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Abstract In this paper, a new algorithm is introduced for

reliability analysis of structures using response surface

method based on a group method of data handling-type

neural networks with general structure (GS-GMDH-type

NN). A multilayer network of quadratic neurons, GMDH,

offers an effective solution to modeling nonlinear systems

without an explicit limit state function. In the proposed

method, the response surface function is determined using

GMDH-type neural networks. This is then connected to a

reliability method, such as first-order or second-order

reliability methods (FORM or SORM) or Monte Carlo

simulation method to predict the failure probability (Pf). In

the proposed method, the use of the GMDH-type neural

network with general structure, where all neurons from

previous layers are used to produce neurons in the new

layer, can improve the limit state function. In addition, the

structure of the neural network and its weight are simul-

taneously optimized by genetic algorithm and singular

value decomposition. As a result, the obtained model has

no significant error, despite its simplicity. Moreover, the

obtained limit state function is explicit and allows direct

use of FORM and SORM methods. To determine the

accuracy and efficiency of the proposed method, four

numerical examples are solved and their results are com-

pared to other conventional methods. The results show that

the proposed method is simply applicable to analyzing the

reliability of large complex and sophisticated structures

without an explicit limit state function. The proposed

approach is a high accurate method that can significantly

reduce computing time compared with direct Monte Carlo

method.

Keywords Reliability � Response surface � GMDH-type

neural network � Genetic algorithm

1 Introduction

In general, the base of reliability analysis of a structure

involves the calculation of the failure probability (Pf),

which could be obtained from Eq. (1) [1]:

Pf ¼ Pfgð�xÞ� 0g ¼
Z
gð�xÞ

f�xð�xÞd�x ð1Þ

where �x is the vector of basic random variables; f�xð�xÞ is the
probability density function of the basic random variables,

and gð�xÞ stands for limit state function, expressed as

follows:

gð�xÞ ¼ 0 : Limit state, gð�xÞ\0 : failure domain;
gð�xÞ[ 0 : safe domain

where gð�xÞ can be an explicit or implicit function. For an

implicit function, finite element analysis methods which

are very time-consuming must be used to analyze the

reliability of the problems [2–4].

Several methods such as first-order reliability method

(FORM), second-order reliability method (SORM), and

Monte Carlo Simulation (MCS) have been proposed to
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solve Eq. (1) [5–8]. In order to regularize the probabilistic

constraint, the reliability index (b) is used:

b ¼ �U�1ðPfÞ ð2Þ

where U is the standard normal cumulative distribution

function [9].

The FORM and SORM methods are frequently used for

explicit functions. When the limit state functions are not

explicit, the MCS is appropriate. However, when low

failure probability is considered, due to the huge bulk of

computations, the direct use of this method is time-con-

suming and inefficient [10, 11]. To this end, other methods

such as weighted sampling and response surface method

(RSM) are proposed by researchers. The RSM is a key

solution to reliability analysis of structures with implicit

limit state function within finite element analysis frame-

work. The base of this method is a set of mathematical and

statistical techniques designed to find the best response

value by considering the uncertain and variable inputs [11].

The RSM was introduced and developed based on poly-

nomial functions in the 1980s [12]. Although polynomial-

based RSM is used in many studies, it is associated with the

following shortcomings:

a. Increased number of variables significantly decreases

the accuracy of this method [10];

b. This method is inefficient when a very low failure

probability is considered for a system [13]; and

c. Increased number of variables is very time-consuming

for analysis [14].

To overcome such problems, neural networks have been

used in recent years to determine the limit state function in

response surface method. Artificial neural network has the

capability of approximating any functions, so it can be

applied to structural reliability properly [15]. However,

using the Monte Carlo after determining the implicit

function by training the neural network is very time-con-

suming. Furthermore, due to the lack of an explicit func-

tion, direct application of FORM and SORM methods is

not possible, which, as a result, necessities the use of finite

difference methods with one or more grid points. This may

as well result in some frequents problems.

Cheng et al. [16] improved analytical results by modi-

fying a neural network training system in small-sized

structural examples. Yuan and Guangchen [12] also pro-

vided a new neural network-based RSM and validated

considering numerical examples. They substituted the

implicit neural network-based limit state function with

finite element analysis and used the MCS to determine

reliability indices. The underlying reason for using the

MCS is the lack of an explicit function, which increases

analysis time and practically inhibits its application in

large-sized problem. Hosni Elhewy et al. [2] stated that the

response surface method is suitable for reducing reliability

analysis time for complex structures that require finite

element methods. Their proposed model was a neural

network-based response surface approach. Random vari-

ables in the solved problems were not correlated, and the

MCS was employed to determine the reliability indices.

Gomes and Awruch [3] investigated and compared thirteen

different reliability analysis techniques, using some struc-

tural and numerical examples. They concluded that, com-

pared to FORM and Monte Carlo methods, to approximate

the limit state function, the response surface and artificial

neural network techniques may further decrease the anal-

ysis computational effort by providing adequately accurate

results. However, they emphasized to verify those methods

to analyze the large systems with implicit limit state

function. Cheng and Li [4] determined the reliability index

(b) of the problems after training the neural network and

determining its structure with genetic algorithm.

