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Abstract The multi-verse optimizer (MVO) is a new

evolutionary algorithm inspired by the concepts of multi-

verse theory namely, the white/black holes, which repre-

sents the interaction between the universes. However, the

MVO has some drawbacks, like any other evolutionary

algorithms, such as slow convergence and getting stuck in

local optima (maximum or minimum). This paper provides

a novel chaotic MVO algorithm (CMVO) to avoid these

drawbacks, where chaotic maps are used to improve the

performance of MVO algorithm. The CMVO algorithm is

applied to solve the feature selection problem, in which

five benchmark datasets are used to evaluate the perfor-

mance of CMVO algorithm. The results of CMVO is

compared with standard MVO and two other swarm

algorithms. The experimental results show that logistic

chaotic map is the best chaotic map that increases the

performance of MVO, and also the MVO is better than

other swarm algorithms.

Keywords Multi-verse optimizer � Chaotic maps � Feature
selection � Dimensionality reduction

1 Introduction

Nowadays, there are huge amounts of data and resources in

various fields which make the digital processing of raw data

becomes a challenging issue. These data should be kept safe

from damage or loss. So, it can be stored and arranged in

physical disks in folders or datasets; these datasets may

include a large number of attributes and features. However,

not all of these features are important andmay be irrelevant or

redundant, which may adversely affect the processing accu-

racy and increase the computational time due to the large

search space [1]. Therefore, when researchers want to

manipulate these datasets, the best practice is to apply feature

selection to choose the significant, best, important, and opti-

mal subset of them [2]. Also, the irrelevant or redundant fea-

tures are removed, which leads to improving the efficiency,

achieving better accuracy, and reducing data complexity [1].

The searching for the optimal solution in a large search

space is NP-hard problem [3] and is considered as a multi-

objective problem (minimize the number of the selected

feature and maximize the classification accuracy) [4].

Therefore, there are several models of feature selection

considered as an optimization problem to avoid an expen-

sive computational time and stagnation in local optima.

Evolutionary computation and swarm intelligence methods

are effective techniques used in this problem; the genetic

algorithms (GA) are an example of evolutionary computa-

tion [5]. The particle swarm optimization (PSO) [6], artifi-

cial bee colony (ABC) [7], grey wolf optimization (GWO)

[8], ant colony optimization (ACO) [9], and ant lion opti-

mizer (ALO) [10] are examples of swarm intelligence.

These swarm intelligence algorithms are computational

intelligence-based methods, which are made up of a popu-

lation of artificial agents and inspired by the social behavior

of animals in the real world. Most of these algorithms are
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applied in feature selection problem. In [1] a binary ABC

algorithm is introduced for choosing optimal features and

tested with ten benchmark datasets. This algorithm achieved

the best classification performance in almost all cases as

well as outperformed other methods such as GA and PSO,

whereas [11] proposed a new algorithm based on binary bare

bones PSO algorithm and kNN that proved best average

classification accuracies for 88% of the experiments’ data-

sets. In addition, [12] introduced a modified cuckoo search

algorithm with rough sets for feature selection, and also, the

authors in [13] proposed a binary ALO approach to select

the optimal feature subset in order to maximize the classi-

fication accuracy and minimize the number of selected

features. This approach was compared with three well-

known optimization algorithms, namely PSO, GA, and

binary bat algorithm; the results showed better accuracy

than other algorithms. As well as, social spider algorithm

[14], GWO [15], binary bat algorithm [16], and many other

methods such as [17–19] provided good exploitation and

exploration in general optimization problems, especially

when they have been applied in feature selection problems;

however, their accuracy, time consumption, and finding

global optimum still require more efforts to improve them.

In this direction, there are various studies provided many

tries to overcome these drawbacks. One of the most effective

tries is improving optimization methods by adding chaotic

sequences instead of random sequences; this technique

proved its performance in escaping from local minima than

other stochastic methods [20]. In [21], chaotic krill herd

(CKH) was introduced for solving optimization problems;

the Singermap is used to adjust the threemainmovements of

the krill by regulating the KH’s inertia weights. The result of

CKH showed better performance than basic KH and other

robust optimization approaches, whereas [22] improved fruit

fly optimization algorithm (FOA) by introduced a new

parameter (alpha) to generate food sources. This parameter

was integrated with chaotic maps to produce chaotic FOA

(CFOA) and tested in 14 well-known test functions. The

Chebyshevmap proved best performance andCFOAshowed

fast convergence rate and good ability to find the global

optimum. In addition, there are many other studies utilized

chaotic to solve optimization problem and proved effec-

tiveness against standardmethods, such as [23–26], and [27].

In the other hand, chaotic maps are applied in feature

selection problems; in this trend, [4] proposed a chaotic ALO

(CALO) by adapted the parameter which is used to improve

the trade-off between exploration and exploitation. The per-

formance ofCALOwas better thanALO,PSO, andGA. In the

same efforts, [28] provided chaotic binary PSO (CBPSO), and

it used two chaotic maps, namely logistic and Tent to set the

inertia weight of BPSO. The results showed that the BPSO

with tent map achieved higher accuracy than logistic map.

