼ max lðhFðxi; ekÞÞ;f
lðhGðxi; ekÞÞg; where lðhFðxi; ekÞÞ and lðhGðxi; ekÞÞ,
respectively, represent the number of values in HFEs

hFðxi; ekÞ and hGðxi; ekÞ:

Definition 10 For two hesitant fuzzy soft sets ðF;AÞ and
ðG;BÞ; the correlation CHFSSfðF;AÞ; ðG;BÞg is defined by

CHFSS ðF;AÞ; ðG;BÞf g

¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

hArðjÞ ðxi; ekÞ
� �h i

: hBrðjÞ ðxi; ekÞ
� �h i ! !

:

Definition 11 Informational energy IHFSSðF;AÞ for HFSS
ðF;AÞ is defined as
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IHFSSðF;AÞ ¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

h2ArðjÞ
ðxi; ekÞ

� �h i ! !
:

For any two HFSSs ðF;AÞ and ðG; BÞ; the correlation

satisfies the following.

ð1ÞCHFSSfðF;AÞ; ðF;AÞg ¼ IHFSSðF;AÞ
ð2ÞCHFSSfðF;AÞ; ðG;BÞg ¼ CHFSSfðG;BÞ; ðF;AÞg

This can be proved easily from Definition 10 and Def-

inition 11.

Definition 12 Correlation coefficient between two HFSSs

ðF;AÞ and ðG;BÞ is given as

The correlation coefficient qHFSSfðF;AÞ; ðG;BÞg
between two HFSSs ðF;AÞ and ðG;BÞ satisfies the

following properties.

ð1Þ qHFSSfðF;AÞ; ðG;BÞg ¼ qHFSSfðG;BÞ; ðF;AÞg
ð2Þ 0
 qHFSSfðF;AÞ; ðG;BÞg
 1

ð3Þ qHFSSfðF;AÞ; ðG;BÞg ¼ 1; if ðF;AÞ ¼ ðG;BÞ

Proof

(1) This is straightforward.

(2) It is obvious that qHFSSfðF;AÞ; ðG;BÞg� 0: We will

prove only qHFSSfðF;AÞ; ðG;BÞg
 1:

CHFSSfðF;AÞ; ðG;BÞg

¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

hArðjÞ ðxi; ekÞ
� �h i

: ðhBrðjÞ ðxi; ekÞ
� �h i ! !

¼
Xn

k¼1

1

li

Xli

j¼1

hArðjÞ ðx1; ekÞ
� �h i

: hBrðjÞ ðx1; ekÞ
� �h i ! !

þ
Xn

k¼1

1

li

Xli

j¼1

hArðjÞ ðx2; ekÞ
� �h i

: hBrðjÞ ðx2; ekÞ
� �h i ! !

þ � � � þ
Xn

k¼1

1

li

Xli

j¼1

½ðhArðjÞ ðxm; ekÞÞ�:½ðhBrðjÞ ðxm; ekÞÞ�
 ! !

:

Now

Xn

k¼1

1

li

Xli

j¼1

½ðhArðjÞ ðx1; ekÞÞ�:½ðhBrðjÞ ðx1; ekÞÞ�
 ! !

¼ 1

li

Xli

j¼1

hArðjÞ ðx1; e1Þ
� �h i

: hBrðjÞ ðx1; e1Þ
� �h i !

þ 1

li

Xli

j¼1

hArðjÞ ðx1; e2Þ
� �h i

: hBrðjÞ ðx1; e2Þ
� �h i !

þ � � � þ 1

li

Xli

j¼1

½ðhArðjÞ ðx1; enÞÞ�:½ðhBrðjÞ ðx1; enÞÞ�
 !

¼
Xli

j¼1

hArðjÞ ðx1; e1ÞÞ
� �h i

ffiffiffi
li

p :
hBrðjÞ ðx1; e1Þ
� �h i

ffiffiffi
li

p

þ
Xli

j¼1

hArðjÞ ðx1; e2Þ
� �h i

ffiffiffi
li

p :
hBrðjÞ ðx1; e2Þ
� �h i

ffiffiffi
li

p

þ � � � þ
Xli

j¼1

hArðjÞ ðx1; e3Þ
� �h i

ffiffiffi
li

p :
hBrðjÞ ðx1; e3Þ
� �h i

ffiffiffi
li

p

Using the Cauchy–Schwarz inequality,

ðx1y1 þ x2y2 þ � � � þ xnynÞ2 
ðx21 þ x22 þ � � �
þ x2nÞ:ðy21 þ y22 þ � � � þ y2nÞ;

where ðx1; x2; . . .; xnÞ 2 Rn; ðy1; y2; . . .; ynÞ 2 Rn: So,

we get

Xn

k¼1

1

li

Xli

j¼1

hArðjÞ ðx1; ekÞ
� �h i

: hBrðjÞ ðx1; ekÞ
� �h i ! ! !2


 1

li

Xli

j¼1

h2ArðjÞ
ðx1; e1Þ

� �h i !"

þ 1

li

Xli

j¼1

h2ArðjÞ
ðx1; e2Þ

� �h i !
þ � � � þ 1

li

Xli

j¼1

h2ArðjÞ
ðx1; enÞ

� �h i !#

	 1

li

Xli

j¼1

h2BrðjÞ
ðx1; e1Þ

� �h i !
þ 1

li

Xli

j¼1

h2BrðjÞ
ðx1; e2Þ

� �h i !"

þ � � � þ 1

li

Xli

j¼1

h2BrðjÞ
ðx1; enÞ

� �h i !#

¼
Xn

k¼1

1

li

Xli

j¼1

h2ArðjÞ
ðx1; ekÞ

� �h i !" #
:

Xn

k¼1

1

li

Xli

j¼1

h2BrðjÞ
ðx1; ekÞ

� �h i !" #

Therefore

qHFSSfðF;AÞ; ðG;BÞg ¼ CHFSSfðF;AÞ; ðG;BÞg
CHFSSfðF;AÞ; ðF;AÞg:CHFSSfðG;BÞ; ðG;BÞgð Þ

1
2

¼
Pn

k¼1

Pm
i¼1

1
li

Pli
j¼1 hArðjÞ ðxi; ekÞ

� �h i
: hBrðjÞ ðxi; ekÞ
� �h i� �� �

Pn
k¼1

Pm
i¼1

1
li

Pli
j¼1 h2ArðjÞ

ðxi; ekÞ
� �h i� �� �� �1

2

:
Pn

k¼1

Pm
i¼1

1
li

Pli
j¼1 h2BrðjÞ

ðxi; ekÞ
� �h i� �� �� �1

2
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Xn

k¼1

1

li

Xli

j¼1

hArðjÞ ðx1; ekÞ
� �h i

: hBrðjÞ ðx1; ekÞ
� �h i ! ! !



Xn

k¼1

1

li

Xli

j¼1

h2ArðjÞ
ðx1; ekÞ

� �h i !" #1
2

:
Xn

k¼1

1

li

Xli

j¼1

h2BrðjÞ
ðx1; ekÞ

� �h i !" #1
2

Hence,

CHFSSfðF;AÞ; ðG;BÞg

¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

hArðjÞ ðxi; ekÞ
� �h i

: hBrðjÞ ðxi; ekÞ
� �h i ! !



Xn

k¼1

1

li

Xli

j¼1

h2ArðjÞ
ðx1; ekÞ

� �h i !" #1
2

:
Xn

k¼1

1

li

Xli

j¼1

h2BrðjÞ
ðx1; ekÞ

� �h i !" #1
2

þ
Xn

k¼1

1

li

Xli

j¼1

h2ArðjÞ
ðx2; ekÞ

� �h i !" #1
2

:
Xn

k¼1

1

li

Xli

j¼1

h2BrðjÞ
ðx2; ekÞ

� �h i !" #1
2

þ � � � þ
Xn

k¼1

1

li

Xli

j¼1

h2ArðjÞ
ðxn; ekÞ

� �h i !" #1
2

:
Xn

k¼1

1

li

Xli

j¼1

h2BrðjÞ
ðxn; ekÞ

� �h i !" #1
2

Thus

CHFSSfðF;AÞ; ðG;BÞg
CHFSSfðF;AÞg
1
2

:CHFSSfðG;BÞg
1
2

So, 0
 qHFSSfðF;AÞ; ðG;BÞg
 1.