In this paper a new RSM based on GS-GMDH-type

neural network is proposed for reliability analysis of

structures. Efforts are also made to remove neural net-

works-based response surface restriction in solving large

structural problems with correlated variables by offering an

explicit limit state function. In this method, the connection

between adjacent layers is not a restriction in GS-GMDH-

type neural networks. The presence of an explicit function

makes direct use of FORM and SORM methods possible,

as a result of which it improves the computing time and the

accuracy. In this regard, having introduced the proposed

method, its efficiency and accuracy are investigated by

solving four examples.

2 The proposed method based on GS-GMDH-type
neural network (GS-GMDH–RSM)

As explained in the previous section, structural reliability

analysis requires limit state function (LSF) to approximate

the probability of failure of structures. In fact, for the

purpose of the analysis, the response surface of the struc-

ture should be evaluated with a complex sophisticated

numerical method such as finite element. These techniques

are time-consuming because they are inefficient in ana-

lyzing large complex structural systems. In the majority of

conventional neural network-based response surface

methods, failure probability is computed according to the

correlation between a trained neural network and general

reliability method like MCS. In fact, due to the lack of an

explicit function, a trained neural network is substituted

with finite elements. Under this scenario, FORM and

SORM cannot be directly used; they require the application

of a finite difference method which increases computa-

tional error and time of analysis.
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GS-GMDH-type neural networks are applied to over-

come the problems of neural networks-based response

surface.

2.1 Determination of response surface with GS-

GMDH-type neural networks

In this step, the response surface function of the problem

is determined. In the proposed method, a hybrid method

which is comprised of GS-GMDH neural networks and

one of the aforementioned methods is created.

A GMDH-type neural network is firstly trained using

random data. Genetic algorithm and SVD are used

simultaneously for optimal design of both connectivity

configuration and the values of network’s coefficients,

respectively.

2.1.1 GMDH-type neural network

GMDH-type neural network builds a model based on the

relations between input and output data for a complex

system. The structure of GS-GMDH-type neural network is

similar to feed-forward multilayer.

Assuming that M is the number of experimental data set

including n inputs and one output; the actual values are

represented as follows:

yi ¼ f ðxi1; xi2; xi3;. . .; xinÞ ði ¼ 1; 2; . . .;MÞ ð3Þ

The GMDH-type neural network is a set of neurons

produced by a quadratic polynomial [17]. It is an inductive

self-organizing algebraic model that automatically learns

the relations of the dominate system variables during the

training process [18]. The network combines quadratic

polynomials from all neurons to produce the approximate

function, f
^
. The output is y

^
with minimum error for a set of

inputs X ¼ ðx1; x2; x3; . . .Þ compared to actual output, y. In

the proposed method, the LSF is predicted as follows for

the input data, using GMDH-type neural network:

y
^
i ¼ f

^
ðxi1; xi2; xi3Þ ði ¼ 1; 2; 3; . . .;MÞ ð4Þ

The square of difference between the actual and esti-

mated output is minimized here as given:

XM
i¼1

y
^
i � yi

� �2

! min ð5Þ

The relationship between the input and output variables

can be expressed as follows, using a polynomial function

[19].

y ¼ a0 þ
Xn
i¼1

aixi ð6Þ

In many applied cases, the quadratic form of this poly-

nomial consisting of only two variables (neurons) is used

as follows [20]:

y
^
¼ Gðxi; xjÞ ¼ a0 þ a1xi þ a2xj þ a3x

2
i þ a4x

2
j þ a5xixj

ð7Þ

The unknown coefficients, ai, in Eq. (7) are determined

using regression techniques in a way that the difference

between the actual output y and the computed values y
^
is

minimized for each pair of input variables xi and xj. Using

Eq. (7), a set of polynomials is produced, in which where

the unknown coefficients are calculated using least-

squares. In each produced neuron, the Eq. (8) is used to

optimize the coefficients, ai, to achieve an optimal network

with a minimum error.

E ¼
PM

i¼1 ðyi � ŷiÞ2

M
! min ð8Þ

In the basic form of the GMDH algorithm, total

binary compounds (neurons) are produced from n input

variables and unknown coefficients of all neurons are

obtained via the least-squares method. Therefore,

n

2

� �
¼ nðn�1Þ

2
neurons are produced in the second layer

in the form of the following set:

fðyi; xip; xiqÞjði ¼ 1; 2; . . .;MÞ & p; q 2 ð1; 2; . . .; nÞg ð9Þ

In Eq. (9), the quadric form of the Eq. (7) is used for M

rows of data set. These equations can be expressed in the

form of a matrix:

Aa ¼ Y ð10Þ

where a is the vector of unknown coefficients of the

quadratic Eq. (7):

a ¼ ½a0 a1 a2. . .a5� ð11Þ

and

Y ¼ ½y1 y2 y3 . . . yM�T ð12Þ

is the vector of output’s value by inspection. It can be

readily seen that

A ¼

1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q

..

