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Abstract Non-alcoholic fatty liver disease (NAFLD) is

one of the most common diseases in the world. Recently

the FibroScan device is used as a noninvasive, yet costly

method to measure the liver’s elasticity as a NAFLD

indicator. Other than the cost, the diagnosis is not widely

accessible to all patients. On the other hand, early detection

of the disease can prevent later risks. In this study, we aim

to use learning methods to infer the NAFLD severity level,

only based on clinical tests. A dataset was constructed from

clinical and ultrasonography data of 726 patients who were

diagnosed with different NAFLD severity levels. Artificial

neural networks (ANN) were used to model the relation-

ship between NAFLD and the clinical tests. Next, a method

was used to analyze the ANN and extract compact and

human understandable rules. The derived rules can detect

the fatty liver disease with an accuracy above 80%.

Keywords Disease detection � Non-alcoholic fatty liver

disease (NAFLD) � Artificial neural networks (ANNs) �
Rule extraction

1 Introduction

Liver is the biggest internal part of the human body that

performs a big role in human life [1, 2]. Non-alcoholic fatty

liver disease (NAFLD) is among the most common dis-

eases related to liver and has several severity levels; it

starts with a simple steatosis and develops to cirrhosis

[3, 4]. Appropriate and early detection of the disease is

very important as it can prevent serious later risks [5, 6].

Liver biopsy was introduced as a first method for fatty

liver disease detection [6, 7]. But recently, optical methods

(or image analyses [2]) have become more popular because

of being less invasive and risky for the patient. The

FibroScan is the least risky method for measuring the

elasticity of liver [8, 9]. The elasticity measure shows the

level of the NAFLD severity [1, 4, 10, 11]. Table 1 pre-

sents different levels of the NAFLD.

The accuracy of the FibroScan is higher than other

NAFLD detection methods. However, it is an expensive

and not widely accessible method. Therefore, researchers

are seeking to create a system for disease severity detection

which requires simpler and less paid tests [12–16]. The

main problem of these systems (such as the Forns score

system in 2002 [14] and Angulo method in 2007 [13]) is

that only certain levels of disease are detectable with

accuracy values much lower than FibroScan. In this

research, we introduce a new simple and less paid method

for NAFLD detection based on artificial neural networks

(ANN). In the new method, severity levels of fatty liver

disease are induced from clinical features obtained from

complete blood count (CBC) and ultrasonography test. The

CBC is a common test, and the result contains parameters

that explain the conditions of organs through measuring

different enzymes in blood (like sugar, cholesterol, and

urea).

The dataset used in this research was obtained from

patients who visited Sayad Shirazi hospital in the Golestan

province, Iran in 2011. The dataset contains results of the

blood test, ultrasonography, and FibroScan for the patients.

All the participants gave oral informed consent to use these

data for scientific purposes, and the study was approved by

our Ethical Committee.
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In this research, after preprocessing, parameters of the

blood test and ultrasonography were applied as inputs to a

neural network. The known disease level from FibroScan

serves as the class label (the network output) in the training

phase. The relationship between input and output is

attained by training the neural network. Usually a neural

network presents a good result in classification of training

data, but the network prediction is less interpretable by

humans [17–19]. In the literature, different methods have

been developed for rule extraction from neural networks

[20, 21]. The outcome of such methods is a collection of

rules, which can be used as alternative to the original

neural network in operation [17]. The rules have the benefit

of being more comprehensible by the user. In this paper, a

Four-Step Rule Extraction (FSRE) method is introduced to

derive the rule set from the neural network. This method

has less complexity with an equal or higher accuracy when

compared to several other methods. The results of applying

the FSRE method in NAFLD severity detection present the

efficiency and usefulness of this rule extraction method in

comparison with previous work.

This paper is organized as follows. Section 2 reviews

previous works in the liver fibrosis diagnosis and rule

extraction context. Our rule extraction method from neural

network is presented in Sect. 3. Section 4 includes the

evaluation and simulation results. Finally, Sect. 5 presents

the conclusion.

2 Related works

In this section, we first review the studies related to rule

extraction for NAFLD detection, and then discuss the

studies on rule extraction using neural networks. The

methods whereby the researchers could propose to evaluate

a fibrosis diagnosis score using blood test parameters are

described.