(3) This is also straightforward.

4 Decision making based on correlation of HFSSs

Based on our proposed formula of correlation coefficient

for HFSS, we develop an algorithm under hesitant fuzzy

environment. This section also defines correlation effi-

ciency and normalized correlation efficiency, which are

required for the algorithm.

Let A ¼ A1;A2; . . .;Amf g be the set of alternatives, E ¼
E1;E2; . . .;Enf g be the set of attributes/criteria, and x ¼
x1;x2; . . .;xnf g be the weight vector of the attributes

Ejðj ¼ 1; 2; . . .; nÞ; where xj [ 0 and
Pn

j¼1 xj ¼ 1: Let

D ¼ D1;D2; . . .;Dtf g be the set of decision makers.

Decision makers Dk; k ¼ 1; 2; . . .; t; provide their opinions

using HFSS ðF;EÞ ¼ fF1;Eg; fF2;Eg; . . .;Ft;Egð Þ: Let

w ¼ w1;w2; . . .;wtf g be the normalized correlation effi-

ciency of HFSS ðFk;EÞ; k ¼ 1; 2; . . .; t; with wk [ 0 andPt
k¼1 wk ¼ 1: The attribute values of the alternatives

Ai i ¼ 1; 2; . . .;mð Þ of a decision maker Dk are represented

by the hesitant fuzzy soft matrix Rk ¼ f kij

� �

m	n
; where

f kij ¼ hkEðxi; ejÞ; e 2 E; x 2 A; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

4.1 Correlation efficiency and normalized

correlation efficiency

Definition 13 Correlation efficiency for each HFSS

ðFk;EÞ; k ¼ 1; 2; . . .; t; is defined by qHFSSðFk;EÞ ¼Pt

k¼1
qHFSS ðFk ;EÞ;ðFl;EÞf g

� �

ðt�1Þ ; where k 6¼ l; l ¼ 1; 2; . . .; t:

Definition 14 Normalized correlation efficiency

NqHFSSðFk;EÞ of HFSS ðFk;EÞ is defined below.

NqHFSSðFk;EÞ ¼
qHFSS ðFk;EÞf gPt
k¼1 qHFSS ðFk;EÞf g

� � ;

where
Xt

k¼1
NqHFSSðFk;EÞ ¼ 1:

4.2 Proposed algorithmic approach

Step 1 A group of decision makers Dk; k ¼ 1; 2; . . .; t;

provides their opinions in terms of HFSS

ðFk;EÞ; k ¼ 1; 2; . . .; t:

Step 2 Correlation coefficient qHFSS ðFk;EÞ; ðFl;EÞf g; k 6
¼ l; k; l ¼ 1; 2; . . .; t; for each pair of hesitant fuzzy soft

set is computed by Definition 12.

Step 3 Correlation efficiency qHFSSðFk;EÞ and normal-

ized correlation efficiency NqHFSSðFk;EÞ for each HFSS

ðFk;EÞ; k ¼ 1; 2; . . .; t; are computed as given in Definition

13 and Definition 14.

Step 4 HFSSs ðFk;EÞ; k ¼ 1; 2; . . .; t; provided by the

decision makers Dk; ðk ¼ 1; 2; . . .; tÞ are aggregated into a

collective decision matrix R ¼ rij
� �

m	n
using the normal-

ized correlation efficiency NqHFSSðFk;EÞ; k ¼ 1; 2; . . .; t;

which is used as the weight vector w ¼
w1;w2;w3; . . .;wtf g of decision makers. rij is computed

using HFOWA operator given in Definition 4.

Step 5 In collective decision matrix, hesitant fuzzy

weighted averaging (HFWA) operator, given in Definition

3, is used to obtain the HFEs hiði ¼ 1; 2; . . .;mÞ for the

alternatives Ai; i ¼ 1; 2; . . .;m:

Step 6 Compute the score values sðhiÞ of hi; i ¼
1; 2; . . .;m by Definition 2.
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Step 7 By ranking sðhiÞ; we get the priorities of the

alternatives Ai; i ¼ 1; 2; . . .;m and select the best one.

5 Case study I

In this section, we discuss a problem concerning an

investment company, which wants to invest an amount of

money in the best possible option. Initially the company

decides a group of four different sectors to invest the

money, which are different companies of car, food, com-

puter, and arms company. From these sectors, the company

selects, respectively, Suzuki (A1), McDonald’s (A2), IBM

(A3), and Alexander Arms (A4) as a set of four alternatives

for investment purpose. The investment company will take

the decision after analyzing the following four criteria/at-

tributes: (1) risk (E1), (2) growth (E2), (3) environmental

impact (E3), and (4) company capital (E4). The criteria

weight is given as x = (0.4, 0.3, 0.2, 0.1). The investment

company forms a group of four experts Dk; ðk ¼ 1; 2; 3; 4Þ
for taking the investment decision. The experts Dk; ðk ¼
1; 2; 3; 4Þ provide the potential information of the alterna-

tives A ¼ A1;A2;A3;A4f g with respect to the attributes

E ¼ E1;E2;E3;E4f g by the HFSMs ðF;EÞ ¼ fF1;Eg;ð
fF2;Eg; fF3;Eg; fF4;EgÞ listed in Table 2. Correlation

measures for every pair of HFSSs, i.e., CHFSS ðFk;EÞ;f
ðFl;EÞg; k ¼ 1; 2; . . .; t; l ¼ 1; 2; . . .; t; are given in

Table 3. We calculate correlation coefficients for each pair

of HFSSs qHFSS ðFk;EÞ; ðFl;EÞf g; k ¼ 1; 2; 3; 4; l ¼
1; 2; 3; 4; which is shown in Table 4. Correlation efficiency

qHFSSðFk;EÞ and normalize correlation efficiency

NqHFSSðFk;EÞ are also computed as given in Table 4. Next

we compute the collective decision matrix, given in

Table 5, using HFOWA operator and the weight vector

w ¼ w1;w2;w3;w4f g ¼ f0:25665; 0:252997; 0:248528;
0:241825g: These weights are derived from the normalize

correlation efficiency of individual HFSS. Each of the

alternatives, given in Table 5, are aggregated using HFWA

operator with the attribute weight x ¼ x1;x2;x3;x4f g ¼
f0:4; 0:3; 0:2; 0:1g to obtain the aggregated HFEs for each

of the alternatives A ¼ A1;A2;A3;A4f g, which are hA1
¼

ð0:6; 0:4; 0:2; 0:2Þ; hA2
¼ ð0:7; 0:5; 0:4; 0:3Þ; hA3

¼
ð0:6; 0:5; 0:3; 0:3Þ; and hA4

¼ ð0:6; 0:5; 0:3; 0:2Þ as

shown in Table 6. Then we calculate the score values

sðhAi
Þ ði ¼ 1; 2; 3; 4Þ of those HFEs, which are SðhA1

Þ ¼
0:35; SðhA2

Þ ¼ 0:475; SðhA3
Þ ¼ 0:425; SðhA4

Þ ¼ 0:4; and

shown in Table 6. Since SðhA2
Þ[ SðhA3

Þ[ SðhA4
Þ[

SðhA1
Þ; so A2 [A3 [A4 [ A1; thus the most desirable

alternative for investment is A2; i.e., McDonald’s as per

opinion of the group of experts.