. ..
. ..

. ..
. ..

. ..
.

1 xMp xMq xMpxMq x2Mp x2Mq

2
66664

3
77775 ð13Þ

Equation (10) is solved using the least-squares and

multiple-regression analysis method. It leads to:
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a ¼ ðATAÞ�1
ATY ð14Þ

which determines the vector of the best coefficients of the

quadratic Eq. (7) for the whole set of M data. In the direct

solution method, referred to as Solving Normal Equa-

tion (SNE), there is a probability of rounding errors, and

more importantly there is a likelihood of singularity in the

equations.

GMDH-type neural networks design consists of two

main concepts including the parametric and the structural

identification problems. In this way, some works present a

hybrid genetic algorithm (GA) and singular value decom-

position (SVD) method to optimally design such polyno-

mial neural networks [18–20]. According to [18–20], SVD

can noticeably improve the performance of GMDH-type

networks.

2.1.2 Application of singular value decomposition

in designing GMDH-type networks

The construction of a neural network model requires a

solution to Eq. (14) and the determination of the network’s

coefficients. In view of the fact that the number of equa-

tions is greater than the number of unknown coefficients in

this type of network, direct methods lead to singularity;

thus, the neural network of the proposed technique is based

on SVD. This significantly reduces the search space, as six

coefficients are needed to be computed for each neuron,

and this is very effective in decreasing analysis time. In

SVD method, a matrix like A 2 RM�6 is constructed by the

multiplication of three matrices, namely column-orthogo-

nal matrix U 2 RM�6, diagonal matrix W 2 R6�6 with non-

negative elements (singular values), and orthogonal matrix

V 2 R6�6

A ¼ U �W � VT ð15Þ

The common methods for SVD calculation are pre-

sented by Golub and Reinesh [21]. To obtain the optimal

coefficients for Eq. (10), the modified inverse matrix, the

diagonal matrix W, is first computed, in which zero or near

zero values are set to zero [20]:

a ¼ V=½diagð1=wjÞ�UTY ð16Þ

This method is used for optimal computation of the coef-

ficients vector of the quadratic polynomial a.

2.1.3 Application of genetic algorithm in designing

the structure of GMDH-type neural networks

After determining the coefficients of Eq. (14), the structure

of the neural network is formed. However, the error of the

model should be acceptable to substitute limit state func-

tion. In this step of the proposed method, the optimization

of the neural network structure is achieved using genetic

algorithm (GA).

Due to the unique capabilities of GA in finding optimal

values and searching unpredictable spaces, this technique is

widely used in different stages of neural network design

[18, 22]. In common GMDH-type neural networks, neurons

in each layer can only connect to the neuron in its adjacent

layer [17]. In this type of neural network, a simple method

is proposed [22] to encode populations in the search space.

This type of network is called conventional structure (CS)

neural network. Although it has the capability of prediction

with its simple structure, it is limited to only using the

adjacent layer.

However, in the proposed method, general structure

(GS) is considered for GMDH-type neural networks to

remove such restriction [19].

For designing neural networks with genetic algorithm,

all networks are firstly considered in the form of alpha-

betical strings (initial population). The fitness of each string

is calculated as follows:

u ¼ 1=E ð17Þ

where E is the mean square of error, given by Eq. (8). In

the evolutionary process, the maximization of u leads to

the minimization of error. With the use of genetic algo-

rithms’ operators and the roulette wheel selection rule, the

populations are gradually improved.

2.2 Determination of failure probability

After determining the response surface function with GS-

GMDH-type neural networks, its failure probability is

evaluated using a reliability analysis method such as

FORM, SORM, and/or Monte Carlo. The FORM and

SORM techniques are based on limit state function dif-

ferentiation. If the function is implicit, these methods

cannot be directly applied. The model obtained from

GMDH-type neural network is simple and explicit, and is

easily analyzable by using these two methods. Due to its

simplicity and high accuracy, the model can be applied in

Monte Carlo method.

The processing flowchart of the proposed approach is

presented in Fig. 1. As it can be seen, the proposed GS-

GMDH–RSM is a hybrid method with two main steps.

Firstly, the input variables are generated randomly and

after the calculation of the output values with problem

analysis, data are determined to train GMDH-type neural

network. By training the network, the LSF is partially

obtained. The accuracy of the model depends on the

number of hidden layers and the network structure. In the

generalized GMDH neural networks, neuron connections

can occur between different layers which are not neces-

sarily very adjacent ones, unlike the conventional structure.
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Not only is this explicit model simple, but also it is more

applicable with GS-GMDH compared to other neural

networks.

Secondly, the explicit model is analyzed by different

methods such as FORM, SORM, and MCS and reliability

indices of the problem are determined. After the validation

of the method, some numerical examples are used for

reliability analysis.