Improved chaotic genetic algorithm (ICGA) was introduced

by Li et al. [29]. It used the tent map to generate the initial

population and logisticmap inmutation operation. The results

showed better performance than other methods.

Therefore, the ability of chaotic is that it can help opti-

mization methods by overcoming many drawbacks, such as

trapping in local minima, slow searching, premature con-

vergence, and time consuming; all these are motivating us to

utilize chaotic maps to improve MVO and maintain the

population diversity in the problem of interest. In this paper,

we propose a new feature selection algorithm, which com-

bines chaotic maps with MVO. The main advantages of this

improving are to maximize the classification accuracy and

minimize the size of the selected feature. The rest of this

paper is arranged as follows: Section 2 provides the concept

of MVO algorithm. Chaotic maps are introduced in Sect. 3.

The proposed algorithm is given in Sect. 4. Section 5 dis-

cusses the experiments results. The conclusion of this paper

and future work are given in the last section.

2 Materials and methods

2.1 Multi-verse optimizer (MVO) algorithm

Multi-verse optimizer (MVO) is a new nature-inspired

algorithm that emulates the theory of multi-verse in phy-

sics, and it simulates the interaction between universes. It

was introduced by Mirjalili to deal with various opti-

mization problems [30].

2.1.1 Inspiration

Following [30], the authors mentioned that in the multi-

verse theory states, there is more than one big bang that

causes the generation of a universe. The concept of multi-

verse points to the existence of other universes in addition

to our universe [31], and this is opposite of universe. These

universes can be interact and/or collide with each other

based on the multi-verse theory. There are three concepts

in the multi-verse theory, namely white holes, black holes,

and wormholes. A white hole (also called the big bang) is

created when the collisions between parallel universes

occur; therefore, it is considered as the main component for

the birth of a universe, and in our universe, these holes are

not seen. Unlike a white whole, black holes (have been

observed frequently) attract everything including light

beams with their extremely high gravitational force [32].

Finally, the wormholes connect different parts of a universe

together, and they act as time/space travel tunnels where

objects are able to travel instantly between any corners of a

universe (or even from one universe to another). The

objects are allowed to move between different universes

through white/black hole tunnels. When a white/black
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tunnel is established between two universes, the universe

with higher inflation rate is considered to have a white

hole, whereas the universe with less inflation rate is

assumed to own black holes. The objects are then trans-

ferred from the white holes of the source universe to black

holes of the destination universe.

2.1.2 Mechanism

In this section, MVO algorithm is illustrated based on the

concept of a white hole and black hole in order to explore

search spaces and the wormholes are used to improve the

quality of MVO in exploiting the search spaces.

In MVO algorithm [30], white holes tend to transmit

objects to other universes, whereas black hole tend to receive

these objects. So, over the iterations, the inflation rates of all

universes are enhanced.Wormholes helps inmaintaining the

diversity of universes to improve the exploration phase of the

search space and the exploitation phase, and prevent getting

trapped in local optima. So, the MVO algorithm starts with

generating random universes, in every iteration, objects use

the white/black holes to transferee from the universe with

high inflation rates to other universe with low inflation rates.

In addition, the objects in any universe aremoved by random

teleportations via wormholes toward the best universe.

These processes are repeated until the end criteria is satisfied.

Therefore, there are three rules are implemented in

MVO algorithm: (1) If the inflation rate is high, this

increases the probability of having a white hole and

decreases the probability of having a black hole. (2) The

universes send objects from a white hole and receive them

from a black hole, according to their inflation rate. (3) The

universes’ objects may be updated by the objects of the

universe, which has the best inflation rate by wormholes.

In MVO algorithm [30], each universe represents a

solution, and each object in the universe is a variable in the

solution. Each universe also, has an inflation rate, which is

proportional to the corresponding fitness function value of

the solution.

The mathematical model of the white/black hole tunnels

is represented by considering the population of universes U

as [30]:

U ¼

x11 x21 . . . xd1

x21 x22 . . . xd2

..

. ..
. ..

. ..
.

x1n x2n . . . xdn

2
66664

3
77775

ð1Þ

where d is the dimension of the problem (number of

parameters) and N is the number of universes. These uni-

verses are sorted based on their inflation rates (fitness

function values), and then the object x
j
i ( the jth parameter

of ith universe) is exchanged by using the roulette wheel

mechanism that selects universe Uk as in Eq. (2):

x
j
i¼

x
j
k if r1\NIðUiÞ
x
j
i otherwise

(
ð2Þ

where r1 2 ½0; 1� is a random number, Ui is the ith universe,

andNI ðUiÞ is normalized inflation rate (fitness value) of theUi.

The less inflation rate indicates that a higher probability

of sending objects through white/black hole tunnels. By

supposing that each Ui has wormholes (that transport the

objects of Ui through space randomly), the exploitation is

performed and the diversity of universes is maintained.

