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Abstract Multicarrier code division multiple access (MC-

CDMA) is a novel wireless communication technology with

high spectral efficiency and system performance. However,

all multiple access techniques including MC-CDMA were

most likely to have multiple access interference (MAI). So,

this paper mainly aims at designing a suitable receiver for

MC-CDMA system to mitigate such MAI. The classical

receivers like maximal-ratio combining and minimummean

square error fail to cancel MAI when the MC-CDMA is

subjected to nonlinear distortions, which may occur due to

saturated power amplifiers or arbitrary channel conditions.

Being highly nonlinear structures, the neural network (NN)

receivers such as multilayer perceptron and radial basis

function networks could be better alternative for such a case.

The possibility NN receiver for a MC-CDMA system under

different nonlinear conditions has been studied with respect

to both performance and complexity analysis.

Keywords OFDM � CDMA � MAI � MRC � MMSE �
MLP � RBF � Maximum likelihood

1 Introduction

The direct sequence code division multiple access (DS-

CDMA) is a communication system that can support

multiple users to transmit data within the same spectral

band using their unique user-specific spreading codes

[1, 2]. At the receiver, the multiple user’s signals are dis-

tinguished from each other using the same codes. Thus,

DS-CDMA can provide high spectral efficiency. At the

same time, since it spreads spectrum, it may lead to fre-

quency selective fading in the channel. So, the orthogonal

frequency division multiplexing (OFDM), which is a

broadband multicarrier modulation scheme that offers

resistance from intersymbol interference (ISI) by splitting a

serial data into numerous orthogonal narrowband streams,

can be integrated to DS-CDMA to make frequency fading

channel into flat fading channel [3, 4]. The resultant tech-

nique can be formally called as MC-CDMA system [5, 6].

However, like any other multiple access technique, the

MC-CDMA system is also prone to multiple access inter-

ference (MAI), when one user comes under vicinity of

another user in the same cell. Thus, in order to overcome

this problem, an efficient receiver is necessary for detecting

each user appropriately by mitigating MAI from other

users [7, 8]. This MAI increases with increased number of

users, and in such a case detection process becomes more

challenging. The MC-CDMA receiver detects information

of all users using the received signal, user-specific

spreading codes and estimated channel state information.

In recent years, design of MC-CDMA receiver has

become an attractive research area. Among various linear

receivers, the maximum-ratio combining (MRC) receiver

fails to correct channel-induced phase distortions [9, 10].

The equal-gain combining (EGC) receiver has capability

of correcting channel-induced phase distortions, but fails

to correct faded magnitudes of received signals [11]. On

the other hand, several communicational systems are

prone to nonlinear distortions due to saturated power

amplifiers and faded radio environments. Though the

minimum mean square error (MMSE) receiver detects
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transmitted signal by considering noise variance and

channel covariance, it cannot mitigate nonlinearistic dis-

tortion in the channel; as a result, it also gives high

residual error [12, 13]. By contrast, the highly complex

and nonlinear maximum likelihood (ML) receiver pro-

vides the optimal performance with an exhaustive search

strategy. Hence, its implementation in real-time systems is

restricted [12, 13]. So, research attention paid towards

MC-CDMA receiver design considering the performance

and complexity trade-off [14–16].

Majority of the abovementioned receivers detect sig-

nals with known channel state information, whereas

practical systems require channel estimation. This may

impose additional complexity. In addition to that, the

process of signal detection in MC-CDMA system with

nonlinear system distortion is viewed as a pattern classi-

fication issue with highly nonlinear decision boundaries.

Considering these problems, the artificial neural network

(ANN) or simply neural network (NN) models can

interpret as a better alternative to signal detection issue

because of their highly nonlinear pattern classification

capability [17–19]. ANNs are highly nonlinear and par-

allel models with neurons as interconnection elements.