3 Assessment and validation of the proposed
method

In order to investigate the efficiency, accuracy, and capa-

bility of the proposed method, four different examples are

examined and analyzed in this part. The examples are

selected in a way that they represent a wide range of rel-

evant problems. Among them, there is a large example with

correlated random variables.

3.1 Example 1: four-dimensional linear limit state

function

In this example, the limit state function in Eq. (18),

investigated in [23, 24], is analyzed using the proposed

model. One advantage of the model is its capability in

solving problems with no explicit function:

gðxÞ ¼ x1 þ x2 � x3 � x4 þ 6 ð18Þ

All random variables in this example, xi, have standard

normal distribution functions. The response surface func-

tion was obtained using GS-GMDH-type neural networks

whose settings are presented in Table 1. Several analyses

were carried out to find the optimum values for the GA

operators (cross over and mutation) in GMDH-type neural

network. The structure of neural network was optimized

with genetic algorithm, in which R2 = 0.999.

After determining the response surface function, relia-

bility analysis was carried out with FORM method. Table 2

shows the results of the failure probability (Pf) and relia-

bility index (b) which are calculated using a number of

methods: Melchers [23], four response surface methods

based on support vector machine introduced and expressed

by Richard et al. (Methods 1–4) [24] and also the proposed

approach in this paper. Results from the analysis are

indicated in Table 2, the values obtained by the proposed

method (RSM–GMDH–FORM) for failure probability and

reliability index are close to the exact values.

According to Table 2, in the proposed method, the failure

probability is closer to the exact value compared to the

methods presented in [24]. This means that the proposed

method is applicable in the analysis of reliability problems.

The design points obtained from different methods are

presented in Table 3. The design point of the proposed

approach almost matches exact value. The function’s value

in the design point is equal to �4:11� 10�3; since it is

negative, (g(x*))\ 0 is located at the failure domain. The

values of the reliability index (b) and failure probability

(Pf) obtained with the proposed method are 3.00 and

1:34� 10�3, respectively.

3.2 Example 2: a cantilever beam with linear elastic

behavior

This example represents a wide range of small-sized

structural problems. It is a cantilever beam with a

Is RSM 
accuracy 

good?

NoGenerate new population

Applying genetic 
operators

Generate random variables 
& definition FEM responses

Generation random GMDH-
type neural networks 

Phase 1

Set a optimum network 
as RSM

Reliability analysis of 
RSM 

Yes

Phase 2

Fig. 1 Flowchart of the

proposed method for structural

reliability analysis
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rectangular cross section under the uniform distributed load

and linear elastic behavior (Fig. 2). The limit state function

(LSF) is expressed based on the vertical deflection of the

free end of the beam, using Eq. (19) [25]:

LSF ¼ L

325
�WBL4

8EI
ð19Þ

where E, W, L, B, and I stand for Young modulus, the

intensity of the uniform load per unit area, the length, width

and moment of inertia of the beam, respectively. It is

assumed that E and L are deterministic variables with

values given by E ¼ 2:6� 104 MPa and L = 600 mm.

The depth of the beam (H) and the uniformly distributed

load (W) have statistical characteristic given in Table 4.

These are taken as uncorrelated variables with a normal

probability distribution.

In order to determine the response surface of the prob-

lem, the settings of the GMDH-type neural network are

according to Table 5. The structure and equation coeffi-

cients of the obtained limit state function (y6) are according

to Fig. 3 and Table 6, respectively.

The failure probability values obtained from different

methods of reliability analysis are presented in Table 7.