These wormholes are changing the objects of the universes

in random form without consideration of their inflation

rates. Also, the wormholes are used to update the uni-

verses’ objects and improve the rate of inflation by

changing the objects of the universe which has the best

inflation rate as the following:

x
j
i¼

Xb
j þTDR� ubj� lbj

� �
� r4þ lbj

� �
r3\0:5

Xb
j �TDR� ubj� lbj

� �
� r4þ lbj

� �
r3�0:5

(
r2\WEP

x
j
i r2�WEP

8>><
>>:

ð3Þ

where Xb
j shows the jth parameter in the best solution, lbj and

ubj indicate the lower and the upper bounds respectively in

jth variable, r2; r3; and r4 are random numbers in [0, 1].

The traveling distance rate (TDR) is a coefficient that is

applied to determine the distance to allow a wormhole

move the object to the best universe, and it is defined as:

TDR ¼ 1� t1=p

T1=p
ð4Þ

where t equals the current iteration, T indicates the length

of iterations, and p equals 6 as a default value and deter-

mines the exploitation accuracy over the iterations.

The wormhole existence probability (WEP) is used to

increase linearly over the repetition to emphasize

exploitation and the WEP is defined as:

WEP ¼ WEPmin þ t � WEPmax �WEPmin

T

� �
ð5Þ

where WEPmin equals 0.2 as a default value, WEPmax

equals 1 as a default value.

The computational complexity of the MVO algorithm is

calculated based on the number of iterations and universes

as well the mechanism of roulette wheel and sorting. The

sorting algorithm has the complexity of Oðn log nÞ in the

best case and Oðn2Þ in the worst case. And the roulette

wheel selection is of O(n) or Oðlog nÞ depending on the

implementation. The following equations show the overall

computational complexity [30]:
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OðMVOÞ ¼ O l n2 þ n� d � log n
� �� �

ð6Þ

where n is the universes’ number, l is the maximum iter-

ations’ number, and d is the objects’ number.

2.2 Chaotic maps

Chaotic methods have important properties such as ergod-

icity, stochastically intrinsic, and showing irregular conduct

as well as sensitive dependence on the initial conditions

[4, 33]. These properties have been translated to various

equations which are called ‘‘chaotic maps’’ to be applicable

for using in computational applications such as optimization

problem. So, using these maps to update random variables in

optimization methods is called chaotic optimization algo-

rithm (COA) [21]. This change makes optimization methods

inherit the strength of chaos such as the ergodic and non-

repetition; so, it can escape from local optima and attain a

high-speed searches than random search.

In this paper, we use one-dimensional, non-invertible

maps to create a set of chaotic values, to adjust MVO

parameters. In Table 1 there are five chaotic maps which

are used in the experiments.

3 The proposed chaotic multi-verse optimizer-
based feature selection

In this section, the proposed algorithm for feature selection

in wrapper mode is illustrated, which the chaotic theory is

combined with the standard MVO algorithm. The chaotic

theory has an important feature that its ability to change the

initial values for the data which makes different in system

behaviors. As in the standard MVO algorithm, Eq. (3) is

the main equation to improve the inflation rate using

wormholes, and the parameter r4 is an important parameter

that affects in updating position in the exploration phase.

Therefore, the tuning of this parameter using chaotic maps

plays an important role to improve the MVO mechanism to

perform exploitation and avoid local optima. The proposed

algorithm (called CMVO) adapts this parameter in each

iteration of the optimization process. In Fig. 1 and Algo-

rithm 1 the proposed algorithm is illustrated.

The CMVO starts with constructing the chaotic map

(using one from Table 1), then generating a random pop-

ulation of size N and dimension d, in which each universe

Table 1 Five different chaotic

maps used in this study
No Map name Equation

1 Tent

xiþ1 ¼

xi

0:7
xi\0:7

10

3
ð1� xiÞ xi � 0:7

8><
>:

2 Logistic xiþ1 ¼ axið1� xiÞ; a ¼ 4

3 Singer xiþ1 ¼ l 7:86xi � 23:31x2i þ 28:75x3i � 13:301875x4i
� �

l ¼ 1:07

4 Sinusoidal xiþ1 ¼ ax2i sinðpxiÞ; a ¼ 2:3

5 Piecewise

xiþ1 ¼

xi

p
0� xi\p

xi � p

0:5� p
p� xi\0:5

1� xi � p

0:5� p
0:5� xi\1� p

1� xi

p
1� p� xi\1

8>>>>>>>>><
>>>>>>>>>:

Fig. 1 The proposed algorithm (CMVO)
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(solution) represents a combination of features. The object

in universe is represented as binary value using the fol-

lowing formula:

x
j
i¼

1 if x
j
i [ r

0 otherwise

(
ð7Þ

where r 2 ½0; 1� is a random value, the fitness function is

taken into concentration the accuracy (KNN classifier is

used) and the number of selected feature. The fitness

function must maximize the classification accuracy and

minimize the selected features; therefore, it defined as:

Fitness function ¼ c� NC

N
þ b� 1� ds

d

� �
ð8Þ

where c and b are the weighted factors which have value in

[0, 1] to balance between the minimization the number of

features and maximization the accuracy of classification

and ds is the number of selected features. d is the total

number of features. NC is the correct number of classified

instances. NC

N
is the classification accuracy of kNN classi-

fier; it is evaluated after splitting the dataset into training

and testing sets using fivefold cross-validation method,

where the algorithm runs five times, and at each run, the

dataset is split into five classes. One of them is chosen to

represent the testing set, and the four classes are used to

represent the training set. The accuracy at each run is

calculated, and then the average of accuracy for five runs is

computed, which represents the final output.