Table 2 HFSMs for ðFi;EÞ; i ¼ 1; 2; 3; 4

E1 E2 E3 E4 E1 E2 E3 E4

(F1, E) (F2, E)

A1 (0.2, 0.5, 0.3) (0.3, 0.1, 0.5,

0.7)

(0.7, 0.2, 0.6) (0.4, 0.2) (0.4, 0.3, 0.1,

0.2)

(0.5, 0.6, 0.2) (0.4, 0.2, 0.7,

0.2)

(0.4, 0.3, 0.1)

A2 (0.5, 0.3, 0.7,

0.9)

(0.4, 0.1, 0.6) (0.4, 0.1, 0.4) (0.6, 0.3, 0.7,

0.1)

(0.4, 0.5) (0.3, 0.5, 0.6,

0.1)

(0.4, 0.6, 0.1) (0.3, 0.6)

A3 (0.4, 0.2, 0.1,

0.6)

(0.8, 0.3, 0.5) (0.5, 0.6, 0.4,

0.7)

(0.5, 0.6, 0.2) (0.8, 0.4, 0.8) (0.4, 0.2, 0.3) (0.7, 0.2, 0.4) (0.3, 0.5, 0.2,

0.7)

A4 (0.5, 0.4) (0.1, 0.6, 0.3,

0.9)

(0.5, 0.7) (0.4, 0.7, 0.3) (0.2, 0.5, 0.1,

0.6)

(0.5, 0.7, 0.1,

0.1)

(0.4, 0.2, 0.7) (0.3, 0.1, 0.5)

E1 E2 E3 E4 E1 E2 E3 E4

(F3, E) (F4, E)

A1 (0.3, 0.4) (0.4, 0.1, 0.5) (0.3, 0.5, 0.1,

0.1)

(0.5, 0.2) (0.5, 0.2, 0.1,

0.5)

(0.3, 0.2, 0.1) (0.4, 0.5, 0.3) (0.8, 0.9)

A2 (0.4, 0.2, 0.5,

0.9)

(0.3, 0.7) (0.4, 0.2, 0.5) (0.6, 0.5, 0.2) (0.8, 0.7) (0.3, 0.5, 0.6,

0.2)

(0.4, 0.3, 0.5,

0.1)

(0.4, 0.6, 0.9,

0.3)

A3 (0.5, 0.7, 0.7) (0.3, 0.5, 0.6,

0.2)

(0.4, 0.2) (0.5, 0.6, 0.2,

0.1)

(0.3, 0.2, 0.1) (0.7, 0.6) (0.5, 0.3) (0.1, 0.4, 0.2)

A4 (0.5, 0.3, 0.2) (0.3, 0.6) (0.5, 0.2, 0.5,

0.1)

(0.9, 0.8, 0.7) (0.4, 0.5, 0.2,

0.5)

(0.3, 0.2, 0.1) (0.9, 0.7, 0.9) (0.6, 0.3)

Table 3 Correlation measures of HFSS pairs

(F1, E) (F2, E) (F3, E) (F4, E)

(F1, E) 3.8075 2.9358 3.0775 3.365

(F2, E) 2.9358 3.0708 2.805 2.8475

(F3, E) 3.0775 2.805 3.4674 2.9

(F4, E) 3.365 2.8475 2.9 4.17
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6 Correlation of interval-valued hesitant fuzzy soft
sets

In real-group decision-making problems, sometimes it

becomes very much difficult for the experts to assign

specific values for the membership degrees for certain

elements, where a range of values in [0, 1] might be more

realistic. This leads the necessity to introduce the concept

of interval-valued hesitant fuzzy soft set (IVHFSS).

Definition 15 [48] Let X be a fixed set, an interval-valued

hesitant fuzzy set (IVHFS) on X is in terms of a function

that when applied to each x in X and returns a subset of

interval values in [0, 1]. IVHFS is defined as

M ¼ \x; h
_

MðxÞ[ jx 2 X
n o

;

where h
_

MðxÞ is a set of some interval values in [0, 1]

denoting the possible membership degrees of the element

x 2 X to the set E. For convenience, Wei et al. [48] defined

h
_

MðxÞ ¼ h
_

¼ cL; cR½ � as an interval-valued hesitant fuzzy

element (IVHFE) and H
_

the set of all IVHFEs.

Given three IVHFEs h
_

¼ cL; cR½ �, h
_

1 ¼ cL1 ; c
R
1

	 

, and

h
_

2 ¼ cL2 ; c
R
2

	 

, k[ 0: Wei et al. [48] defined their opera-

tions as follows:

ð1Þ h
_k

¼ [
c2h

_ cL
� �k

; cR
� �kn o

; k[ 0;

ð2Þ kh
_

¼ [
c2h

_ 1� 1� cL
� �k

; 1� 1� cR
� �kn o

; k[ 0;

ð3Þ h
_

1 � h
_

2 ¼ [
c12h

_

1;c22h

_

2

cL1 þ cL2 � cL1c
L
2 ; c

R
1 þ cR2 � cR1c

R
2

� �
;

ð4Þ h
_

1 � h
_

2 ¼ [
c12h

_

1;c22h

_

2

cL1c
L
2 ; c

R
1c

R
2

� �
:

Here cL; cR; cL1 ; c
L
2 ; c

R
1 ; c

R
2 2 ½0; 1�:

For the purpose of finding correlation coefficient of

IVHFS, we arrange the intervals in h
_

MðxiÞ in decreasing

order. This is achieved based on a transitive order relation

between two intervals defined by Moore [49] and Moore

et al. [50]. Let r : ð1; 2; . . .; nÞ ! ð1; 2; . . .; nÞ be a per-

mutation satisfying hMrðiÞðxiÞ� hMrðiÞðxiþ1Þ; i ¼

1; 2; . . .; n� 1; and h
_

MrðjÞðxiÞ be the jth largest interval in

h
_

MðxiÞ; where

h
_

MrðjÞðxiÞ ¼ h
_L

MrðjÞðxiÞ; h
_R

MrðjÞðxiÞ;
� �

� ½0; 1�; j ¼ 1; 2; . . .; li;

are intervals and

h
_L

MrðjÞðxiÞ ¼ inf h
_

MrðjÞðxiÞ; h
_R

MrðjÞðxiÞ ¼ sup h
_

MrðjÞðxiÞ:

Table 4 Correlation coefficients of HFSS pairs and correlation efficiency

(F1, E) (F2, E) (F3, E) (F4, E) Correlation efficiency Normalized Correlation efficiency

(F1, E) 1 0.8585 0.8470 0.8445 0.85 0.25665

(F2, E) 0.8585 1 0.8596 0.795738 0.8379 0.252997

(F3, E) 0.8470 0.8596 1 0.7626 0.8231 0.248528

(F4, E) 0.8445 0.795738 0.7626 1 0.8009 0.241825

Table 5 Collective decision

matrix
E1 E2 E3 E4

A1 (0.5, 0.4, 0.2, 0.1) (0.6, 0.4, 0.2, 0.1) (0.6, 0.4, 0.2, 0.2) (0.6, 0.4, 0.4)

A2 (0.8, 0.6, 0.5, 0.4) (0.6, 0.4, 0.3, 0.2) (0.5, 0.4, 0.2, 0.1) (0.7, 0.5, 0.3, 0.2)

A3 (0.6, 0.6, 0.3, 0.3) (0.7, 0.5, 0.4, 0.3) (0.6, 0.4, 0.3, 0.3) (0.6, 0.4, 0.2, 0.2)

A4 (0.5, 0.4, 0.3, 0.2) (0.7, 0.4, 0.2, 0.2) (0.7, 0.6, 0.4, 0.4) (0.7, 0.5, 0.4, 0.2)

Table 6 Aggregated alternatives and score values

Alternatives Aggregated HFE Score value

A1 (0.6, 0.4, 0.2, 0.2) 0.35

A2 (0.7, 0.5, 0.4, 0.3) 0.475

A3 (0.6, 0.5, 0.3, 0.3) 0.425

A4 (0.6, 0.5, 0.3, 0.2) 0.4
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Definition 16 [48] For an IVHFE h
_

; sðh
_

Þ ¼ 1
#h

P
c2h c is

called the score function of h
_

; where #h is the number of

the interval fuzzy values in h
_

; and sðh
_

Þ is an interval fuzzy

values belonging to [0, 1]. For two IVHFEs h
_

1 and h
_

2; if

sðh
_

1Þ� sðh
_

2Þ; then h
_

1 � h
_

2:

Definition 17 [17] Informational energy for of an IVHFS

eA ¼ \xi; h
_

MðxiÞ[ jxi 2 X; i ¼ 1; 2; . . .;m
n o

is defined by

EIVHFSðeAÞ ¼
Xm

i¼1

1

li

Xli

j¼1

cLeArðjÞ
ðxiÞ


 �2

þ cReArðjÞ
ðxiÞ


 �2
" # !