Forns et al. [14] examined the relationship between

laboratory test values and liver fibrosis on 351 patients.

They concluded that the parameters age, gamma-glutamyl

transpeptidase (GGT), total-cholesterol (T-CHOL), and

platelets (PLT) are independent predictors of fibrosis.

They created the below formula based on these

parameters:

Score ¼ 7:811 � 3:131 � ln PLTð Þ þ 0:781 � ln GGTð Þ
þ 3:467 � ln Ageð Þ � 0:014 � TCHOLð Þ

ð1Þ

This method can attain a cutoff value for detecting only

the significant levels of the disease (F2–F4). Wai et al. [16]

reported that the ratio between the multiple of the upper

limit associated with a normal glutamic oxaloacetic

transaminase (GOT) and PLT is useful for assessing liver

fibrosis. The formula obtained in their research is shown

below.

Score ¼ GOT

upper limited of normal for GOT

PLT

� 100 ð2Þ

The Wai et al. method, similar to the Forns et al.

method, can only detect significant levels of fibrosis (F2–

F4 levels). Lok et al. [15] used blow formula to predict

liver cirrhosis rather than graded assessment of fibrosis:

Log odds predicted cirrhosisð Þ

¼ �5:56 � 0:0089 � PLT þ 1:26 � GOT

GPT
þ 5:27

� PT INR; ð3Þ

in which the PT_INR is the international normalized ratio

of prothrombin time.

Rule extraction using artificial neural networks is an

appropriate method to extract suitable rules for disease

detection or classification. For rule extraction, first a neural

network is selected according to the problem in hand.

Second, the training process yields the relation between

input and output features. Finally, this relation is expressed

in the form of a set of limited, simple, and efficient rules.

Different algorithms exist for rule extraction from neural

networks which can be classified in different aspects.

The type of attributes in the database is an important

issue for a rule extraction method. Some methods are

suitable for datasets only containing continuous attributes

(e.g., temperature, height, weight) [22]. Some other meth-

ods only support dataset containing discrete attributes (e.g.,

sex, education level, and religion) [23, 24]. There are some

methods that can deal with attributes containing both dis-

crete and continuous types [21, 25].

The rule extraction methods can also be classified based

on the form of the neural network’s output. Some methods

Table 1 The results of the

FibroScan for detecting five

levels of NAFLD

Levels Description

F0 Absence of fibrosis (no fibrosis)

F1 Perisinusoidal or portal involvement (portal fibrosis without septa)

F2 Perisinusoidal and portal/periportal involvement (portal fibrosis and few septa)

F3 Septal or bridging fibrosis (numerous septa without cirrhosis)

F4 Cirrhosis
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express results in the form of an M-of-N rule set. In this

case, N conditions (without any priority or ordering) are

considered for an output class. An input sample is a

member of this class if it satisfies at least M conditions. For

example the M-of-N rule for two-bit XOR problem may be

expressed as follows: ‘‘if (exactly 1 of 2 inputs is true) then

Odd parity, else Even parity’’ [23]. However, majority of

available methods are based on IF–THEN rules. In this

case, each rule declares a condition of belonging to a

special output class. For example the IF–THEN rule for

two bits XOR problem is: ‘‘if (X1 = 1 and X2 = 0) or

(X1 = 0 and X2 = 1) then Odd parity, else Even parity’’

[26, 27]. There are some other methods that employ fuzzy

conditions instead of crisp ones. In this case fuzzification

and defuzzification operations will be required [21, 28, 29].

Some of the rule extraction methods use the self-orga-

nizing map (SOM) neural networks [30, 31]. Generally, the

outcome of such methods is a very simple rule set that can

be applied in simple datasets. As this type of neural net-

works is only used for data representation and deriving

relations between neighborhoods, they are not generally

useful for classification problems. Malone et al. [31]

applied a SOM neural network on the Iris dataset to show

the differences among samples of different classes and also

their relations to the nearby samples in the same classes.