After computing the fitness function for each solution (in-

flation rate), the solutions are sorted (using Quick sorting

algorithm) based on their fitness values. Then the white/black

holes model (lines 14–20 in Algorithm 1) is performed using

the roulettewheel selectionmechanism.Thewormholemodel

is computed (lines 21–32), where the value of r4 has been

selected from the chaotic map. Then the global best function

and its corresponding global best solution are computed as in

lines 10–11. The previous steps are repeated until stop con-

ditions are satisfied (maximum number of iterations).
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4 Experiments and discussion

A comparative analysis has been done between the fol-

lowing algorithms, MVO based on tent chaotic map, MVO

based on logistic chaotic map, MVO based on Singer

chaotic map, MVO based on sinusoidal chaotic map, MVO

based on piecewise chaotic map, the standard MVO, PSO,

and ABC. In the rest of this paper, when the name of

chaotic map is mentioned separately, it refers to the CMVO

based on this map.

Each algorithm has been applied 10 times with random

positioning of the search agents. The parameters settings

for all algorithms are as follows, numbers of search agents

are 25, max iteration is 100, problem dimension is d, and

search domain is [01]; as well as PSO: Inertial weight ¼ 1,

Inertia weight damping ratio ¼ 0:9, Personal learning

coefficient ¼ 1:5, and Global learning coefficient ¼ 2:0.

For ABC, a number of limit trials ¼ 5, and in MOV and

CMVO algorithms the WEPmin ¼ 0:2 and WEPmax ¼ 1.

4.1 Datasets

The datasets are taken from the UCI data repository [34].

Five datasets are used to validate the performance of the

proposed algorithm. Fivefold cross-validation is applied to

Table 2 The datasets used in this study

Dataset Sample Feature Classes

1 Wisconsin 699 9 2

2 Dermatology 358 34 6

3 DNA 3186 180 3

4 Ion 351 34 2

5 Sonar 208 60 2

Table 3 The number of

selected features using eight

algorithms

Dataset MVO Tent Logistic Singer Sinusoidal Piecewise PSO ABC

Wisconsin 6 6 6 6 6 6 6 6

Dermatology 7 14 11 10 9 10 13 9

DNA 86 88 95 92 99 97 102 94

Ion 15 20 21 20 17 25 17 17

Sonar 39 27 38 31 33 35 36 33

Table 4 The accuracy of all algorithms with different classifiers that represent the correct classification rate

Datasets Classifiers Sinusoidal Piecewise Singer Logistic Tent MVO PSO ABC ALL

Wisconsin RF 88 97 93 94 88 91 90 91 96

J48 88 97 93 94 88 91 90 91 93

Kstar 93 96 96 94 88 91 90 91 91

LMT 93 97 96 94 88 91 90 91 97

Dermatology RF 100 92 92 100 78 92 91 97 100

J48 100 97 94 94 86 92 86 94 97

Kstar 97 92 94 100 83 86 89 97 86

LMT 100 97 94 100 83 94 94 94 100

DNA RF 84 76 72 92 92 90 92 76 92

J48 76 76 64 86 92 86 90 74 94

Kstar 42 64 60 78 73 71 68 68 60

LMT 86 72 74 92 92 90 90 70 90

Ion RF 100 100 92 100 96 100 96 87 91

J48 100 88 92 100 91 100 96 91 91

Kstar 92 75 88 87 91 91 88 78 83

LMT 96 96 92 96 96 100 96 87 96

Sonar RF 77 92 73 85 71 87 92 79 87

J48 77 69 67 92 86 87 85 79 80

Kstar 69 100 73 85 71 87 85 93 87

LMT 77 77 67 77 64 73 85 71 80
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split a whole dataset into labeled training set (80% sample)

and unlabeled testing set (20% sample). Table 2 summa-

rizes these datasets in details.

4.2 Performance metrics

To compute the performance of the algorithms, four clas-

sifiers have been tested and evaluated including Random

Forest (RF), J48 decision tree (J48), Kstar, and logistic

model tree (LMT).

Also, performance of all algorithms has been evaluated

by using different measures of performance, namely

accuracy, precision, sensitivity, specificity, NPV, and F-

measure.

4.2.1 Classification accuracy

The classification accuracy for the experiment is defined as

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
� 100 ð9Þ

where TP, TN, FP, and FN are represented the true posi-

tive, true negative, false positive, and false negative,

respectively.