:

Definition 18 [17] For two IVHFSs eA and eB, their cor-
relation is defined by

CIVHFSðeA; eBÞ

¼
Xm

i¼1

1

li

Xli

j¼1

cLeArðjÞ
ðxiÞ:cLeBrðjÞ

ðxiÞ þ cReArðjÞ
ðxiÞ:cReBrðjÞ

ðxiÞ
� � ! !

:

For any two IVHFSs eA and eB; the correlation satisfies

the following.

ð1ÞCIVHFSðeA; eAÞ ¼ EIVHFSðeAÞ
ð2ÞCIVHFSðeA; eBÞ ¼ CIVHFSðeB; eAÞ

Definition 19 [17] Correlation coefficient between two

IVHFS eA and eB is

The correlation coefficient between two IVHFSs eA and

eB, qIVHFSðeA; eBÞ satisfies the following properties.

ð1Þ qIVHFSðeA; eBÞ ¼ qIVHFSðeB; eAÞ
ð2Þ 0
 qIVHFSðeA; eBÞ
 1

ð3Þ qIVHFSðeA; eBÞ ¼ 1; if eA ¼ eB

IVHFSS was introduced by Zhang et al. [51] which is

defined below.

Definition 20 [51] Let U be an initial universe and E be a

set of parameters. IVHFS (U) denotes the set of all interval-

valued hesitant fuzzy sets of U. Let A � E: A pair ðbF ;AÞ is
an interval-valued hesitant fuzzy soft set over U, where bF
is a mapping given by bF : A ! IVHFSðUÞ:

In other words, an interval-valued hesitant fuzzy soft

set is a parameterized family of interval-valued hesitant

fuzzy subsets of U. Thus, its universe is the set of all

interval-valued hesitant fuzzy sets of U. An interval-

valued hesitant fuzzy soft set is also a special case of a

hesitant fuzzy soft set because it is still a mapping

from parameters to interval-valued hesitant fuzzy sets

of U.

8e 2 A;FðeÞ is an interval-valued hesitant fuzzy set of U

for parameter e. FðeÞ can be written as: FðeÞ ¼

x; h
_

FðeÞðxÞ
n o

: Here h
_

FðeÞðxÞ is the set of interval-valued

fuzzy membership degrees that object x holds on parameter

e.

Example 5 Consider an interval-valued hesitant fuzzy

soft set \bF ;A[ ; where U is the set of six stages of heart

diseases under the consideration of a decision maker to

prescribe, which is denoted by U ¼ fh1; h2; . . .; h6g ¼
{Stage ‘I’, Stage ‘II’, Stage ‘III’, Stage ‘IV’, Stage ‘V’}

and A is a parameter set, where A ¼ fe1; e2; . . .; e5g ¼

{Chest pain, Palpitation, Dizziness, Fainting, Fatigue}. The

interval-valued hesitant fuzzy soft set \bF ;A[ describes

the ‘‘possibilities of various stages of heart disease’’ to the

decision maker.

qIVHFSðeA; eBÞ ¼
CIVHFSðeA; eBÞ

CIFHFSðeA; eAÞ:CIVHFSðeB; eBÞ
� �1

2

¼

Pm
i¼1

1
li

Pli
j¼1 cLeArðjÞ

ðxiÞ:cLeBrðjÞ
ðxiÞ þ cReArðjÞ

ðxiÞ:cReBrðjÞ
ðxiÞ

� �
 �

Pm
i¼1

1
li

Pli
j¼1 ½ðcLeArðjÞ

ðxiÞÞ2 þ ðcReArðjÞ
ðxiÞÞ2�


 �
 �1
2

:
Pm

i¼1
1
li

Pli
j¼1 cLeBrðjÞ

ðxiÞ

 �2

þ cReBrðjÞ
ðxiÞ


 �2
" # ! !1

2

:
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Suppose

Hence the IVIFSS \bF ;A[ is defined as

In this example, we observe that the precise value of an

object corresponding to a parameter is unknown while the

lower and upper limits are given. Here we cannot present

the precise membership degree of how chest pain is

involved with stage ‘I’ of heart disease in successive

observations, however, stage ‘I’ has the membership

degree of at least 0.5 and at most 0.7 for the chest pain

parameter at the first observation. At the second observa-

tion, stage ‘I’ has the membership degree of at least 0.2 and

at most 0.4 for the same parameter and so on.

Below we define informational energy, correlation, and

correlation coefficient of IVHFSS. These definitions can be

considered as the extensions of the ideas given in Defini-

tions 10, 11, and 12, and Definitions 17, 18, and 19.

Definition 21 Correlation CIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

for

two interval-valued hesitant fuzzy soft set ðbF ;AÞ and

ðbG;BÞ is given below.

CIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

cLArðjÞ
ðxi; ekÞ:cLBrðjÞ

ðxi; ekÞ þ cRArðjÞ
ðxi; ekÞ:cRBrðjÞ

ðxi; ekÞ
h i ! !

Fðe1Þ ¼
\h1; ½ð0:5; 0:7Þ; ð0:2; 0:4Þ; ð0:6; 0:8Þ; ð0:1; 0:3Þ�[ ;\h2; ½ð0:6; 0:8Þ; ð0:75; 0:86Þ�[ ;\h3; ½ð0:4; 0:6Þ; ð0:5; 0:7Þ; ð0:2; 0:4Þ�[
\h4½ð0:2; 0:4Þ; ð0:6; 0:8Þ; ð0:4; 0:6Þ; ð0:5; 0:7Þ�[ ;\h5; ½ð0:3; 0:5Þ; ð0:2; 0:4Þ�[ ;\h6; ½ð0:75; 0:85Þ; ð0:4; 0:6Þ; ð0:8; 0:9Þ�[

( )
;

Fðe2Þ ¼
\h1; ½ð0:7; 0:9Þ; ð0:6; 0:8Þ�[ ;\h2½ð0:2; 0:4Þ; ð0:6; 0:8Þ; ð0:4; 0:6Þ; ð0:55; 0:75Þ�[ ;\h3; ½ð0:3; 0:5Þ; ð0:2; 0:4Þ�[
\h4; ½ð0:5; 0:7Þ; ð0:2; 0:4Þ; ð0:6; 0:8Þ�[ ;\h5; ½ð0:6; 0:8Þ; ð0:75; 0:86Þ; ð0:6; 0:8Þ�[ ;\h6; ½ð0:7; 0:8Þ; ð0:45; 0:65Þ; ð0:82; 0:93Þ�[

( )
;

Fðe3Þ ¼
\h1; ½ð0:2; 0:4Þ; ð0:4; 0:6Þ; ð0:5; 0:8Þ�[ ;\h2; ½ð0:85; 0:95Þ; ð0:2; 0:4Þ; ð0:4; 0:6Þ�;\h3; ½ð0:08; 0:16Þ; ð0:3; 0:5Þ�[
\h4; ½ð0:4; 0:6Þ; ð0:5; 0:7Þ; ð0:2; 0:4Þ; ð0:7; 0:9Þ�;\h5; ½ð0:7; 0:9Þ; ð0:6; 0:8Þ�[ ;\h6; ½ð0:35; 0:55Þ; ð0:43; 0:66Þ; ð0:8; 0:9Þ�[

( )
;

Fðe4Þ ¼
\h1; ½ð0:2; 0:4Þ; ð0:4; 0:6Þ�[ ;\h2; ½ð0:85; 0:95Þ; ð0:2; 0:4Þ; ð0:4; 0:6Þ�;\h3; ½ð0:08; 0:16Þ; ð0:3; 0:5Þ�[
\h4; ½ð0:4; 0:6Þ; ð0:5; 0:7Þ; ð0:2; 0:4Þ; ð0:7; 0:9Þ�;\h5; ½ð0:7; 0:9Þ; ð0:6; 0:8Þ; ð0:1; 0:3Þ�[ ;\h6; ½ð0:35; 0:55Þ; ð0:43; 0:66Þ; ð0:8; 0:9Þ�[

( )
;