Then they derived the classification rules. Some of the

methods are useful for radial-basis function (RBF) neural

networks. These methods can be used for more complex

classification/clustering problems. Also the obtained results

from these methods have a higher accuracy [32]. Most

existing rule extraction methods leverage multilayer per-

ceptron (MLP) neural networks. These networks are useful

for both simple and complex classification/clustering

problems and generally present higher accuracy values

[27, 33].

Most existing rule extraction methods are used for

classification. In these issues, the desired output includes

discrete values that represent several distinct categories. In

this case, the number of neurons in the output layer of the

neural network accommodates with the number of avail-

able categories [26, 34, 35]. There are also small numbers

of procedures that can be used for regression problems. In

these studies, unlike classification, the desirable output is

continuous. In this case, there is only one neuron in the

output layer of the neural network which produces the

result [36, 37].

There are three types of overall approaches for rule

extraction: the Pedagogical approach considers the entire

neural network as a black box, and extracts the desired

rules regardless of the operations within the network, and

only with respect to its inputs and outputs [27, 38]. In the

Decompositional approach, the rules are obtained by

decomposing some parts of the neural network (input,

hidden, and output) and considering the conducted opera-

tions in each section [39–41]. And finally the Eclectic

approach uses a combination of compositional and peda-

gogical approaches [20].

3 Rule extraction using neural networks

The existing rule extraction methods are useful for simple

problems and can only support less complex in datasets.

Although a neural network is capable of classifying more

complex data, but rule extraction from this data leads either

to a very large number of rules or rules with low accuracy

results. On the other side, the complexity in fatty liver

severity detection based on clinical data is significant, and

existing methods cannot achieve the appropriate rule set.

We use a Four-Step Rule Extraction algorithm which can

derive rules from ANN in complex problems. This method

which is a decompositional approach is applicable to

multilayer perceptron (MLP) neural networks and is cap-

able of extracting IF–THEN rules for classification

problems.

FSRE has four main phases. The first phase is the Data

preprocessing/representation phase in which the input data

are normalized using data mining techniques, the second

phase is the Model learning in which the main classifica-

tion operation is performed by training an MLP neural

network. The Pruning phase comes next in which some of

the less importance connections and neurons in the network

are pruned. Finally, the last phase is Rule extraction which

derives rules from the pruned neural network. The details

of the process will be explained in the next subsections.

3.1 Data preprocessing/representation

In most problems, raw data in its initial form may not lead

to ideal classification results, and usually some prepro-

cessing techniques are required for simplification and

increasing the accuracy. The goal of this step is to process

the initial data such that the neural network can classify the

data with a maximum accuracy. To this aim, some of the

data mining techniques may be used, including aggrega-

tion, sampling, dimensionality reduction, feature subset

selection, feature creation (extraction, mapping, and con-

struction), discretization, and feature transformation [42].

Later in Sect. 4, we describe the specific operations per-

formed on the dataset of this study.

3.2 Model learning

The second phase includes creation, training, and valida-

tion of a learner model. The method uses an MLP neural

network with a standard structure (only one hidden layer)
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as a learner model for data classification. A three-layer

(input, hidden, and output layers) fully connected neural

network is constructed. The structure of this neural network

is determined according to the dataset. The number of

neurons in the input and output layers is equal to the

number of features and the number of output classes,

respectively. The hidden layer size is gradually incre-

mented until the desired accuracy is obtained based on the

validation subset of data. All weights (edges value) in the

neural network are initialized to small random values. The

value of bias is equal to 1, and only the hidden layer

contains a bias node. The tangent hyperbolic and linear

functions are used as the activation functions of the hidden

and output layers, respectively.

The back-propagation algorithm is used for training the

neural network, and the network performance is calculated

using the Mean Square Error (MSE) measure. The gener-

alized error is calculated using unseen samples of the test

set.

3.3 Pruning

Usually the neural networks are fully connected, but not all

of these connections are significant. Some may even be

ineffective for predicting the neural network output [19].

Rule extraction from a fully connected neural network is

very difficult (or impossible), and the final result has low

comprehensibility. The purpose of neural network pruning

is to remove the connections and nodes that are less useful

in predicting the output. After pruning, the neural network

structure will be simpler and contains only the most

dominant connections and nodes.