The exact failure probability (Pf) obtained by Monte Carlo

Simulation (MCS) is 0.009 6071 [9]. Several methods

include: advanced first-order second moment method [9],

iterative RSM (Bucher’s method) [9], four adaptive itera-

tive response surface approaches introduced and expressed

by Rajashekhar (Methods A-0 to A-3) [9], genetic algo-

rithm (GA) [4], conventional ANN based on GA (ANN–

GA) [25], combination of ANN–GA and importance

sampling (ANN–GA–MCSIS) [25], combination of the

uniform design method (UDM) with the ANN–GA (UDM–

ANN–GA) [4], combination of UDM–ANN–GA with the

importance sampling (UDM–ANN–GA–MCSIS) [4],

Table 1 Parameters of the GMDH-type neural network (including GA) for example 1

Number of

input

Number of

output

Number of hidden

layer

Number of

population

Number of

generation

Probability of

mutation

Probability of

crossover

4 1 3 60 200 9% 75%

Table 2 Comparison of the

results in example 1
No. Method b pf e% ¼ jpf ðexactÞ�pfi j

pfðexactÞ
� 100

1 Exact value [23] 3.00 0.00135 0.00

2 Method 1 in [24] 2.94 0.00190 40.74

3 Method 2 in [24] 2.99 0.00150 11.11

4 Method 3 in [24] 3.00 0.00140 3.70

5 Method 4 in [24] 3.00 0.00130 3.70

6 Proposed method (GMDH–RSM–FORM) 3.00 0.00134 0.74

Table 3 The design point

obtained in example 1
No. Method x�1 x�2 x�3 x�4

1 Exact value [23] ?1.50 ?1.50 -1.50 -1.50

2 Method 1 in [24] ?1.22 ?1.21 -1.63 -1.75

3 Method 2 in [24] ?1.22 ?1.21 -1.63 -1.75

4 Method 3 in [24] ?1.49 ?1.49 -1.50 -1.50

5 Method 4 in [24] ?1.50 ?1.50 -1.50 -1.50

6 Proposed method (GMDH–RSM–FORM) ?1.53 ?1.48 -1.49 -1.50

W

H

B

a

b

Fig. 2 Schematic of the cantilever beam in example 2
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combination of 10 and 15 neurons multilayer perceptron

neural network with the recommended algorithm by Shao

and Morusto [26] (method 9 and 10 in [3]), RSM based on

early stopping technique (ANN–RSM-0) [12], RSM based

on regularization theory (ANN–RSM-1) [12] and conven-

tional RSM (ANN–RSM-2) [12] have been employed to

estimate the failure probability. The results obtained by the

proposed approach are compared with those of the afore-

mentioned methods.

By investigating Table 7 and Fig. 4, one realizes that the

value for the reliability index determined by the proposed

method is fairly close to that by others expressed in

[3, 4, 9, 12]. In the proposed method, the limit state

function is first determined based on the response surface

obtained from GMDH-type neural network. Then one of

either FORM, SORM or MCS methods is used for relia-

bility analysis.

As can be seen, the reliability index determined by the

proposed GDMH–RSM–SORM approach is only slightly

different from the exact value.

The computational error reported by Gomes and

Awruch [3] calculated by Method 10 is lower than the one

calculated by the proposed approach. Nevertheless, it is

worth mentioning that the network structure of the pro-

posed method is simpler compared to the method presented

by Gomes and Awruch [3]. The neural network related to

Method 10 presented by Gomes and Awruch [3] has a

2:12:1 structure with 12 neurons in the hidden layer,

whereas there are five neurons in the hidden layer of the

proposed GMDH-type neural network, which reduces

bulky calculations and computational time.

As can be seen in Table 7, the inaccuracy rate of

GMDH–RSM–SORM method is less than that of GMDH–

RSM–FORM. In this example, since the limit state func-

tion is not linear, it causes a high degree of inaccuracy in

FORM method compared to SORM method. Furthermore,

the rate of error in GMDH–RSM–SORM is less than

GMDH–RSM–MCS which means that it is necessary to

increase the number of calls in the MCS method.

Regarding the fact that the error rate of GMDH–RSM–

SORM is negligible, this method is better than the other

methods proposed for reliability analysis in this example.

Table 4 Statistics of the

random variables for example 2
Variable Reference Unit Mean value, l Coefficient of variation, d

W a MPa 1000 0.20

H b mm 250 0.15

Table 5 Parameters of the GMDH-type neural network (including the GA) in example 2

Number of

input

Number of

output

Number of

hidden layer

Number of

population

Number of

generation

Probability of

mutation (%)

Probability of

crossover (%)

2 1 3 50 200 7 75

y4

y5

y6

y2

y3
y1

W

H

Input Layer Output LayerHidden Layer

Fig. 3 Structure of GMDH-type neural network in example 2

Table 6 Coefficients used in the equation of neurons in example 2

a0 a1 a2 a3 a4 a5

y1 -37.215814812 -0.047910058 ?0.453162674 ?0.000001841 -0.000751859 ?0.000112703

y2 ?6.185751944 ?1.289782237 ?0.002658130 -0.026475419 ?0.000002039 -0.000466799

y3 -37.215814812 -0.047910058 ?0.453162674 ?0.000001841 -0.000751859 ?0.000112703

y4 -11.631378766 ?0.094677938 ?1.192176683 -0.000029738 -0.002935006 -0.003632809

y5 ?11.422347910 ?0.346627864 ?0.346627864 -0.006662265 -0.006662265 -0.006662265

y6 (LSF) -0.336723819 ?0.660758201 ?0.344843327 -0.018393914 -0.004082449 ?0.024198049
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In the structure of the trained GDMH-type neural net-

work, neuron H has mutated from one and two layers to

produce neurons y3 and y4, respectively, and indeed, it has

a general structure. This property increases the structural

diversity of the network and thus produces a more accurate

model.