Fðe5Þ ¼
\h1; ½ð0:2; 0:4Þ; ð0:5; 0:8Þ; ð0:5; 0:7Þ�[ ;\h2; ½ð0:85; 0:95Þ; ð0:2; 0:4Þ; ð0:4; 0:6Þ�;\h3; ½ð0:08; 0:16Þ; ð0:3; 0:5Þ; ð0:4; 0:6Þ�[
\h4; ½ð0:4; 0:6Þ; ð0:5; 0:7Þ; ð0:2; 0:4Þ; ð0:7; 0:9Þ�;\h5; ½ð0:7; 0:9Þ; ð0:6; 0:8Þ; ð0:24; 0:36Þ�[ ;\h6; ½ð0:8; 0:9Þ; ð0:43; 0:66Þ; ð0:8; 0:9Þ�[

( )
:

bF ;A
D E

¼

e1;
\h1; ½ð0:5;0:7Þ; ð0:2;0:4Þ; ð0:6;0:8Þ; ð0:1;0:3Þ�[ ;\h2; ½ð0:6;0:8Þ; ð0:75;0:86Þ�[ ;\h3; ½ð0:4;0:6Þ; ð0:5;0:7Þ; ð0:2;0:4Þ�[

\h4½ð0:2;0:4Þ; ð0:6;0:8Þ; ð0:4;0:6Þ; ð0:5;0:7Þ�[ ;\h5; ½ð0:3;0:5Þ; ð0:2;0:4Þ�[ ;\h6; ½ð0:75;0:85Þ; ð0:4;0:6Þ; ð0:8;0:9Þ�[

( ) !

e2;
\h1; ½ð0:7;0:9Þ; ð0:6;0:8Þ�[ ;\h2½ð0:2;0:4Þ; ð0:6;0:8Þ; ð0:4;0:6Þ; ð0:55;0:75Þ�[ ;\h3; ½ð0:3;0:5Þ; ð0:2;0:4Þ�[

\h4; ½ð0:5;0:7Þ; ð0:2;0:4Þ; ð0:6;0:8Þ�[ ;\h5; ½ð0:6;0:8Þ; ð0:75;0:86Þ; ð0:6;0:8Þ�[ ;\h6; ½ð0:7;0:8Þ; ð0:45;0:65Þ; ð0:82;0:93Þ�[

( ) !

e3;
\h1; ½ð0:2;0:4Þ; ð0:4;0:6Þ; ð0:5;0:8Þ�[ ;\h2; ½ð0:85;0:95Þ; ð0:2;0:4Þ; ð0:4;0:6Þ�;\h3; ½ð0:08;0:16Þ; ð0:3;0:5Þ�[

\h4; ½ð0:4;0:6Þ; ð0:5;0:7Þ; ð0:2;0:4Þ; ð0:7;0:9Þ�;\h5; ½ð0:7;0:9Þ; ð0:6;0:8Þ�[ ;\h6; ½ð0:35;0:55Þ; ð0:43;0:66Þ; ð0:8;0:9Þ�[

( ) !

e4;
\h1; ½ð0:2;0:4Þ; ð0:4;0:6Þ�[ ;\h2; ½ð0:85;0:95Þ; ð0:2;0:4Þ; ð0:4;0:6Þ�;\h3; ½ð0:08;0:16Þ; ð0:3;0:5Þ�[

\h4; ½ð0:4;0:6Þ; ð0:5;0:7Þ; ð0:2;0:4Þ; ð0:7;0:9Þ�;\h5; ½ð0:7;0:9Þ; ð0:6;0:8Þ; ð0:1;0:3Þ�[ ;\h6; ½ð0:35;0:55Þ; ð0:43;0:66Þ; ð0:8;0:9Þ�[

( ) !

e5;
\h1; ½ð0:2;0:4Þ; ð0:5;0:8Þ; ð0:5;0:7Þ�[ ;\h2; ½ð0:85;0:95Þ; ð0:2;0:4Þ; ð0:4;0:6Þ�;\h3; ½ð0:08;0:16Þ; ð0:3;0:5Þ; ð0:4;0:6Þ�[

\h4; ½ð0:4;0:6Þ; ð0:5;0:7Þ; ð0:2;0:4Þ; ð0:7;0:9Þ�;\h5; ½ð0:7;0:9Þ; ð0:6;0:8Þ; ð0:24;0:36Þ�[ ;\h6; ½ð0:8;0:9Þ; ð0:43;0:66Þ; ð0:8;0:9Þ�[

( ) !

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Neural Comput & Applic (2019) 31:1023–1039 1033

123



Definition 22 Informational energy for interval-valued

hesitant fuzzy soft set ðbF ;AÞ is
EIVHFSSðbF ;AÞ

¼
Xn

k¼1

Xm

i¼1

1

li

Xli

j¼1

cLArðjÞ
ðxi; ekÞ

� �2
þ cRArðjÞ

ðxi; ekÞ
� �2� � ! !

:

For any two IVHFSSs ðbF ;AÞ and ðbG; BÞ; the correlation
satisfies the following.

ð1ÞCIVHFSS ðbF ;AÞ; ðbF ;AÞ
n o

¼ EIVHFSSðbF ;AÞ

ð2ÞCIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

¼ CIVHFSS ðbG;BÞ; ðbF ;AÞ
n o

Definition 23 Correlation coefficient between two

IVHFSS ðbF ;AÞ and ðbG;BÞ

The correlation coefficient qIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

between two IVHFSSs ðbF ;AÞ and ðbG;BÞ satisfies the fol-

lowing properties.

ð1Þ qIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

¼ qIVHFSS ðbG;BÞ; ðbF ;AÞ
n o

ð2Þ 0
 qIVHFSS ðbF ;AÞ; ðbG;BÞ
n o


 1

ð3Þ qIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

¼ 1; if ðbF ;AÞ ¼ ðbG;BÞ

7 Decision making based on correlation
of IVHFSS

In this section, we revise the algorithm, as proposed earlier

in Sect. 4, in the context of IVHFSS. This section also

presents IVHFOWA operator, correlation efficiency, and

normalize correlation efficiency of IVHFSS.

Here A ¼ A1;A2; . . .;Amf g; E ¼ E1;E2;f . . .;Eng; x ¼
x1;x2; . . .;xnf g; D ¼ D1;D2; . . .;Dtf g; m, n, and t are

similar as mentioned in Sect. 4. Decision makers Dk; k ¼

1; 2; . . .; t; provide their opinions using IVHFSS ðbF ;EÞ ¼

fbF1;Eg; fbF2;Eg;
�

. . .; bFt;EgÞ: Let w ¼ w1;w2; . . .;wtf g
be the normalized correlation efficiency of IVHFSS

ðbFk;EÞ; k ¼ 1; 2; . . .; t; with wk [ 0 and
Pt

k¼1 wk ¼ 1: The

attribute values of the alternatives Ai i ¼ 1; 2; . . .;mð Þ of a
decision maker Dk are represented by the interval-valued

hesitant fuzzy soft matrix bRk ¼ bf kij
� �

m	n
; where bfij ¼

hkEðxi; ejÞ; e 2 E; x 2 A; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

7.1 IVHFOWA operator, correlation efficiency,

and normalized correlation efficiency

For the purpose of decision making, IVHFEs are aggre-

gated. Wei et al. [48] proposed some aggregation operators

for IVHFEs, two of them are defined below. Let h
_

jðj ¼

1; 2; . . .; nÞ be a collection of IVHFEs, w ¼ ðw1;w2; . . .;

wnÞT is the weight vector of h
_

jðj ¼ 1; 2; . . .; nÞ with wj 2
½0; 1� and

Pn
j¼i wj ¼ 1:

Definition 24 [48] An interval-valued hesitant fuzzy

weighted averaging (IVHFWA) operator is a mapping

H
_ n

! H
_

such that

IVHFWA h
_

1; h
_

2; . . .; h
_

n

� �
¼
Xn

j¼1

wjh
_

j ¼ [
c12h

_

1;c22h

_

2;...;cn2h

_

n

1�
Yn

j¼1

1� cLj

� �wj

; 1�
Yn

j¼1

1� cRj

� �wj

( )
:

Definition 25 [47] Let h
_

rðjÞ be the jth larget among the

collection of IVHFEs h
_

j; j ¼ 1; 2; . . .; n: Here

rð1Þ; rð2Þ; . . .; rðnÞ is considered as a permutation of

1; 2; . . .; n; such that h
_

rðj�1Þ � h
_

rðjÞ for all j ¼ 1; 2; . . .; n: An

interval-valued hesitant fuzzy-ordered weighted averaging

(IVHFOWA) operator is a mapping IVHFOWA:H
_ n

! H
_

such that

qIVHFSS ðbF ;AÞ; ðbG;BÞ
n o

¼
CIVHFSS ðbF ;AÞ; ðbG;BÞ

n o

CIVHFSS ðbF ;AÞ; ðbF ;AÞ
n o

:CIVHFSS ðbG;BÞ; ðbG;BÞ
n o� �1

2

¼
Pn

k¼1

Pm
i¼1

1
li

Pli
j¼1 cLArðjÞ

ðxi; ekÞ:cLBrðjÞ
ðxi; ekÞ þ cRArðjÞ

ðxi; ekÞ:cRBrðjÞ
ðxi; ekÞ

h i� �� �

Pn
k¼1

Pm
i¼1

1
li

Pli
j¼1 cLArðjÞ

ðxi; ekÞ
� �2

þ cRArðjÞ
ðxi; ekÞ

� �2� �
 �
 �1
2

:
Pn

k¼1

Pm
i¼1

1
li

Pli
j¼1 cLBrðjÞ

ðxi; ekÞ
� �2

þ cRBrðjÞ
ðxi; ekÞ

� �2� �
 �
 �1
2

:
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IVHFOWA h
_

1; h
_

2; . . .; h
_

n

� �

¼
Xn

j¼1

wjh
_

rðjÞ ¼ [
crð1Þ2h

_

1;crð2Þ2h

_

2;...;crðnÞ2h

_

n

1�
Yn

j¼1

1� cLrðjÞ

� �wj

; 1�
Yn

j¼1

1� cRrðjÞ

� �wj

( )
:

Definition 26 Correlation efficiency for each IVHFSS

ðbFk;EÞ; k ¼ 1; 2; . . .; t; is defined by

qIVHFSSðbFk;EÞ ¼
Pt

k¼1 qIVHFSS ðbFk;EÞ; ðbFl;EÞ
n on o

ðt � 1Þ ;

where k 6¼ l; l ¼ 1; 2; . . .; t:

Definition 27 Normalized correlation efficiency

NqIVHFSSðbFk;EÞ of IVHFSS ðbFk;EÞ is defined below.

NqIVHFSSðbFk;EÞ ¼
qIVHFSS ðbFk;EÞ

n o

Pt
k¼1 qIVHFSS ðbFk;EÞ

n on o ;

where
Xt

k¼1
NqIVHFSSðbFk;EÞ ¼ 1:

7.2 Revised algorithmic approach

Step 1 A group of decision makers Dk; k ¼ 1; 2; . . .; t;

provides their opinions in terms of IVHFSS ðbFk;EÞ;
k ¼ 1; 2; . . .; t:

Step 2 Correlation coefficient qIVHFSS ðbFk;EÞ; ðbFl;EÞ
n o

;

k 6¼ l; k; l ¼ 1; 2; . . .; t; for each pair of IVHFSS is com-

puted by Definition 23.

Step 3 Correlation efficiency qIVHFSSðbFk;EÞ and nor-

malized correlation efficiency NqIVHFSSðbFk;EÞ for each

IVHFSS ðbFk;EÞ; k ¼ 1; 2; . . .; t; is computed as given in

Definition 26 and Definition 27.

Step 4 IVHFSSs ðbFk;EÞ; k ¼ 1; 2; . . .; t; provided by the

decision makers Dk; ðk ¼ 1; 2; . . .; tÞ are aggregated into a

collective decision matrix bR ¼ brij
� �

m	n
using the normal-

ized correlation efficiency NqIVHFSS bFk;E
� �

; k ¼ 1; 2;

. . .; t; which is used as the weight vector w ¼
w1;w2; . . .;wtf g of decision makers. brij is computed using

IVHFOWA operator by Definition 25.

Step 5 In collective decision matrix, interval-valued

hesitant fuzzy weighted averaging (IVHFWA) operator

[48] (given in Definition 24) is used to obtain the IVHFEs

h
_

iði ¼ 1; 2; . . .;mÞ for the alternatives Aiði ¼ 1; 2; . . .;mÞ:

Step 6 Compute the score values sðh
_

iÞ of h
_

iði ¼
1; 2; . . .;mÞ by Definition 16.

Step 7 By ranking sðhiÞ; we get the priorities of the

alternatives Aiði ¼ 1; 2; . . .;mÞ and select the best one.

8 Case study II

This is continuation of case study I by considering the

interval-valued representation of each HFE. Here opinions

of each expert Dk; ðk ¼ 1; 2; 3; 4Þ are shown using inter-

val-valued hesitant fuzzy soft matrices (IVFSMs)

bF ;E
� �

¼ bF1;E
n o

; bF2;E
n o

; bF3;E
n o

; bF4;E
n o� �

listed

in Table 7. These IVFSMs are normalized (in descending

order of interval values) for evaluating the subsequent

correlation measurements as followed. Correlation measure

for every pair of IVHFSS, i.e., CIVHFSS
bFk;E
� �

;
n

bFl;E
� �

g; k ¼ 1; 2; . . .; t; l ¼ 1; 2; . . .; t; is given in

Table 8. In Table 9, we calculate correlation coefficient for

each pair of IVHFSS qIVHFSS bFk;E
� �

; bFl;E
� �n o

; k ¼
1; 2; 3; 4; l ¼ 1; 2; 3; 4: We also calculate correlation effi-

ciency qIVHFSS bFk;E
� �

and normalized correlation effi-

ciency NqIVHFSS bFk;E
� �

in Table 9. Next we compute the

collective decision matrix in Table 10 using IVHFOWA

operator and the weight vector w ¼ w1;w2;w3;w4f g ¼
f0:24659; 0:25457; 0:25276; 0:24608g: Those weights are

derived from the normalized correlation efficiency of

individual IVHFSS. Each of the alternatives, given in

Table 10, is aggregated using IVHFWA operator with the

attribute weight x ¼ x1;x2;x3;x4f g ¼ f0:4; 0:3; 0:2;
0:1g to obtain the aggregated IVHFEs for each of the

alternatives A ¼ A1;A2;A3;A4f g; which are

h
_

A1
¼ fð0:5; 0:6Þ; ð0:3; 0:5Þ; ð0:2; 0:3Þ; ð0:2; 0:3Þg;

h
_

A2
¼ fð0:7; 1:0Þ; ð0:4; 0:6Þ; ð0:3; 0:5Þ; ð0:2; 0:4Þg;

h
_

A3
¼ fð0:5; 0:8Þ; ð0:4; 0:6Þ; ð0:3; 0:4Þ; ð0:2; 0:4Þg;

and h
_

A4
¼ fð0:6; 1Þ; ð0:4; 0:6Þ; ð0:2; 0:4Þ; ð0:2; 0:4Þg as

shown in Table 11. Then we calculate the score values

s h
_

Ai

� �
ði ¼ 1; 2; 3; 4Þ of those IVHFEs, which are

Sðh
_

A1
Þ ¼ ð0:3; 0:43Þ; Sðh

_

A2
Þ ¼ ð0:4; 0:63Þ; Sðh

_

A3
Þ

¼ ð0:35; 0:55Þ; Sðh
_

A4
Þ ¼ ð0:35; 0:6Þ:

Since Sðh
_

A2
Þ[ Sðh

_

A4
Þ[ Sðh

_

A3
Þ[ Sðh

_

A1
Þ; so A2 [A4

[A3 [A1; thus the most desirable alternative for

investment is A2; i.e., McDonald’s as per opinion of the

group of experts, which is similar to case study I.
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9 Comparative analysis