First the connections between the hidden and output

layers are pruned. This process specifies the effective

hidden neurons for each output class. Afterward, the inef-

fective input edges for each hidden neuron are removed.

This process will be continued until the final neural net-

work efficiency is acceptable.

The continuous output values of the hidden neurons are

one of the critical issues in the rule extraction methods that

complicates perception of neural network calculations. The

output values of hidden neurons are in the interval [-1, 1]

because of applying the tangent hyperbolic activation

function The outputs of hidden neurons per each input data

are converted to discrete values using one or more

threshold values (Such as Fig. 1).

3.4 Rule extraction

The last phase of the FSRE method is rule extraction. In

this phase, a set of simple rules is extracted from structure

of the pruned neural network. This phase contains four

steps described below.

Step 1 Determining hidden layer patterns of input

samples: input samples are applied to the network to obtain

the discrete output values from the hidden layer. These

discrete values constitute the hidden layer pattern of the

sample. In Fig. 2, an example of pattern generation is

shown for input samples in a pruned neural network. In this

example, the input samples have three distinct features and

belong to output classes. The trained neural network used

for this problem initially had four neurons in the hidden

layer, but only two neurons (H2 and H4) remained after

pruning. Moreover, the second feature of the data was also

pruned and was not further used in later steps of rule

extraction. Discretization of the hidden layer outputs cre-

ated two and four discrete values for neurons H2 and H4,

respectively. By applying each sample to this neural net-

work, the pattern of that sample was obtained and shown in

the rightmost table of Fig. 2.

Step 2 Sample classification: Each collection of samples

with identical hidden layer patterns constitutes a category.

Each category is associated with one output class according

to the majority of network predicted outputs for samples of

that category. Hence, input samples with the same hidden

layer pattern would belong to the same class. Notably,

several different categories may be assigned to one par-

ticular class.

Figure 3 shows the classification of the samples in the

previous example based on the pattern obtained from the

neural network. In this example, it is seen that three distinct

patterns are created for the samples. Samples with the

sample pattern belong to the same category. The categories

(and the respective samples) are associated with output

classes,

Fig. 1 Discretization of the output value for one hidden neuron

according to the threshold values
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Step 3 Pruning and combining: Several categories may

be associated to the same class, and also because of

pruning input features, duplicate samples may exist in

some categories. Therefore, we need to handle these issues,

as stated below, to create the final rule set:

• Removing the duplicate samples in each category. In

Fig. 4a, samples 6,8,3 and 6,4,3 are similar because of

pruning the second feature. In this case, one of the

samples is deleted.

• Combining similar samples to create a more general

case (or rule). In Fig. 4b, samples 1,...,7 and 2,...,7 have

Fig. 2 Determining the pattern for each input sample

Fig. 3 Classifying input

samples according to their

pattern

Fig. 4 Management of classes

for the production of final rules
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been combined together due to having same value in

the third feature and successive values in the first

feature.

• Combining categories that belong to the same output

class. In Fig. 4c, the two created categories in class C2

are combined together.

• If similar cases (or rules) exist in the new categories,

they are combined/pruned to create more general cases

(or rules). In Fig. 4d, samples 5,…,3 and 6,...,3
produced in the new category have been combined

together for having the same values in the third, and

successive values in the first feature.

• Presenting the classification rule set for each output

class. In the presented example, final rules for the

classification of samples are produced according to the

categories obtained for class C1 (Fig. 4b) and the

category produced for Class C2 (Fig. 4d). In this

example, values of the first feature for the two output

classes were separated, and there was no need to use the

third feature in the production of rules (Fig. 4e).

Step 4 Default rule: among the classes, the one with the

largest number of samples, or the largest number of rules,

or most classification error value is identified. This output

class is considered as a default response (rule) for input

samples. If an input sample is not supported by any other

rules, the default rule is applied. This process reduces the

number of rules and improves the results.

Finally, the rule set is constructed and can be applied to

unseen (test) data. This rule set can be used on new data

instead of the neural network if its efficiency is acceptable.

We further analyze the performance of FSRE on two com-

mon datasets and compare its accuracy with other methods.