ANNs can simultaneously process data and can adopt

itself from past information. During signal detection

process, NNs can offer robustness, limited memory and

nonlinear classification ability. Thus, in recent past, ANNs

are extensively utilized as multiuser detectors for space

division multiple access–orthogonal frequency division

multiplexing (SDMA–OFDM) system achieving better

performance than conventional linear techniques [20–25].

In the family of NNs, the multilayer perceptron (MLP) is

a simple and powerful model used to classify input sig-

nals by randomly shaped nonlinear decision boundaries.

So, Necmi Taspnar [26] used this MLP model as a

powerful tool for signal detection in MC-CDMA system.

However, in this paper, the full capability of MLP

receiver is not exploited because the nonlinear distortion

in the MC-CDMA system is not considered. Further,

compared to MLP, the RBF has much improved perfor-

mance during signal detection because RBF with Gaus-

sian activation function may better approximate Gaussian

noise than MLP [27, 28]. Hence, this paper tries to exploit

full capability of MLP and RBF receivers by detecting

transmitted signals of MC-CDMA system in nonlinear

environment.

Organization of this paper is as follows. The generalized

MC-CDMA system model with its mathematical notations

is given in Sect. 2. The classical receivers for MC-CDMA

system are discussed in Sect. 3. Section 4 describes the

details of proposed neural network-based receiver for

nonlinear MC-CDMA. Section 5 presents simulation

analyses, and conclusion is given in Sect. 6.

2 MC-CDMA system model

The schematic block diagram of MC-CDMA system along

with transmitter and receiver is presented in Fig. 1 [8]. The

MC-CDMA system considered here allows K number of

simultaneous users, and information symbol of each user is

spread with a unique spreading code of length N. So, kth

user’s data are multiplied by a spreading code, and then

inverse fast Fourier transform (IFFT) is applied. The par-

allel output of IFFT is then converted into serial and added

with remaining K - 1 user’s data stream. This serial data

signal is then passed through channel where nonlinear

distortions and noise are added. These distorted serial data

are converted to parallel, and fast Fourier transform (FFT)

is applied. Then, the signal detection is performed. The

discrete baseband transmitted signal vector in a time slot m

is represented as:

xm ¼
XK

k¼1

XN

n¼1

skn exp
j2pnm
N

� �
; m ¼ 1; 2; . . .;N; ð1Þ

where

skn ¼
ffiffiffiffiffi
Ec

p
bkckn; n ¼ 1; 2; . . .;N: ð2Þ

In the above equation, bk [ {±1} is the data symbol of user

k, cn
k [ {±1} is the nth chip of the kth user’s spreading

sequence, Ec is the energy per subcarrier or chip, and

Ec = Eb/N, where Eb is the energy per bit before spreading.

This Ec is assumed to be same for all users.
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So, discrete baseband received signal vector from the

transmitted signal vector x = [x1, x2,…, xN]
T is expressed

as:

y ¼ NL h� xð Þ þ w; ð3Þ

where h denotes channel impulse response, � denotes

convolution operation, w denotes additive white Gaussian

noise (AWGN) process having zero mean and a one-sided

power spectral density of N0, and NL(�) denotes nonlinear
function. Thus, the received symbol rn of nth subcarrier can

be expressed as:

rn ¼
XN

m¼1

ym exp
�j2pnm

N

� �
; n ¼ 1; 2; . . .;N: ð4Þ

Matrix form of the received signal given in Eq. (4) is

denoted as:

r1

r2

..

.

rN

2

66664

3

77775
¼ NL

H1 0 � � � 0

0 H2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � HN

2

66664

3

77775

c11 c21 � � � cK1

c12 c22 � � � cK2

..

. ..
. . .

. ..
.

c1N c2N � � � cKN

2

66664

3

77775

2

66664

ffiffiffiffiffi
Ec

p
0 � � � 0

0
ffiffiffiffiffi
Ec

p
� � � 0

..

. ..
. . .