Table 7 Comparison of the results in example 2

No. Method b pf e% ¼ jpfðexactÞ�pfi j
pfðexactÞ

� 100

1 Simulation using actual limit state model (exact result) [9] 2.341 0.0096071 0.000

2 Advanced first-order second moment method [9] 2.330 0.0099031 3.080

3 Bucher’s method [9] 2.204 0.0137538 43.160

4 Method A-0 in [9] 2.344 0.0095410 0.690

5 Method A-1 in [9] 2.340 0.0096398 0.340

6 Method A-2 in [9] 2.285 0.0111508 16.070

7 Method A-3 in [9] 2.344 0.0095410 0.690

8 GA [4] 2.331 0.0098660 2.690

9 ANN–GA [25] 2.350 0.0093960 2.200

10 ANN–GA–MCSIS [25] 2.355 0.0092610 3.600

11 UDM–ANN–GA [4] 2.342 0.0095950 0.130

12 UDM–ANN–GA–MCSIS [4] 2.352 0.0093330 2.850

13 Method 9 in [3] 2.331 0.0098880 2.920

14 Method 10 in [3] 2.341 0.0096070 0.001

15 ANN–RSM-0 [12] 2.414 0.0078830 17.950

16 ANN–RSM-1 [12] 2.337 0.0097260 1.238

17 ANN–RSM-2 [12] 2.338 0.0096950 0.915

18 Proposed method (GMDH–RSM–FORM) 2.333 0.0098327 2.350

19 Proposed method (GMDH–RSM–SORM) 2.342 0.0095970 0.100

20 Proposed method (GMDH–RSM–MCS) 2.344 0.0095500 0.590
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In this example, the index R2 is equal to 0.997, indi-

cating high accuracy of the limit state function. The

insertion of the obtained design point, W* = 1125.989 and

H* = 165.775, the negative value, (g(x*)\ 0), indicates

that it is located in the failure domain.

3.3 Example 3: 3-span 12-story frame

To evaluate the efficiency of the proposed method in the

analysis of complex structural problems, a 3-span 12-story

frame with different cross sectional areas Ai and lateral

load Pi which are uncorrelated random variables (Table 8),

is presented in Fig. 5. The sectional moments of inertia are

expressed as follows:

Ii ¼ aiA
2
i ði ¼ 1 to 5; a1 ¼ a2 ¼ a3 ¼ 0:08333;

a4 ¼ 0:26670; a5 ¼ 0:2000Þ
ð20Þ

The Young’s modulus of the members is constant and

equal to E ¼ 2� 107 kN/m2: The limit state function,

based on horizontal displacement of the node A in the

frame, is expressed as

gðA1;A2;A3;A4;A5;PÞ ¼ 0:096� uAðA1;A2;A3;A4;A5;PÞ
ð21Þ

In this example, a certain number of random vari-

ables are first produced. Then, the horizontal displace-

ment of node A is determined using a MATLAB based

program. The GMDH-type neural network (see Table 9)

was then trained using input and output data, and the

problem’s response surface function was explicitly

determined. The structure of the evolved three-hidden-

layer GMDH-type neural network in example 3 is

shown in Fig. 6.

According to Fig. 6, this network has three hidden lay-

ers and according to Eq. (7) the equation coefficients for

each neuron governing the limit state function of example 3

are presented in Table 10.

LSF ¼ 0:096� 0:01� y12 ð22Þ

After training the GMDH-type neural network and

determining LSF according to Eq. (22), reliability analysis

of the structure was carried out using FORM, SORM, and

Monte Carlo and Pf was estimated. This well-known

example has already been studied in the literature

[14, 25, 27]. In this example, the exact value of Pf is

obtained from Cheng and Xiao [14]. The probability of

failure has been computed by means of ANN–GA and

ANN–GA–MCSIS methods introduced by Cheng [25] and

also the importance sampling method expressed by Zhao

[27]. The proposed approach is compared to the methods

mentioned in Table 11.

According to the results, the reliability index obtained

from the proposed method was highly similar to other

methods. In addition, the GMDH–RSM–SORM technique

has lower error rate (0.02%) compared to other methods,

which is obvious in Fig. 7. Finite element analysis in direct

methods is a time-consuming process, whereas the sim-

plicity of GMDH–RSM–FORM and GMDH–RSM–SORM

allows reliability analysis in a short time.

The results indicate that the proposed approach is suit-

able for analyzing high-dimensional problems with a good

precision.

Table 8 Statistics of the

random variables for example 3
Variable Mean value, l Coefficient of variation, d Unit Distribution

A1 0.25 0.025 m2 Lognormal

A2 0.16 0.016 m2 Lognormal

A3 0.36 0.036 m2 Lognormal

A4 0.20 0.020 m2 Lognormal

A5 0.15 00.015 m2 Lognormal

P 30.0 7.500 kN Type I largest

12
 ×

 4
 =

 4
8 

p

p

p

p

p

p

p

p

p

p

p

p

42 1 5 41 2
42 1 5 41 2
42 1 5 41 2
42 1 5 41 2

42 1 5 41 2
42 1 5 41 2
41 3 5 43 1
41 3 5 43 1
41 3 5 43 1
41 3 5 43 1
41 3 5 43 1
41 3 5 43 1

A

7.5 m 3.5 m 7.5 m

Fig. 5 Geometrically portal frame (example 3)
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3.4 Example 4: 3-span 5-story frame with 21

correlated variables

To show the capability of the proposed approach in ana-

lyzing large complex finite element problems and corre-

lated variables, a 3-span 5-story frame with 21 correlated

variables is considered as Fig. 8.