4 Evaluation results

In this research, the proposed method is used for NAFLD

severity detection based on the clinical parameters. The

FibroScan result is considered as the desired output for

each sample (patient). This result consists of five severity

levels introduced previously in Table 1. Four different

neural networks were used to detect the four severity levels

(F1–F4). If an input sample is not classified as belonging to

any of the four levels, it is labeled as ‘‘healthy’’ and

belongs to the default level (F0). In this section we present

the evaluation and the obtained results.

4.1 Dataset

The collected dataset contains 726 samples (patients). The

following 17 features were recorded for each sample:

personal information (sex, age, height, and weight), blood

test parameters (total-cholesterol (T-CHOL), high-density

lipoprotein (HDL), low-density lipoprotein (LDL),

Triglyceride (TG), blood creatinine (CRE), glomerular

filtration rate (GFR), blood urea (BU), alkaline phosphatase

(ALP), gamma-glutamyl transpeptidase (GGT), fasting

blood sugar (FBS), white blood cell (WBC), and platelets

(PLT)), and ultrasonography result (Ultra_Score). Each

patient is classified to one of the five severity levels.

Table 2 presents the output classes and number of samples

in each class.

4.2 Efficiency parameters

The accuracy, sensitivity, and specificity metrics are used

to measure efficiency of the propose method. The metrics

are calculated as follows:

Accuracy ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ

¼ Number of Correctly Classified samples

Total number of samples

ð4Þ

Sensitivity ¼ TP

TP þ FN
ð5Þ

Specificity ¼ TN

TN þ FP
ð6Þ

In Eqs. (4)–(6), the TP, TN, FP, and FN stand for

number of true positive, true negative, false positive, and

false negative results, respectively.

4.3 Preprocessing

The dataset includes 17 basis features in which some of

them may be irrelative for the classification. So the

importance and priority of these features are initially

examined, then the appropriate features are selected. We

used information gain (IG) [43] to rank the features. The

information gain is a statistical property based on entropy.

Once the entropy of a feature varies widely for different

samples in a category, it indicates that the feature is

unstable; hence, it is not appropriate for identifying that

category. Table 3 represents the information gain results,

and the priorities of various features in different

categories.

The results presented in Table 3 show that the superior

features have IG scores near to zero (\0.05). Evaluation of

the method using these features shows low sensitivity

values in classification (Table 4).

Therefore, solely using these features is not suitable for

disease severity detection. To increase the efficiency of the

system, another feature named Forns_Score, proposed by

Forns et al. [14], is employed as below:
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Forns Score ¼ 7:811 � 3:131 � ln PLTð Þ þ 0:781

� ln GGTð Þ þ 3:467 � ln Ageð Þ � 0:014

� TCHOLð Þ
ð7Þ

The research conducted in [14] designed a noninvasive

method aimed to discriminate between patients with and

without significant liver fibrosis (Level F2–F4 vs. F0–F1).

Using the Forns_Score on the dataset, 82.35% of patients

in the significant levels (F2–F4) can be successfully

detected. Also the Body Mass Index (BMI) feature was

employed by the following formula and added to dataset.

BMI ¼
Weightkg

Height2
m

ð8Þ

The F0 class was considered as the default answer,

because it has more number of samples among the classes.

So, it is assumed that the input sample by default belongs

to this class if it does not satisfy any other rule. The four

separate detector systems are considered for the four dis-

ease levels (based on Table 1). The seven more effective

features selected by the information gain score are repre-

sented in Table 5.

After choosing the features, an effective method is needed

to convert the continuous values to discrete values. Many

methods were presented for this purpose in recent years (e.g.,

CAIM [44], Fast-CAIM [45], Modified-CAIM [46], and Ur-

CAIM [47]). In this research, the ur-CAIM method is used

because of its performance results compared to the other

methods. The discretization operation is done separately for

each detector. Afterward, the new features values are nor-

malized to the unit interval. The general normalization

method is used to value normalization.

NormData ¼ Data � lDatað Þ
rData

ð9Þ

After the above-mentioned preprocessing operations, the

data are ready to be applied to the neural network. For the

implementation, 70% of the dataset is used for training, 15%

is used for validation, and the rest are used for testing. The

proportion of the different classes in each subset is consistent

with the proportion of these classes in the dataset.