. ..
.

0 0 � � �
ffiffiffiffiffi
Ec

p

2

66664

3

77775

b1

b2

..

.

bK

2

66664

3

77775
� þ

w1

w2

..

.

wN

2

66664

3

77775
:

ð5Þ

where Hn, n = 1, 2,…,N, is the nth subcarrier’s frequency-

domain transfer factor of channel. For simplicity, the

matrix representation shown in Eq. (5) can be written as:

r ¼ NL HCAbð Þ þ w: ð6Þ

3 Classical MC-CDMA receivers

At the receiving end, data symbol of each user is detected

using its unique user-specific spreading code cn
k and fre-

quency-domain equalization gain factor gn as shown in

Fig. 1b. Thus, the estimate of kth user’s data symbol b̂k is

given as:

b̂k ¼
XN

n¼1

gnc
k
nrn; k ¼ 1; 2; . . .;K: ð7Þ

3.1 Maximal-ratio combining (MRC) receiver

In maximal-ratio combining (MRC) receiver, the diversity

combiner assigns a higher weight to stronger signal than a

weaker signal, because a stronger signal provides a more

reliable communication [8, 9]. The corresponding equal-

ization gain, gn, is given as:

gmrc
n ¼ H�

n ; n ¼ 1; 2; . . .;N: ð8Þ

Using MRC equalizer gain given in Eq. (8), the [K 9 1]

estimated signal vector b̂ is obtained as follows:

b̂ ¼ GmrcCð ÞTr; ð9Þ

where Gmrc ¼ diag gmrc½ � is a [N 9 N] diagonal equalizer

matrix, C is a [N 9 K] chip code matrix, and r is a [N 9 1]

receiver signal vector.

3.2 Minimum mean square error (MMSE) receiver

Let b be the transmitting signal vector of K number of

users, then estimate of it, that is b̂ is obtained by linearly

combining the received signals r with the aid of the array

weight matrix Gmmse and chip code matrix C, which results

[12]:

b̂ ¼ GmmseCð ÞTr: ð10Þ

where Gmmse is a [N 9 N] diagonal equalizer matrix

obtained by minimizing the MSE ¼ E b̂� b
���

���
2

� �
, so

Gmmse ¼ ðHHH þ 2r2nINÞ
�1HH; ð11Þ

where (�)H denotes Hermitian transpose and IN is identity

matrix of dimension N.

3.3 Maximum likelihood (ML) receiver

The ML receiver works on the maximum a posteriori

(MAP) criterion to detect signal vector of all users, while

all users transmit data with equal probability [12]. How-

ever, the ML receiver requires 2mK number of metric

computations to estimate actual transmitting signal vector,

where m and K denote the modulation order and number of

users, respectively. Let B be the K 9 2mK-dimensional

matrix containing ith possible transmitting symbol vector

in ith column, where i = 1, 2,…, 2mK, then the ML receiver

calculates the Euclidean distance between actual receiving

signal vector r and possible receiving signal vector r̂ ¼
HCAb found from one of the probable transmitting vectors,

that is b [ B. The probable signal vector, which gives least

Euclidian distance, is expected to be most likely to transmit

as denoted here:

b̂ ¼ arg min
b2B

r�HCAbk k2
� 	

: ð12Þ

Thus, ML detector requires an exhaustive search to deter-

mine the actual solution. Unfortunately, the corresponding
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computational complexity increased extremely as the

number of users and modulation order increase. Due to this

exhaustive search, ML can be feasible in lower-order sys-

tems only.