4.2.2 Sensitivity and specificity

Sensitivity measures the proportion of actual positives

which are correctly identified (also called recall).

Table 5 The PSSNF measures

of selected features of

Wisconsin dataset between

CMVO (based on chaotic maps)

and the other three algorithms

Algorithms Classifiers Precision Sensitivity Specificity NPV F-measure

Sinusoidal RF 0.92 0.96 0.96 0.92 0.94

J48 0.92 0.96 0.96 0.92 0.94

Kstar 0.92 0.96 0.96 0.92 0.94

LMT 0.92 0.96 0.96 0.92 0.94

Piecewise RF 0.94 0.93 0.93 0.94 0.94

J48 0.89 0.86 0.86 0.89 0.88

Kstar 0.91 0.92 0.92 0.91 0.92

LMT 0.93 0.93 0.93 0.93 0.93

Singer RF 0.90 0.95 0.95 0.90 0.92

J48 0.90 0.95 0.95 0.90 0.92

Kstrat 0.90 0.95 0.95 0.90 0.92

LMT 0.90 0.95 0.95 0.90 0.92

Logistic RF 0.93 0.91 0.91 0.93 0.92

J48 0.90 0.86 0.86 0.90 0.88

Kstar 0.93 0.91 0.91 0.93 0.92

LMT 0.93 0.91 0.91 0.93 0.92

Tent RF 0.83 0.88 0.88 0.83 0.85

J48 0.83 0.88 0.88 0.83 0.85

Kstar 0.83 0.88 0.88 0.83 0.85

LMT 0.83 0.88 0.88 0.83 0.85

MVO RF 0.91 0.90 0.90 0.91 0.91

J48 0.91 0.90 0.90 0.91 0.91

Kstar 0.93 0.94 0.94 0.93 0.94

LMT 0.93 0.94 0.94 0.93 0.94

PSO RF 0.89 0.95 0.95 0.89 0.92

J48 0.89 0.95 0.95 0.89 0.92

Kstar 0.89 0.95 0.95 0.89 0.92

LMT 0.89 0.95 0.95 0.89 0.92

ABC RF 0.92 0.94 0.94 0.92 0.93

J48 0.92 0.94 0.94 0.92 0.93

Kstar 0.92 0.94 0.94 0.92 0.93

LMT 0.92 0.94 0.94 0.92 0.93
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Senstivity ¼ TP

TPþ FN
� 100% ð10Þ

Specificity measures the proportion of negatives which are

correctly identified.

Specificity ¼ TN

FPþ TN
� 100% ð11Þ

4.2.3 Negative predictive value

The negative predictive value (NPV) is the probability that

gives a negative result and it is defined as the proportion of

subjectswith a negative test resultwho are correctly classified.

NPV ¼ TN

TNþ FN
� 100% ð12Þ

A high NPV for a given test means that when the test yields

a negative result, it is most likely correct in its assessment.

4.2.4 F-measure

The F-measure (also, called F-score) is the harmonic mean

of both measures recall and precision. It is defined as:

F-measure ¼ 2 precisionþ recallð Þ
precision� recall

ð13Þ

Table 6 The PSSNF measures

of selected features of

Dermatology dataset between

CMVO (based on chaotic maps)

and the other three algorithms

Algorithms Classifiers Precision Sensitivity Specificity NPV F-measure

Sinusoidal RF 0.93 0.96 0.99 0.99 0.95

J48 0.93 0.96 0.99 0.99 0.95

Kstar 0.93 0.96 0.99 0.99 0.95

LMT 0.93 0.96 0.99 0.99 0.95

Piecewise RF 0.93 0.96 0.99 0.99 0.95

J48 0.91 0.93 0.98 0.98 0.92

Kstar 0.91 0.91 0.98 0.98 0.91

LMT 0.89 0.90 0.98 0.98 0.89

Singer RF 0.93 0.96 0.99 0.99 0.95

J48 0.93 0.96 0.99 0.99 0.95

Kstar 0.93 0.96 0.99 0.99 0.95

LMT 0.88 0.88 0.98 0.98 0.88

Logistic RF 0.86 0.83 0.98 0.98 0.85

J48 0.89 0.90 0.98 0.98 0.89

Kstar 0.96 0.98 0.99 0.99 0.97

LMT 0.89 0.90 0.98 0.98 0.89

Tent RF 0.76 0.76 0.95 0.95 0.76

J48 0.82 0.82 0.96 0.96 0.82

Kstar 0.81 0.83 0.96 0.96 0.82

LMT 0.83 0.84 0.97 0.97 0.84

MVO RF 0.96 0.96 0.99 0.99 0.96

J48 0.95 0.96 0.99 0.99 0.95

Kstar 0.98 0.98 0.99 0.99 0.98

LMT 0.93 0.93 0.98 0.98 0.93

PSO RF 0.91 0.91 0.98 0.98 0.91

J48 0.93 0.96 0.99 0.99 0.95

Kstar 0.91 0.91 0.98 0.98 0.91

LMT 0.88 0.88 0.98 0.98 0.88

ABC RF 0.97 0.98 0.99 0.99 0.97

J48 0.97 0.98 0.99 0.99 0.97

Kstar 0.85 0.94 0.99 0.98 0.89

LMT 0.97 0.98 0.99 0.99 0.97
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4.3 Results and discussion

The results of the CMVO algorithm based on different

five maps compared to other swarm algorithms are given

in Tables 3, 4, 5, 6, 7, 8, 9 and 10 and Figs. 2, 3, 4 and 5

(All in tables and figures points to the classification

based all features). Table 3 illustrates the number of

selected features using different algorithms, and

Tables 4, 5, 6, 7, 8 and 9 demonstrate the performance

of different classifiers for each dataset based on the

features selected.