In this example, there are 21 random variables, pre-

sented in Table 12 along with their distribution and

characteristics. These variables are load Fi, modulus of

elasticity Ei, cross section Ai, and moment of inertia of

members Ii. All loads are correlated by a coefficient of

correlation q ¼ 0:95, all characteristics of cross sections

are correlated by qIi;Ij ; qAi;Aj
; qAi;Ij ¼ 0:13, and the two

different moduli of elasticity are also correlated by

qE1;E2
¼ 0:9, and other variables are uncorrelated.

The limit state function of this example is defined as

Eq. (23).

gxðxÞ ¼ 0:061� Dx ð23Þ

where Dx is the displacement (in meter) at the top right

node of the frame (according to Fig. 8). The important

point is that in this example, the limit state function is

implicit.

To solve this problem, the limit state function is first

determined with GS-GMDH-type neural network (see

Table 13), and then the failure probability of the frame is

calculated.

According to Table 13, two neural networks with dif-

ferent structures (3 and 6 layers) are applied to train the

data. In the 6-layer network, only 50 initial data are used

for training. With respect to the three-layer network, 200

input data are employed. The goal of increasing the number

of hidden layers is to enhance model accuracy through

decreasing the number of times the finite element analysis

program is called. However, as an important feature of

GMDH-type neural networks, they need a small number of

Table 9 Parameters of the GMDH-type neural network (including GA) in example 3

Number of

input

Number of

output

Number of

hidden layer

Number of

population

Number of

generation

Probability of

mutation (%)

Probability of

crossover (%)

6 1 3 60 200 7 70

Input Layer Output LayerHidden Layer

A1

A4

A2

A3

A5

P

y2

y1

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

Fig. 6 Evolved structure of GMDH-type neural network used in

example 3

Table 10 Coefficients used in the equation of neurons in example 3

a0 a1 a2 a3 a4 a5

y1 ?0.000006002 ?0.011513554 ?0.003734540 -0.000000756 ?0.00000058448 -0.000004089

y2 -0.000000641 -0.001049603 ?0.000344159 ?0.000000278 -0.00000000006 -0.000000038

y3 ?0.000010514 ?0.016349170 ?0.000700887 -0.000003920 ?0.00000013109 -0.000001222

y4 ?0.000000009 ?0.000007161 ?0.000268542 ?0.000000228 ?0.00000000054 -0.000000056

y5 -0.000000089 -0.000209306 ?0.000262961 ?0.000000028 ?0.00000000007 -0.000000010

y6 ?0.113903672 -0.003773440 ?1.547504200 ?0.000001533 ?0.03464270423 -0.000430381

y7 ?0.031436894 ?1.217753774 -0.000152523 -0.000192639 ?0.00000002839 -0.000054291

y8 ?27.543716091 ?0.213119388 -4.587469741 ?0.043010397 ?0.23041588266 -0.024351303

y9 ?0.295917713 ?0.410211420 ?0.530289005 ?0.185570450 ?0.17417307235 -0.359329087

y10 ?4.504257953 -0.917047452 ?0.457961820 ?0.041181865 -0.00761568441 ?0.052597161

y11 -6.321262922 ?0.858617841 ?0.531250652 -0.030629714 -0.01035753204 ?0.053906801

y12 ?0.807600991 ?0.558846304 ?0.233900674 -0.003521144 ?0.00097134710 ?0.011546949
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Table 11 Compared results in

example 3
No. Method b pf e% ¼ jpfðexactÞ�pfi j

pf ðexactÞ
� 100

1 Exact value [14] 1.4388 0.075100 0.000

2 ANN–GA [25] 1.4625 0.071800 4.390

3 ANN–GA–MCSIS [25] 1.4207 0.077700 3.350

4 Important sampling [27] 1.4390 0.075081 0.025

5 Proposed method (GMDH–RSM–FORM) 1.4382 0.075190 0.120

6 Proposed method (GMDH–RSM–SORM) 1.4389 0.075085 0.020

7 Proposed method (GMDH–RSM–MCS) 1.4405 0.074860 0.320
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data for training. For investigating and evaluating the

obtained results, failure probability of the frame is calcu-

lated using the following methods: The response surface

method expressed by Bucher and Bourgund [28], direct

MCS with 1,000,000 simulations [29], importance sam-

pling [30], four response surface methods based on support

vector machine introduced and expressed by Richard et al.

(Methods 1–4) [24], adaptive RSM based on a double

weighted regression technique [31], response surface

method expressed by Roussouly et al. [32], most

portable point (MPP)-based univariate with numerical

integration [29], MPP-based univariate with simulation

[33], FORM [29], and Hohenbichler’s SORM [34].

A comparison between the proposed approach and the

results obtained by other researchers is presented in

Table 14. The number of iterations (number of calls)

according to [24] and [33] was considered as a measure of

comparison between the proposed method and the other

methods.