4 Neural network-based receivers for MC-CDMA
system

The NN-based receiver for MC-CDMA is illustrated in

Fig. 2. In the first stage, NN-based receiver is designed as

per the MC-CDMA configuration and then the designed

model is trained using training symbols. During training

phase, an adaptive algorithm has to be used iteratively to

adjust the network weights based on the error computed

between desired output and actual network response. This

network training is continued till minimum error is

achieved. In Fig. 2, a [N 9 1]-dimensional known received

sequence ‘r’ corresponding to the [K 9 1]-dimensional

transmitting signal vector ‘b’ is taken as an input of NN

model. The [K 9 1]-dimensional response vector b̂ of NN

model is compared with desired response ‘b,’ and error is

calculated. Now, this well-trained network is used as signal

detector in testing phase. The trained NN response b̂ can be

taken as estimate of transmitted signal.

4.1 Multilayer perceptron (MLP) neural network

receiver

In recent past, the MLP structure is treated as an efficient

model for classification of nonlinear signals [17, 18]. It has

minimum three layers such as an input layer, one or more

hidden layers and an output layer. The hidden and output

layers may have a nonlinear activation function. The MLP

network mostly trained with the supervised back-propa-

gation (BP) algorithm [17]. In the BP algorithm, firstly the

weights are fixed and the input signal vector is transmitted

through the network to yield an output vector. The output

vector is used to compute an error while comparing with

the desired signals. This error is then reverted back through

the network to modify the network weights.

The structure of MLP receiver for MC-CDMA contains

an input layer of N units, one hidden layer of HN neurons

and an output layer of K neurons as shown in Fig. 3. Here,

N and K are corresponding to chip length and number of

users, respectively. Feed-forward connections have been

established among these layers. Each hidden neuron is

modelled with a summer and a nonlinear activation. So, the

resultant output of hth hidden neuron is denoted as:

zh ¼ u
XN

n¼1

Uhn<ðrnÞ
 !

; h ¼ 1; 2; . . .;HN; ð13Þ

where < denotes real part. The output nodes are simple

summers, and hence, the resultant output of kth output node

is denoted as:

b̂k ¼
XHN

h¼1

Vkhzh; k ¼ 1; 2; . . .;K; ð14Þ

where Uhn represents a weight connected between the

hidden node h and input node n, Vkh represents a weight

connected between the output node k and hidden node h,

u(t) represents a nonlinear function such as bipolar sig-

moid, that is u(t) = tanh(t), and u0(t) represents derivative
of u(t), if u(t) is tanh(t), then u0(t) = [1 - tanh2(t)].

In the MLP network training process, BP algorithm can

be used as follows [17]. Initially, the BP algorithm calcu-

lates error gradient d of each layer using the obtained error

term ekðiÞ ¼ b̂kðiÞ � bkðiÞ; k ¼ 1; 2; . . .;K. So, the error

gradients at kth output node and hth hidden neuron are

given, respectively, as:

dk ¼ eku
0 b̂k

 �

; k ¼ 1; 2; . . .;K ð15Þ

and

dh ¼
XK

k¼1

Vkhdku
0 zhð Þ; h ¼ 1; 2; . . .;HN: ð16Þ

These error gradients are used to modify the network

weights in the (i ? 1)th iteration as:

Uhnðiþ 1Þ ¼ UhnðiÞ þ ldhðiÞ< rnðiÞð Þ ð17Þ
Vkhðiþ 1Þ ¼ VkhðiÞ þ ldkðiÞzhðiÞ: ð18Þ

Here, the rate learning parameter l is to be chosen care-

fully between zero and one.

4.2 Radial basis function (RBF) receiver

In NN domain, similar to MLP, the RBF model is also

became popular in several classification problems for its

close relation with Bayesian estimators [27, 28]. RBF
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network models form clusters such as hyperspheres around

the similar group of input signals to classify them. Com-

pared to MLP, the RBF configuration has better approxi-

mation capability for nonlinear classification problems due

to its Gaussian activation function, which better approxi-

mates the Gaussian noise. This activation depends on the

distance between the input vector and the centre. By

properly selecting the number of hidden neurons, approx-

imately 2K, where K is the number of users in the MC-

CDMA system and by training all free parameters accu-

rately, the RBF is able to detect users appropriately.