Tables 4 and 5 as well as Figs. 2 and 3 show the average

of classification rate and the average of precision, sensi-

tivity, specificity, F-measure, and NPV measures for

Wisconsin dataset employing swarm algorithms and

CMVO algorithm with different classifiers. (Note in the

following we will refer to these measures precision, sen-

sitivity, specificity, NPV, and F-measure by PSSNF

measures).

The accuracy of piecewise algorithm is the best (97%),

followed by the Singer and logistic which have the same

accuracy like if all features are used (94%). The MVO and

ABC algorithms are (same accuracy 91%) best than the rest

of algorithms (sinusoidal is 90%, PSO is 90%, and Tent is

88%). Also, from Table 5 we can conclude that the higher

performance is the sinusoidal map (based on term PSSNF,

in general, has 94%), the ABC algorithm is the second best

with accuracy 93%. Then the rest algorithms have the

nearly the same performance expect the Tent algorithm is

less than all algorithms.

Table 7 The PSSNF measures

of selected features of DNA

dataset between CMVO (based

on chaotic maps) and the other

three algorithms

Algorithms Classifiers Precision Sensitivity Specificity NPV F-measure

Sinusoidal RF 0.92 0.91 0.96 0.96 0.92

J48 0.86 0.86 0.93 0.94 0.86

Kstar 0.75 0.70 0.85 0.86 0.73

LMT 0.92 0.88 0.94 0.95 0.90

Piecewise RF 0.92 0.92 0.97 0.97 0.92

J48 0.92 0.92 0.97 0.97 0.92

Kstar 0.80 0.75 0.87 0.89 0.77

LMT 0.92 0.92 0.97 0.97 0.92

Singer RF 0.79 0.85 0.91 0.89 0.82

J48 0.83 0.85 0.93 0.92 0.84

Kstar 0.80 0.76 0.88 0.89 0.78

LMT 0.83 0.86 0.91 0.91 0.85

Logistic RF 0.88 0.89 0.96 0.95 0.89

J48 0.88 0.88 0.95 0.95 0.88

Kstar 0.74 0.71 0.86 0.87 0.72

LMT 0.92 0.91 0.96 0.96 0.91

Tent RF 0.87 0.94 0.96 0.94 0.91

J48 0.89 0.89 0.96 0.95 0.89

Kstar 0.75 0.76 0.88 0.87 0.76

LMT 0.91 0.91 0.96 0.96 0.91

MVO RF 0.90 0.90 0.95 0.95 0.90

J48 0.86 0.85 0.92 0.92 0.86

Kstar 0.66 0.62 0.81 0.83 0.64

LMT 0.89 0.88 0.94 0.94 0.88

PSO RF 0.95 0.97 0.98 0.98 0.96

J48 0.91 0.90 0.96 0.96 0.91

Kstar 0.80 0.76 0.89 0.90 0.78

LMT 0.99 0.98 0.99 0.99 0.99

ABC RF 0.89 0.91 0.96 0.95 0.90

J48 0.93 0.88 0.94 0.96 0.90

Kstar 0.67 0.65 0.82 0.82 0.66

LMT 0.92 0.91 0.96 0.96 0.91
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The results for the Dermatology dataset are shown in

Tables 4 and 6, as well as Figs. 2 and 4. From these results,

we can observe that the sinusoidal and logistic algorithms

yield a better accuracy of 99% (with nine and eleven fea-

tures respectively). Also, the ABC algorithm has higher

performance than Piecewise, Singer, The standard MVO,

PSO, and Tent algorithms(94, 94, 91, 90 and 83%

respectively). From Table 6 the ABC algorithm and the

standard MVO have the best results (overall measures);

however, there is a small difference between them and

sinusoidal (96%). Then the Singer is better than all other

algorithms, namely piecewise, logistic, tent and PSO

algorithms (94, 92, 85 and 93% respectively).