4.4 Results

In this stage, four detector systems are considered to the

four existing disease levels (except for F0 level). The

structure of the neural network for each detector is decided

independently. The parameters of these neural networks

will be assigned according to the method mentioned in

Sect. 2. Each detector system will solely decide on its

specified class (one vs. all). After the training phase, the

efficiency value is calculated using the whole data, then all

of the additional connections and neurons are pruned. The

input sample will be applied to the detectors in a hierar-

chical manner (and not simultaneous). The order of

applying a sample to these detectors is based on the

probability of each class as shown in Fig. 5.

Table 2 Output classes and

number of samples in each class
Output class Class F0 Class F1 Class F2 Class F3 Class F4

Number of samples in each class 415 151 132 23 5

Table 3 Information gain score

for some superior features
Feature number F1 F2 F3 F4

1 LDL (0.007) FBS (0.025) HDL (0.012) HDL (0.008)

2 Weight (0.005) Ultra-Score (0.024) T-CHOL (0.009) Ultra-Score (0.006)

3 HDL (0.004) HDL (0.016) Weight (0.006) Weight (0.004)

4 Ultra-Score (0.003) Weight (0.012) LDL (0.006) LDL (0.004)

5 Height (0.002) T-CHOL (0.011) Ultra-Score (0.003) T-CHOL (0.004)

: : : : :

Table 4 Result of the neural

network on the 170s basic

features

Classes Number of hidden neuron Sensitivity (%) Specificity (%)

F1 23 78.14 89.73

F2 20 62.12 92.24

F3 19 52.17 98.86

F4 10 60.00 99.58
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The advantage of the hierarchical scheme over the

simultaneous one is that there is no uncertainty and sub-

scription in the detector systems’ decisions. The errors will

also be reduced in this manner, because each sample is

exactly member of a special class. Table 6 represents the

structure of neural networks and the results of training and

pruning phases. At the end, the discrete models are created

for the samples, and classification rules are obtained for

each class (see the results in Table 7).

The results in Table 6 indicate that the neural networks

(used as detector systems) can detect the data during the

training phase very well. Also, these neural networks will

obtain more ideal results with a simpler structure for seri-

ous cases of the disease (i.e., F3 and F4). The classification

accuracies for classes F1 and F2 are above 80% which are

better than the previous works. The results of the pruning

phase also indicate that the sensitivity of the detectors has

increased; even with the elimination of some connections,

the obtained results are congruous and acceptable.

In Table 7, it is shown that the neural networks with a

simpler structure lead to the production of a lower number

of rules, and the received results of these rules are almost

equal to the results of pruning phase (Table 6). These

results are ideal for effective levels of disease (F2, F3, and

F4) and are acceptable for the early stage of disease (F1).

The set of extracted rules are as follows:

• Class F4:

if LDL\216ð Þ and FornsScore� 115:01ð Þ then ClassF4

• Class F3:

if UltraScore ¼ 1or7½ �ð Þ and LDL\178:5ð Þ and

FronsScore� 109:035ð Þ then ClassF3

if UltraScore ¼ 1or3or5or7½ �ð Þand LDL� 178:5ð Þand

69:8� FBS\220:7ð Þand FornsScore� 109:035ð Þ
then ClassF3

if 2�UltraScore� 6ð Þand LDL\178:5ð Þand 69:8�ð
FBS\220:7Þand FornsScore� 109:035ð Þthen ClassF3

• Class F2:

if LDL� 71:5ð Þand FornsScore� 106:485ð Þ
then ClassF2

if 3�UltraScore� 5ð Þand LDL\65:5ð Þand

FornsScore� 106:485ð Þthen ClassF2

if UltraScore ¼ 1ð Þand 65:5�LDL\71:5ð Þand

FornsScore� 106:485ð Þthen ClassF2

• Class F1:

if LDL� 105:5ð Þand TRIG\275:5ð Þand BMI\ð
32:108Þand 105:085� FronsScore\106:725ð Þ
then ClassF1

if LDL\104:5ð Þand TRIG\263ð Þand BMI\ð
32:108Þand 105:085� FronsScore\106:725ð Þ
then ClassF1

if LDL\104:5ð Þand TRIG� 275:5ð Þand BMI\ð
32:108Þand 105:085� FronsScore\106:725ð Þ
then ClassF1

if LDL\104:5ð Þand TRIG\241:5ð Þand BMI�ð
32:667Þand 105:085� FronsScore\106:725ð Þ
then ClassF1