The architecture of RBF model is a three-layer feed-

forward network, which consists of an input layer of N

number of input units, an output layer of K number of

neurons and the hidden layer with HN number of neurons

existing between input and output layers as shown in

Fig. 4. The values of N and K are corresponding to chip

length and number of users of the MC-CDMA system,

respectively. The interconnection between input layer and

hidden layer forms hypothetical connection and between

the hidden and output layer forms weighted connections. In

general, the RBF network incorporates Gaussian activation

functions; hence, the output of each neuron in the hidden

layer is expressed as:

zh ¼ exp � <ðrÞ � Chk k2

2r2h

 !
; h ¼ 1; 2; . . .;HN ; ð19Þ

where Ch is the (N 9 1)-dimensional centre and rh is the

spread parameter of the hth hidden neuron. The neurons in

the output layer are simple summing elements. Hence, the

output of each output neuron is calculated as:

b̂k ¼
XHN

h¼1

Wkhzh; k ¼ 1; 2; . . .;K: ð20Þ

In the RBF network training process, an iterative algorithm

like GD that minimizes an empirical error function can be

used to update free parameters of the network [29]. The

procedure of this algorithm is summarized below.

Gradient descent algorithm for RBF network training:

(a) Initialize randomly all the network parameters such

as Wkh(i), Ch(i) and rh(i) at iteration i (=1). The

network centres can be initialized by k-means

clustering algorithm [20].
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(b) Compute the hidden vector z(i) and output vector

b(i), respectively, from Eqs. (19) and (20).

(c) Compute the error term ek(i) of each output node as:

ekðiÞ ¼ b̂kðiÞ � bkðiÞ; k ¼ 1; 2; . . .;K: ð21Þ

(d) Update the weights, centres and spreads according to:

Wkhðiþ 1Þ ¼ WkhðiÞ þ lwekðiÞzhðiÞ; ð22Þ

Chðiþ 1Þ ¼ ChðiÞ

þ lczhðiÞ
eTðiÞWkhðiÞ

r2hðiÞ
XN

n¼1

<ðrnðiÞÞ � ChðiÞð Þ
 !

;

ð23Þ

rhðiþ 1Þ ¼ rhðiÞ

þlszhðiÞeTðiÞWkhðiÞ
<ðrðiÞÞ�ChðiÞk k2

r3hðiÞ
;

ð24Þ

where lw, lc and ls are the weight, centre and spread

learning parameters, respectively, and (�)T indicates trans-

pose operation.

Compute the total error ||b̂kðiÞ � bkðiÞ||2 and proceed for

the computation to the next iteration (i ? 1) from Step

b until this error is less than a defined value or specific

convergence criteria is met.

5 Simulation analysis

In this section, the outcomes of the proposed NN-

based receivers for nonlinear MC-CDMA system have

been examined under IEEE 802.11n indoor wireless

local area networks (WLAN) channel conditions.

Simulation results obtained by NN receiver are com-

pared with MRC, MMSE and ML receivers. Simula-

tion results are provided for various receivers with

respect to both bit error rate (BER) performance and

complexity analysis. In the given simulation study, the

BER is computed by averaging 1000 (NF) data frames,

where each data frame consists of 3000 (M) data

symbols. Rest of the simulation parameters for MC-

CDMA system and NN receiver are summarized in

Table 1. The parameters of WLAN channel model are

also given in Table 1 [29].