Tables 4 and 7 as well as Figs. 2 and 5 illustrate the

performance of algorithms for DNA dataset. The

logistic and tent algorithms yield a better accuracy of

87% (with 95 and 88 features respectively). Also, the

PSO, MVO algorithms and if all features are selected

are the same results (85%), and their performance is

higher than the rest of algorithms. From Table 6, the

PSO algorithm has the best results (in term PSSNF)

93%, followed by the piecewise (91%). Then the tent

(with accuracy 89%) is higher than sinusoidal and

logistic (have nearly performance 88%). Then ABC

(87%) is better than MVO and Singer (86%). Also, This

table illustrates that the best algorithm in the term of F-

Table 8 The PSSNF measures

of selected features of Ion

dataset between CMVO (based

on chaotic maps) and the other

three algorithms

Algorithms Classifiers Precision Sensitivity Specificity NPV F-measure

Sinusoidal RF 1.00 1.00 1.00 1.00 1.00

J48 1.00 1.00 1.00 1.00 1.00

Kstar 0.89 0.94 0.94 0.89 0.91

LMT 0.94 0.97 0.97 0.94 0.96

Piecewise RF 1.00 1.00 1.00 1.00 1.00

J48 0.86 0.88 0.88 0.86 0.87

Kstar 0.69 0.77 0.77 0.69 0.73

LMT 0.94 0.97 0.97 0.94 0.96

Singer RF 0.91 0.91 0.91 0.91 0.91

J48 0.91 0.91 0.91 0.91 0.91

Kstar 0.83 0.92 0.92 0.83 0.87

LMT 0.91 0.91 0.91 0.91 0.91

Logistic RF 1.00 1.00 1.00 1.00 1.00

J48 1.00 1.00 1.00 1.00 1.00

Kstar 0.81 0.92 0.92 0.81 0.86

LMT 0.94 0.97 0.97 0.94 0.95

Tent RF 0.94 0.97 0.97 0.94 0.95

J48 0.88 0.94 0.94 0.88 0.91

Kstar 0.88 0.94 0.94 0.88 0.91

LMT 0.94 0.97 0.97 0.94 0.95

MVO RF 1.00 1.00 1.00 1.00 1.00

J48 1.00 1.00 1.00 1.00 1.00

Kstar 0.88 0.94 0.94 0.88 0.91

LMT 1.00 1.00 1.00 1.00 1.00

PSO RF 0.94 0.97 0.97 0.94 0.96

J48 0.94 0.97 0.97 0.94 0.96

Kstar 0.83 0.92 0.92 0.83 0.87

LMT 0.94 0.97 0.97 0.94 0.96

ABC RF 0.84 0.87 0.87 0.84 0.85

J48 0.88 0.94 0.94 0.88 0.91

Kstar 0.72 0.79 0.79 0.72 0.75

LMT 0.84 0.87 0.87 0.84 0.85
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measure is the PSO followed by the CMVO based on

most chaotic maps expect singer map that less than

ABC algorithm.

Tables 4 and 8 as well as Figs. 2 and 6 give the results

for Ion dataset. The results in these tables are established

the performance of the MVO algorithm which has the

better accuracy ( 98% with 15 features) followed by the

sinusoidal (97% with 17 features). The performance of

logistic is better than the rest of the algorithms with

accuracy 96%, also the remaining algorithms have close

performance expect ABC algorithm that has 86%. From

Table 8 and Fig. 6, we can reach to the same results above,

in which the best one is MVO the sinusoidal. These algo-

rithms have the better performance in term of F-measure

and all other performances (Precision, Sensitivity, Speci-

ficity, and NPV).