• Class F0:

Default is Class F0

Table 5 Features applied to the

neural network rule extraction
No. Feature Complete name

1 Ultra_Score Ultrasound test result

2 HDL High-density lipoprotein

3 LDL Low-density lipoprotein

4 TG Triglyceride

5 FBS Fasting blood sugar

6 BMI Body mass index

7 Frons_Score Frons et al. [14] detector for significant liver fibrosis (F2–F4 vs. F0–F1)

Fig. 5 Applying the input sample to the detector systems as

hierarchical form
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4.5 Discussion

This section compares experimental results of FSRE with

the results of other works. Table 8 compares FSRE results

of NAFLD severity detection with those produced using

Frons_Score [14], JRip Rule Induction [48], and J48 [49]

algorithms on the dataset.

Breast cancer and Wine datasets from UCI database [50]

are used to test the proposed method and to evaluate its

performance. The obtained results are compared with other

popular rule extraction methods including SV-DT [51],

RGANN [52], Rex-P [53], and Rex-M [53]. Considering

the results shown in Tables 9 and 10, the FSRE is able to

produce a rule set with a higher accuracy and compre-

hensibility compared to the existing methods.

5 Conclusion

In this research, a new technique was introduced for liver

fibrosis diagnosis using neural networks. This technique

consists of four main phases, namely data preparation,

constructing and training the detectors (neural networks)

for various severity levels of the disease, pruning, and rule

extraction. The method was used to determine the rela-

tionship between clinical parameters and the severity of

NAFLD (non-alcoholic fatty liver) disease. After training

and eliminating the unnecessary connections in these

detectors, the relationships between clinical parameters and

levels of NAFLD disease were obtained in the form of a set

of rules. In this research, a hierarchical system has been

used to appropriately detect the various severity levels of

the disease. The ultimate accuracy of these rules for

severity levels of F1, F2, F3, and F4 is, respectively, equal

to 80.58, 93.94, 99.31, and 100%. The results are superior

compared with the existing scoring systems.

In this study, only a few clinical parameters were used

for NAFLD diagnostic, and other parameters are ignored.

These parameters will be investigated in future works. Also

using other base networks and training models such as

ELM/Kernel ELM instead of MLP to achieve a better and

Table 6 The obtained results

after training and pruning

phases

Number of hidden unit Training phase result Pruning phase result

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Class F1 5 80.79 82.78 84.76 81.21

Class F2 3 94.96 93.60 93.93 93.77

Class F3 3 100 99.28 100 99.28

Class F4 2 100 100 100 100

Table 7 The obtained results from extracted rules

Number of rules Sensitivity (%) Specificity (%)

Class F1 5 99.34 75.65

Class F2 3 93.93 93.77

Class F3 3 100 99.28

Class F4 1 100 100

Table 8 Accuracy of the different methods for NAFLD severity

diagnosis

FSRE (%) Forns_Score (%) JRip (%) J48 (%)

Class F1 80.58 70.11 76.72 67.07

Class F2 93.94 82.51 79.75 72.17

Class F3 99.31 91.32 94.76 93.52

Class F4 100 99.31 98.76 98.62

Table 9 Comparison of the

results obtained for Breast

cancer problem

FSRE SV-DT [51] RGANN [52] Rex-P [53] Rex-M [53]

No. of rules 2 4 2 3 15.6

Avg. no. of condition 3 2.25 3 – –

Rule accuracy (%) 96.56 92.98 96.28 95.97 93.43

Table 10 Comparison of the

results obtained for Wine

problem

FSRE SV-DT [51] RGANN [52] Rex-P [53] Rex-M [53]

No. of rules 3 18 3 4 13.8

Avg. no. of condition 2 6.28 3 – –

Rule accuracy (%) 95.50 81.36 91.01 90.98 92.22
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more helpful rule set in real clinical environments can be

another direction of future work.
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L, Kim M, Krawczyk S, Robson SC, Herman M, Otvos JD (2016)

Steatohepatitis and liver fibrosis are predicted by the character-

istics of very low density lipoprotein in nonalcoholic fatty liver

disease. Liver Int 36(8):1213–1233

5. Gorunescu F, Belciug S, Gorunescu M, Badea R (2012) Intelli-

gent decision-making for liver fibrosis stadialization based on

tandem feature selection and evolutionary-driven neural network.