Case study I present the role of correlation coefficient on

HFSS and its impact in GDM process, whereas case study

II shows the role of correlation coefficient on IVHFSS and

its impact in GDM process. In both cases, correlation

coefficient plays an important role to deploy the

importance of HFSS/IVHFSS for decision-making para-

digm. HFSSs are useful mainly in situations where decision

makers hesitate to express their opinions about an element

using a single membership value and they prefer a multiple

number of membership values. The only constraint of

HFSS is that all membership values are exact. When

decision information about the elements is uncertain or

fuzzy, instead of exact fuzzy values, decision makers prefer

interval of fuzzy values. This kind of situations is well

represented by IVHFSS. Our firstly proposed algorithm

(described in Sect. 4.2) works in hesitant fuzzy environ-

ment, whereas the revised second algorithm (described in

Sect. 7.2) works in interval-valued hesitant fuzzy envi-

ronment. First algorithm uses aggregation operator, corre-

lation coefficient and correlation efficiency in the context

of HFSS, where the second algorithm uses the same in the

Table 8 Correlation measures of IVHFSS pairs

(F1, E) (F2, E) (F3, E) (F4, E)

(F1, E) 6.761 4.912 4.685 4.693

(F2, E) 4.912 5.351 4.571 4.352

(F3, E) 4.685 4.571 5.052 4.179

(F4, E) 4.693 4.352 4.179 5.387

Table 7 IVHFSMs for ðFi;EÞ; i ¼ 1; 2; 3; 4

E1 E2 E3 E4

(F1, E)

A1 (0.2, 0.3), (0.5, 0.7), (0.3, 0.4) (0.2, 0.4), (0.0, 0.2), (0.4, 0.6),

(0.6, 0.8)

(0.6, 0.8), (0.2, 0.4), (0.6, 0.8) (0.3, 0.5), (0.1, 0.3)

A2 (0.5, 0.6), (0.3, 0.4), (0.7, 0.8),

(0.9, 1)

(0.3, 0.5), (0.0, 0.2), (0.5, 0.7) (0.3, 0.5), (0.1, 0.3), (0.3, 0.5) (0.5, 0.7), (0.3, 0.4), (0.6, 0.7),

(0.1, 0.2)

A3 (0.4, 0.5), (0.2, 0.4), (0.1, 0.3),

(0.6, 0.8)

(0.7, 0.9), (0.2, 0.4), (0.4, 0.6) (0.4, 0.6), (0.6, 0.8), (0.3, 0.5),

(0.6, 0.8)

(0.4, 0.5), (0.6, 0.8), (0.1, 0.3)

A4 (0.5, 0.7), (0.4, 0.6) (0.0, 0.2), (0.5, 0.7), (0.2,

0.4)(0.8, 1.0)

(0.4, 0.5), (0.6, 0.8) (0.4, 0.5), (0.6, 0.8), (0.2, 0.4)

(F2, E)

A1 (0.3, 0.5), (0.2, 0.4), (0.1, 0.2),

(0.2, 0.3)

(0.4, 0.6), (0.6, 0.7), (0.1, 0.3) (0.4, 0.5), (0.2, 0.3), (0.6, 0.8),

(0.1, 0.3)

(0.4, 0.5), (0.2, 0.4), (0.0, 0.2)

A2 (0.3, 0.6), (0.4, 0.8) (0.2, 0.4), (0.4, 0.6), (0.5, 0.7),

(0.0, 0.1)

(0.3, 0.5), (0.5, 0.7), (0.0, 0.2) (0.2, 0.4), (0.5, 0.7)

A3 (0.7, 0.8), (0.3, 0.5), (0.7, 0.9) (0.3, 0.5), (0.2, 0.3), (0.3, 0.5) (0.6, 0.8), (0.2, 0.3), (0.3, 0.5) (0.2, 0.4), (0.4, 0.6), (0.1, 0.3),

(0.6, 0.8)

A4 (0.1, 0.3), (0.4, 0.6), (0.1, 0.2),

(0.5, 0.7)

(0.4, 0.6), (0.6, 0.8), (0.1, 0.2),

(0.1, 0.2)

(0.3, 0.5), (0.1, 0.3), (0.6, 0.8) (0.2, 0.4), (0.1, 0.2), (0.4, 0.6)

(F3, E)

A1 (0.2, 0.4), (0.3, 0.5) (0.2, 0.4), (0.1, 0.3), (0.5, 0.6) (0.2, 0.4), (0.4, 0.6), (0.1, 0.2),

(0.1, 0.2)

(0.4, 0.6), (0.2, 0.3)

A2 (0.3, 0.5), (0.2, 0.3), (0.4, 0.6),

(0.8, 1.0)

(0.3, 0.4), (0.7, 0.8) (0.4, 0.5), (0.2, 0.3), (0.4, 0.6) (0.5, 0.7), (0.4, 0.6), (0.1, 0.3)

A3 (0.4, 0.6), (0.6, 0.8), (0.7, 0.8) (0.2, 0.4), (0.4, 0.6), (0.6, 0.7),

(0.2, 0.3)

(0.3, 0.5), (0.1, 0.3) (0.4, 0.6), (0.5, 0.7), (0.2, 0.3),

(0.1, 0.2)

A4 (0.5, 0.6), (0.3, 0.5), (0.1, 0.3) (0.2, 0.4), (0.5, 0.7) (0.4, 0.6), (0.1, 0.3), (0.4, 0.5),

(0.0, 0.2)

(0.8, 1.0), (0.7, 0.9), (0.6, 0.8)

(F4, E)

A1 (0.4, 0.6), (0.2, 0.3), (0.1, 0.2),

(0.4, 0.6)

(0.2, 0.4), (0.2, 0.3), (0.1, 0.2) (0.3, 0.5), (0.4, 0.6), (0.2, 0.4) (0.7, 0.9), (0.8, 1.0)

A2 (0.7, 0.9), (0.6, 0.8) (0.2, 0.4), (0.4, 0.6), (0.5, 0.7),

(0.1, 0.3)

(0.3, 0.5), (0.2, 0.4), (0.4, 0.6),

(0.0, 0.2)

(0.3, 0.5), (0.5, 0.7), (0.8, 1.0),

(0.2, 0.3)

A3 (0.3, 0.4), (0.2, 0.3), (0.1, 0.2) (0.5, 0.8), (0.4, 0.7) (0.4, 0.5), (0.2, 0.3) (0.1, 0.2), (0.3, 0.5), (0.1, 0.3)

A4 (0.3, 0.5), (0.4, 0.6), (0.1, 0.3),

(0.4, 0.6)

(0.3, 0.4), (0.2, 0.3), (0.1, 0.2) (0.7, 0.9), (0.6, 0.8), (0.8, 1.0) (0.5, 0.7), (0.2, 0.4)
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context of IVHFSS. Our experimental result shows slightly

different ordering of the alternatives for the two cases,

although the best alternative is same, which is A2; i.e.,

McDonald’s as per opinion of the group of experts.

Table 12 shows the ordering of the alternatives. For the

comparison purpose, a similar kind of data sets has been

used by both the cases, i.e., case I and case II. More

specifically, the dataset, i.e., HFEs used by the experts in

first case, have been generalized to interval-valued HFEs in

the second case.

10 Conclusions

Correlation between two variables has wide applications

in statistical analysis. In previous studies, researchers

have shown the impact of correlation measure on various

types of fuzzy sets including IFS, IVIFS, HFS, IVHFS,

etc., to provide wider applications of correlation

measures. A common deficiency of those studies is that

the correlation measures are applied only in fuzzy sets,

rather than the soft sets. In this paper, we have introduced

correlation coefficients of HFSSs and some of their

properties. We have investigated correlation efficiency for

individual HFSS which reflects the significance of an

HFSS in decision-making process. For the purpose of

decision making, this paper has proposed correlation

efficiency which is used to assign importance to the

corresponding decision makers. This paper has also pro-

posed a decision-making algorithm which presents the

application of correlation coefficient in hesitant fuzzy

environment. In order to generalize the HFSSs to a wide

domain of hesitant fuzzy environments, we have pre-

sented IVHFSS and defined its correlation coefficient. In

the framework of IVHFSSs, we have introduced correla-

tion efficiency and revised our decision-making algorithm

to show the usage of correlation coefficient in interval-

valued hesitant fuzzy environment. Finally, two examples

are given to validate our proposed approaches. In future,

researchers might use correlation coefficient for uncertain

decision-making problems where GDM is crucial due to

lack of information, expertiseness of the experts, risk

amendment, etc. Researchers may also introduce corre-

lation coefficient for various types of soft sets and their

hybridizations.