Table 9 The PSSNF measures

of selected features of Sonar

dataset between CMVO (based

on chaotic maps) and the other

three algorithms

Algorithms Classifiers Precision Sensitivity Specificity NPV F-measure

Sinusoidal RF 0.76 0.78 0.78 0.76 0.77

J48 0.76 0.78 0.78 0.76 0.77

Kstar 0.68 0.71 0.71 0.68 0.69

LMT 0.76 0.78 0.78 0.76 0.77

Piecewise RF 0.93 0.93 0.93 0.93 0.93

J48 0.69 0.69 0.69 0.69 0.69

Kstar 1.00 1.00 1.00 1.00 1.00

LMT 0.79 0.83 0.83 0.79 0.81

Singer RF 0.72 0.75 0.75 0.72 0.74

J48 0.66 0.67 0.67 0.66 0.66

Kstar 0.73 0.73 0.73 0.73 0.73

LMT 0.66 0.67 0.67 0.66 0.66

Logistic RF 0.83 0.89 0.89 0.83 0.86

J48 0.92 0.94 0.94 0.92 0.93

Kstar 0.85 0.85 0.85 0.85 0.85

LMT 0.76 0.78 0.78 0.76 0.77

Tent RF 0.71 0.73 0.73 0.71 0.72

J48 0.86 0.89 0.89 0.86 0.87

Kstar 0.71 0.71 0.71 0.71 0.71

LMT 0.64 0.65 0.65 0.64 0.64

MVO RF 0.86 0.90 0.90 0.86 0.88

J48 0.86 0.90 0.90 0.86 0.88

Kstar 0.87 0.87 0.87 0.87 0.87

LMT 0.73 0.73 0.73 0.73 0.73

PSO RF 0.93 0.93 0.93 0.93 0.93

J48 0.86 0.88 0.88 0.86 0.87

Kstar 0.83 0.89 0.89 0.83 0.86

LMT 0.86 0.88 0.88 0.86 0.87

ABC RF 0.79 0.79 0.79 0.79 0.79

J48 0.79 0.79 0.79 0.79 0.79

Kstar 0.93 0.94 0.94 0.93 0.93

LMT 0.71 0.71 0.71 0.71 0.71

Table 10 Comparisons using

LSD test between CMVO-

Logistic and all other algorithms

Sinusoidal Piecewise Singer Tent MVO PSO ABC ALL

Mean Difference (I–J) 4.95 4.33 7.83* 10.37* 5.42 5.71* 7.25* 2.62

p value 0.085 0.132 0.007 0.000 0.060 0.048 0.012 0.361

* The mean difference is significant at the 0.05 level
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The results for the Sonar dataset are given in Tables 4

and 9 as well as Figs. 2 and 7. We can conclude from these

results that the PSO algorithm has the higher performance

overall algorithms in all terms, then both piecewise and the

logistic are in the second rank with accuracy 85%, and over

the PSSNF measures, they have close values. Also, the

MVO is better than the rest of algorithms (tent, sinusoidal,

Singer, and ABC with accuracy 73, 75, 70, and 80%,

respectively).

Finally, from all previous results, to determine the based

feature selection algorithm we compute the mean accuracy

over all datasets as in Fig. 8. From this figure, we can

conclude that the best algorithm is the logistic (with

accuracy 92%), followed by the piecewise. The sinusoidal,

the standard MVO, and PSO algorithms are have the close

value of accuracy 89%; however, this accuracy value is

less than if all features are used. Also, the piecewise and

sinusoidal algorithms have the same accuracy 87%, fol-

lowed by the ABC and tent algorithms (with accuracy

85%) that are better than Singer algorithm (83%).

Moreover, for the purpose of illustration, Fig. 9 illus-

trates the boxplots representing the accuracy averages of all

algorithms using all datasets. It is evident from Fig. 9 that

the logistic algorithm is located at the upper side of the

figure, which refers to the high accuracy scores of its

results than the results of other algorithms.

Fig. 2 The average of accuracy over all classifiers for each dataset using different feature selection algorithm

Fig. 3 The average of each PSSNF measure for Wisconsin dataset

1002 Neural Comput & Applic (2019) 31:991–1006

123



4.4 ANOVA analysis

To further analysis the previous results, the analysis of

variance (ANOVA) test is used. So far, we have examined

the means of a set of measures using ten runs to mean of

the accuracy showing that some differences can be found

among them. We used the ANOVA test with post hoc LSD

test to further statistically compare all the algorithms over

their mean accuracies on all datasets. Here, the null

hypothesis is that all algorithms are equivalent in term of

accuracy rate. The ANOVA gives a statistical value called

p value, if this value is smaller than the significance level

(a ¼ 0:05) we can say that they are significantly different

and we reject the null hypothesis. The LSD test is used

after the null hypothesis is rejected and this test is used to

determine the difference among the algorithms.

The p value, in our experiment, was 0.028, and this

value was less than a; therefore, we rejected the null

hypothesis and used the LSD test in order to determine

whether there is exists a significant difference between the

logistic map and other algorithms. Table 10 shows the LSD

result, and we can observe from this table that these results

are consistent with Fig. 8. Also, there is no significant

difference between the accuracy of logistic, the sinusoidal,

and piecewise, also, no significant difference with classi-

fication using all features.

However, there is a significant difference between

algorithm logistic and four algorithms, namely tent, singer,

Fig. 4 The average of each PSSNF measure for Dermatology dataset

Fig. 5 The average of each PSSNF measure for DNA dataset
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PSO, and ABC. We can conclude that the logistic is a much

better feature selection algorithm.

5 Conclusions and future works

In this paper, a novel optimization algorithm based on

chaotic and multi-verse optimizer (CMVO) is proposed

using five chaotic maps for global optimization of feature

selection. The characteristics of the chaotic systems such as

regularity and semi-stochastic are used to improve the

performance of the MVO algorithm. The CMVO algorithm

based on five chaotic maps is tested using five benchmark

datasets collected from UCI repository, in which the per-

formance of CMVO algorithm is compared with standard

MVO and two other swarm algorithms namely, PSO and

ABC. The experimental results showed that tuned MVO

with chaotic maps increases the performance of classifi-

cation rate with minimizing the number of selected fea-

tures. From the results, we can conclude that the CMVO-

based logistic map is better feature selection algorithm

compared to all other algorithms; also, in general, chaotic

maps increase the performance of MVO, for example,

CMVO based on sinusoidal and piecewise are better than

ABC and tent algorithms. In the worst results of CMVO-

based Singer map (with 83%), its performance nearly equal

Fig. 6 The average of each PSSNF measure for Ion dataset

Fig. 7 The average of each PSSNF measure for Sonar dataset
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to ABC algorithm. In future, we will improve the MVO

algorithm by applying more chaotic maps to different

applications.
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