Expert Syst Appl 39(17):12824–12832

6. Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN (2016)

Quantification of liver fat: a comprehensive review. Comput Biol

Med 71:174–189

7. Siddiqui MS, Patidar KR, Boyett S, Luketic VA, Puri P, Sanyal

AJ (2015) Performance of non-invasive models of fibrosis in

predicting mild to moderate fibrosis in patients with nonalcoholic

fatty liver disease (NAFLD). Liver Int 36:572–579

8. Afdhal NH (2012) Fibroscan (transient elastography) for the

measurement of liver fibrosis. Gastroenterol Hepatol 8(9):605

9. Gaia S, Campion D, Evangelista A, Spandre M, Cosso L, Bru-

nello F, Ciccone G, Bugianesi E, Rizzetto M (2015) Non-invasive

score system for fibrosis in chronic hepatitis: proposal for a model

based on biochemical, FibroScan and ultrasound data. Liver Int

35(8):2027–2035

10. Bril F, Ortiz-Lopez C, Lomonaco R, Orsak B, Freckleton M,

Chintapalli K, Hardies J, Lai S, Solano F, Tio F (2015) Clinical

value of liver ultrasound for the diagnosis of nonalcoholic fatty

liver disease in overweight and obese patients. Liver Int

35(9):2139–2146

11. Cales P, Boursier J, Chaigneau J, Laine F, Sandrini J, Michalak S

(2010) Diagnosis of different liver fibrosis characteristics by

blood tests in non-alcoholic fatty liver disease. Liver Int

30(9):1346–1354. doi:10.1111/j.1478-3231.2010.02314.x

12. Fujiwara Sh, Hongou Y, Miyaji K, Asai A, Tanabe T, Fukui H

(2007) Relationship between liver fibrosis noninvasively mea-

sured by fibro scan and blood test. Bull Osaka Med Coll

35(2):93–105

13. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrel

GC (2007) The NAFLD fibrosis score: a noninvasive system that

identifies liver fibrosis in patients with NAFLD. Hepatology

45(4):846–854

14. Forns X, Ampurdanes S, Llovet JM, Aponte J, Quinto L, Mar-

tinez-Bauer E (2002) Identification of chronic hepatitis C patients

without hepatic fibrosis by a simple predictive model. Hepatology

36(4):986–992

15. Lok A, Ghany MG, Goodman ZD, Wright EC, Everson GT,

Sterling RK (2005) Predicting cirrhosis in patients with hepatitis

C based on standard laboratory test: results of the Halt-C cohort.

Hepatology 24(2):282–292

16. Wai Ch, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA,

Conjeevaram HS (2003) A simple noninvasive index can predict

both significant fibrosis and cirrhosis in patients with chronic

hepatitis C. Hepatology 38(2):518–526

17. Augasta MG, Kathirvalavakumar T (2012) Rule extraction from

neural networks—a comparative study. In: Proceeding of the

international conference on pattern recognition, informatics and

medical engineering, Salem, Tamil Nadu. IEEE, pp 404–408.

doi:10.1109/ICPRIME.2012.6208380

18. Kahramanli H, Allahverdi N (2009) Extracting rules for classi-

fication problems: AIS based approach. Expert Syst Appl

36(7):10494–10502

19. Kamruzzaman SM, Sarkar AM (2011) A new data mining

schema using artificial neural networks. Sensors

11(5):4622–4647. doi:10.3390/s110504622

20. Chorowski J, Zurada JM (2011) Extracting rules from neural

networks as decision diagrams. IEEE Trans Neural Networks

22(12):2435–2446. doi:10.1109/TNN.2011.2106163
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