Three different nonlinear characteristics between chan-

nel input ‘a’ and channel output ‘b’ can be introduced from

[30]:

Table 1 Simulation parameters
Parameter Description

Spreading code type Hadamard

Number of users (K) 4

Chip length (N) 16

Number of subcarriers 16

Number of data symbols per frame (M) 3000

Number of data frames (NF) 1000

Modulation type BPSK

Channel Rayleigh

NN parameters

Number of input element in MLP 16 (equal to N)

Number of hidden neurons in MLP 16 (equal to 2K)

Number of output element in MLP 4 (equal to K)

Number of input element in RBF 16 (equal to N)

Number of hidden neurons in RBF 16 (equal to 2K)

Number of output neurons in RBF 4 (equal to K)

Learning rate parameter of MLP (l) 0.08

Learning rate parameters of RBF (lw, lc, ls) [0.08, 0.2, 0.12]

Number of training symbols (NT) 1000

Number of testing symbols 3000 (equal to M)

The IEEE 802.11n WLAN channel parameters

Delay in nsec. [0, 10, 20, 30, 40, 50, 60, 70, 80]

Average path gain (dB) [0, -2.5, -5.4, -5.9, -9.2, -12.6, -15.6, -18.7, -21.8]

Maximum Doppler spread (Hz) 3
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NL ¼ 0 : b ¼ a;

NL ¼ 1 : b ¼ tan h að Þ;
NL ¼ 2 : b ¼ aþ 0:2a2�0:1a3;

NL ¼ 3 : b ¼ aþ 0:2a2�0:1a3 þ 0:5 cos pað Þ:

ð25Þ

Here, NL = 0 is regarding with a linear MC-CDMA model

and NL = 1 represents a nonlinear model that may occur

due to saturated power amplifiers in the system. NL = 2

and NL = 3 are corresponding to arbitrary nonlinear

models.

The average BER of four different users in a MC-CDMA

system with different nonlinear distortions while varying Eb/

No values is shown in Fig. 5. This average BER for MRC,

MMSE, MLP and RBF receivers is computed and compared

with the performance of optimal ML receivers. From this

figure, it is observed that, the linear detectors like MRC and

MMSE fail to mitigate the induced distortions in the

received signals and leave residual interference, especially

when the MC-CDMA system is exposed to severe nonlinear

distortion. Hence, though the performance of the linear

receivers is good enough in linear and mild nonlinear sys-

tems like NL-0, NL-1, NL-2 models, they result significant

performance drop in severe nonlinear model (NL-3). How-

ever, being highly nonlinear classifiers, the NN-based

receivers provide decent performance even in such a severe

NL condition and close to the performance of ML receiver.

Further, while comparing with MLP receiver the RBF

receiver performs little better as it uses feedback of its own

past output signals and result inherently dynamic architec-

ture. For example, at 10-5 BER floor, the MLP and RBF

receivers require just 2 and 1.5 dB additional signal power

while comparing with the optimal ML receiver.
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Fig. 5 Average BER of all users using various receivers in a MC-CDMA system with different nonlinear conditions: a NL-0, b NL-1, c NL-2,
d NL-3
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Next, the effect of severe nonlinear distortion (NL-3) on

estimated signals using linear and nonlinear receivers is

shown through the constellation plots as given in Fig. 6. In

this figure, the constellation of User - 1’s estimated signals

is depicted while User - 1 is always transmitting ‘-1’ in

one complete data frame at 10 dB Eb/No while the MC-

CDMA system communicating four users simultaneously.

This figure illustrates that the resultant estimated symbols of

MRC receiver are widely dispersed over entire signal space

diagram because it cannot mitigate the arbitrary amplitude

and phase distortions resulted in the output symbols auto-

matically. However, though the MMSE is a linear receiver,

it detects signals with the knowledge of channel covariance

and noise variance. Hence, some of its estimated symbols

are nearer to the BPSK decision region and some of them

arrived in wrong decision region. By contrast, the adaptive

NN receivers can automatically correct the random ampli-

tude and phase distortion of the received signals during the

training process. Thus, the detected symbols of the NN

receivers, especially the RBF receiver, form clusters close to

the actual transmitted symbol.