Table 9 Correlation

coefficients of IVHFSS pairs

and correlation efficiency

(F1, E) (F2, E) (F3, E) (F4, E) Correlation efficiency Normalized correlation efficiency

(F1, E) 1 0.817 0.802 0.778 0.849 0.24659

(F2, E) 0.817 1 0.879 0.811 0.877 0.25457

(F3, E) 0.802 0.879 1 0.801 0.871 0.25276

(F4, E) 0.778 0.811 0.801 1 0.848 0.24608

Table 10 Collective decision matrix

E1 E2 E3 E4

A1 (0.4, 0.6), (0.3, 0.5), (0.2, 0.3),

(0.2, 0.3)

(0.5, 0.7), (0.3, 0.5), (0.1, 0.3),

(0.1, 0.3)

(0.5, 0.7), (0.4, 0.6), (0.2, 0.3),

(0.1, 0.2)

(0.5, 0.5), (0.4, 0.6), (0.3, 0.6),

(0.3, 0.6)

A2 (0.8, 1), (0.5, 0.7), (0.4, 0.6),

(0.4, 0.6)

(0.6, 0.7), (0.4, 0.5), (0.2, 0.4),

(0.1, 0.3)

(0.4, 0.6), (0.3, 0.6), (0.1, 0.3),

(0.1, 0.3)

(0.6, 0.6), (0.4, 0.6), (0.2, 0.4),

(0.2, 0.3)

A3 (0.6, 0.8), (0.5, 0.7), (0.3, 0.4),

(0.2, 0.4)

(0.5, 0.8), (0.4, 0.6), (0.3, 0.5),

(0.3, 0.5)

(0.5, 0.7), (0.3, 0.5), (0.2, 0.4),

(0.2, 0.4)

(0.5, 0.7), (0.3, 0.5), (0.2, 0.3),

(0.1, 0.3)

A4 (0.5, 0.7), (0.4, 0.6), (0.2, 0.4),

(0.2, 0.4)

(0.6, 1), (0.3, 0.5), (0.2, 0.3),

(0.1, 0.3)

(0.6, 1), (0.5, 0.7), (0.3, 0.5),

(0.3, 0.5)

(0.6, 1), (0.4, 0.6), (0.3, 0.5),

(0.3, 0.5)

Table 11 Aggregated

alternatives and score values
Alternatives Aggregated IVHFE Score values

A1 (0.5, 0.6), (0.3, 0.5), (0.2, 0.3), (0.2, 0.3) (0.3, 0.43)

A2 (0.7, 1), (0.4, 0.6), (0.3, 0.5), (0.2, 0.4) (0.4, 0.63)

A3 (0.5, 0.8), (0.4, 0.6), (0.3, 0.4), (0.2, 0.4) (0.35, 0.55)

A4 (0.6, 1), (0.4, 0.6), (0.2, 0.4), (0.2, 0.4) (0.35, 0.6)

Table 12 Ordering of alternatives

Case study Ordering of alternatives

Case study I A2 [A3 [A4 [A1;

Case study II A2 [A4 [A3 [A1;
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making with correlation coefficients of hesitant fuzzy linguistic

term sets. Knowl Based Syst 76:127–138

31. Malakar D, Gope S, Das S (2015) Correlation measure of hesitant

fuzzy linguistic term soft set and its application in decision

making. In: Das S, et al (eds) Proceedings of the 4th international

conference on frontiers in intelligent computing: theory &

applications (FICTA), advances in intelligent systems and com-

puting series. Springer, pp 413–423

32. Das S, Kar S (2013) The hesitant fuzzy soft set and its application

in decision making. Facets Uncertain Appl 125:235–247. doi:10.

1007/978-81-322-2301-6_18 (Springer Proceedings in Mathe-
matics and Statistics)

33. Molodtsov D (1999) Soft set theory-first results. Comput Math

Appl 37:19–31

34. Wang F, Li X, Chen X (2014) Hesitant fuzzy soft set and its

applications in multi criteria decision making. J Appl Math

2014:643785. doi:10.1155/2014/643785

35. Wang J-Q, Li X-E, Chen X-H (2015) Hesitant fuzzy soft sets with

application in multi criteria group decision making problems. Sci

World J. doi:10.1155/2015/806983

36. Chen B (2016) Generalized hesitant fuzzy soft sets. Ital J Pure

Appl Math 36:35–54

37. Ismat B, Tabasam R (2016) Ideal solutions for hesitant fuzzy soft

sets. J Intell Fuzzy Syst 30(1):143–150

38. Wei G, Zhao X, Lin R (2013) Some hesitant interval-valued

fuzzy aggregation operators and their applications to multiple

attribute decision making. Knowl Based Syst 46:43–53

39. Zhang H, Xiong L, Ma W (2015) On interval-valued hesitant

fuzzy soft sets. Math Probl Eng. doi:10.1155/2015/254764

40. Peng X, Yong Y (2015) Interval-valued hesitant fuzzy soft sets

and their application in decision making. Fundam Inform

141(1):71–93

41. Das S, Kar S (2013) Intuitionistic multi fuzzy soft set and its

application in decision making. In: Maji P, et al. (eds) Fifth

international conference on pattern recognition and machine

intelligence (PReMI), Kolkata, December 10–14, lecture notes in

computer science, vol 8251, Springer, pp 587–592

42. Das S, Kar S (2014) Group decision making in medical system:

an intuitionistic fuzzy soft set approach. Appl Soft Comput

24:196–211

43. Das S, Kar MB, Pal T, Kar S (2014) Multiple attribute group

decision making using interval-valued intuitionistic fuzzy soft

matrix. In: Proceedings of IEEE international conference on

fuzzy systems (FUZZ-IEEE), Beijing, July 6–11, pp 2222–2229.

doi:10.1109/FUZZ-IEEE.2014.6891687

1038 Neural Comput & Applic (2019) 31:1023–1039

123

http://dx.doi.org/10.1155/2013/593739
http://dx.doi.org/10.1007/978-81-322-2301-6_18
http://dx.doi.org/10.1007/978-81-322-2301-6_18
http://dx.doi.org/10.1155/2014/643785
http://dx.doi.org/10.1155/2015/806983
http://dx.doi.org/10.1155/2015/254764
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891687


44. Das S, Kar MB, Kar S (2013) Group multi criteria decision

making using intuitionistic multi fuzzy sets. J Uncertain Anal

Appl 1:10. doi:10.1186/2195-5468-1-10

45. Das S, Kar S, Pal T (2014) Group decision making using interval-

valued intuitionistic fuzzy soft matrix and confident weight of

experts. J Artif Intell Soft Comput Res 4(1):57–77

46. Das S, Kumari P, Verma AK (2015) Triangular fuzzy soft set and

its application in MADM. Int J Comput Syst Eng 2(2):85–93

47. Xu ZS, Xia MM (2011) Hesitant fuzzy information aggregation

in decision making. Int J Approx Reason 52(3):395–407

48. Wei G, Zhao X, Lin R (2013) Some hesitant interval-valued

fuzzy aggregation operators and their applications to multiple

attribute decision making. Knowl Based Syst 46:43–53

49. Moore RE (1979) Methods and applications of interval analysis.

SIAM, Philadelphia

50. Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to

interval analysis. SIAM, Philadelphia

51. Zhang H, Xiong L, Ma W (2015) On interval-valued hesitant

fuzzy soft sets. Math Probl Eng. doi:10.1155/2015/254764

Neural Comput & Applic (2019) 31:1023–1039 1039

123

http://dx.doi.org/10.1186/2195-5468-1-10
http://dx.doi.org/10.1155/2015/254764

	Correlation measure of hesitant fuzzy soft sets and their application in decision making
	Abstract
	Introduction
	Preliminaries
	HFS, HFSS, and HFSM
	Correlation measure of hesitant fuzzy set

	Correlation measure for HFSS
	Decision making based on correlation of HFSSs
	Correlation efficiency and normalized correlation efficiency
	Proposed algorithmic approach

	Case study I
	Correlation of interval-valued hesitant fuzzy soft sets
	Decision making based on correlation of IVHFSS
	IVHFOWA operator, correlation efficiency, and normalized correlation efficiency
	Revised algorithmic approach

	Case study II
	Comparative analysis
	Conclusions
	References