Robustness of NN receivers is further analysed through

performance evaluation of the MC-CDMA system while it

is communicating different number of users as shown in

Fig. 7. In this figure, BER of User 1 is always evaluated at

10 dB Eb/No in a MC-CDMA with different NL models as

given in Eq. (25). The MAI of any multiple access tech-

nique including MC-CDMA systems increases with num-

ber of users. So, the BER of all receivers degrades with

increasing number of users as shown in Fig. 7. However,

the MLP receiver has variable number of hidden node

according to number of users, and hence, it can be able

form required decision boundaries for signal classification.

Similarly, the RBF receiver has an inherent capability of

highly nonlinear classification ability. Thus, in this figure,

the performances of NN receivers are slightly falling while
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comparing with the linear receivers. For example, when the

MC-CDMA system with NL-3 is communicating seven

users, the NN receivers have around 0.006 BER approxi-

mately, whereas the MRC and MMSE receivers have 0.12

and 0.1 BERs, respectively, only.

Among various receivers of MC-CDMA system, the ML

receiver has an optimal performance, but its computation

complexity is very high. Particularly, the computational

complexity of ML receiver is increasing exponentially with

a factor of 2mK with number of users ‘K’ and modulation

order ‘m.’ Hence, to justify the use of NN receivers, the

complexity of the proposed NN receivers is compared with

the ML detector based on number of computational oper-

ations (in terms of both multiplication and addition) given

in Table 2. The NN receiver’s complexity mostly depends

on the number of training samples (NT) set to the network

model to achieve the minimum MSE level and number of

data symbols per each data frame (M). Hence, the

complexity of NN receivers is proportional to NT and

M. The complexity analysis of various receivers is con-

sidered for a block-fading channel condition, where chan-

nel is remained to be constant for one complete data frame.

In the given analysis, all parameters are chosen as given in

Table 1. From the given complexity analysis, it is found

that the complexity of NN receivers is just a fraction of ML

receiver and close to all classical receivers. Being inher-

ently of low-complexity structures, complexity of the RBF

receiver is further less compared to the MLP receiver.

During training process, the NN adjusts the network

weights between input and output units. So, this NN

training process should be as fast as possible in order to

operate in a real-time situation. The tracking error by

means of mean square error (MSE) can be used to analyse

convergence speed of the neural network models as shown

in Fig. 8. In this figure, the MSEs of MLP and RBF models

are computed at 10 dB Eb/No. It is shown that, the RBF
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model is more rapid than that of MLP model in correcting

the network weights since the gradient descent algorithm

used for RBF can simultaneously adopt weights, centres

and spreads at a time algorithm. Due to such faster tracking

ability, the RBF reaches the minimum MSE level with less

count of training symbols compared to that of MLP net-

work and the network parameters are updated accordingly.

Hence, the RBF receiver can be a better alternative to all

given receivers as it provides performance close to optimal

ML receiver, comparatively very low complexity and faster

convergence.

6 Conclusions

This paper aims to develop adaptive NN receiver for

MC-CDMA system with nonlinear system distortions.

The efficacy of NN receivers along with their working

model discoursed in detail. The NN receivers are com-

pared with the linear MRC, MMSE and optimal ML

receivers with respect to both bit error rate and com-

plexity analyses. From extensive simulation study, it is

found that, the linear receivers result high error floor as

they cannot mitigate random amplitude and phase dis-

tortion from the received signal especially when the MC-

CDMA system is subjected to severe nonlinear distor-

tions. On the other hand, though the ML receiver is an

optimal one, its complexity increases exponentially with

number of users and modulation order. Hence, the NN

receivers can be viewed as better alternatives as they

provide a BER close to BER of ML receiver and as they

also have rich complexity gain over the extensive ML

receiver. In addition to that, irrespective of any given

nonlinear distortions in the MC-CDMA system, the NN

receivers perform almost same due to their highly non-

linear classification ability. Further, in NN domain, the

RBF receiver has been considered even more suit-

able because of a reduced network structure and its better

performance.
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