Due to the complexity and large size of this example, the

calling number of finite element analysis program was

assessed and compared. According to Table 14, the number

of callings in the proposed method is less than that of the

majority of other techniques. In the proposed method, the

analysis program was called only 50 times in proposed

approach with six hidden layers. The neural network-based

proposed method with six hidden layers has results with

adequate accuracy. The values of failure probability cal-

culated using the RSM expressed by Bucher and Bourgund

[28] and MCS method with 1,000,000 simulations [29] are

used as a reference for comparison in different articles.

Therefore, the error value of each method is calculated as

follows. In Eqs. (23–24), the values in [28, 29] were con-

sidered as accurate values.

e1% ¼
jpf½28� � pfij

pf½28�
� 100 ð24Þ

Table 12 Statistics of the

random variables for example 4
Variable Mean value, l Coefficient of variation, d Unit Distribution

F1 133.454 40.04 kN Gumbel max

F2 88.97 35.59 kN Gumbel max

F3 71.175 28.47 kN Gumbel max

E1 2.173752 9 107 1.9152 9 106 kN/m2 Normal

E2 2.379736 9 107 1.9152 9 106 kN/m2 Normal

I1 0.813443 9 10-2 1.08344 9 10-3 m4 Normal

I2 1.150936 9 10-2 1.298048 9 10-3 m4 Normal

I3 2.137452 9 10-2 2.50609 9 10-3 m4 Normal

I4 2.596095 9 10-2 3.028778 9 10-3 m4 Normal

I5 1.081076 9 10-2 2.596095 9 10-3 m4 Normal

I6 1.41.554 9 10-2 3.46146 9 10-3 m4 Normal

I7 2.327853 9 10-2 5.624873 9 10-3 m4 Normal

I8 2.596065 9 10-2 6.490238 9 10-3 m4 Normal

A1 0.31256400 0.05581500 m2 Normal

A2 0.37210000 0.07442000 m2 Normal

A3 0.50606000 0.09302500 m2 Normal

A4 0.55815000 0.11163000 m2 Normal

A5 0.25302800 0.09302500 m2 Normal

A6 0.29116825 0.10232275 m2 Normal

A7 0.37303000 0.12093250 m2 Normal

A8 0.41860000 0.19537500 m2 Normal

Table 13 Parameters of the GMDH-type neural network (including GA) in example 4

Methods Number of

input

Number of

output

Number of

hidden layer

Number of

population

Number of

generation

Probability of

mutation (%)

Probability of

crossover (%)

1 21 1 3 300 400 7 70

2 21 1 6 300 400 7 70
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e2% ¼
jpf½29� � pfij

pf½29�
� 100 ð25Þ

In the proposed approach, the numbers of hidden layers

are reduced to 3 in the GMDH–RSM–FORM and GMDH–

RSM–SORM methods, leading to a simpler response sur-

face function. In this state, to achieve accurate results, the

numbers of callings are increased to 200. Assuming [28] as

a reference and using FORM, the error value in the pro-

posed method based on a 6-hidden-layer network and 50

times of calling is 8.59%, whereas for a three-hidden-layer

network and 200 times of calling is 2.13%. The error in the

proposed method based on a six-layer network and 50

times of calling is about 2.19%, using Monte Carlo simu-

lation. These results show that an increase in the number of

the network hidden layers in the proposed method leads to

the reduction of the calling number. The average rate of

error obtained in the proposed method is lower than the

amount obtained by other methods mentioned in Table 14.

Considering the value in [29] as the reference, the error

obtained by the proposed method increases, but compared

to other methods, the values are acceptable being lower

than the mean value of 54.8% in other methods.

As can be seen in Table 14, the proposed method is well

capable of not only solving large problems containing

correlated variables, but also decreasing the number of

calculations significantly. The reduction of calling numbers

from 1,000,000 to 50 for the sake of achieving accept-

able analytical results proves this claim. According to [24],

the application of this method in large problems, which

leads to increased calculations and prolonged of analyses,

is a limitation of this technique. After determining the

response surface in the proposed method, the reliability

analysis is done in a short time, due to the simplicity of the

limit state function. Moreover, in proposed approach, the

limit state function is explicit and allows direct use of

FORM and SORM, which reduces the analysis time. The

value of reliability index computed by different methods is

compared in Fig. 9. The value obtained by the proposed

method is very close to the one obtained by other authors.

The two dashed lines in Fig. 9 correspond to the values of

failure probability calculated using the RSM expressed by

Bucher and Bourgund [28] and MCS method with

1,000,000 simulations [29] which are used as a reference.

Using the proposed method, it can reduce the compu-

tational cost (3-layer network with 200 calls and 6-layer

network with 50 calls). Comparing the results with the

value obtained in [28], which is also considered as the

comparison criterion in [31], reveals that the calculated

error is negligible. In addition, the value of reliability index

obtained via the Monte Carlo method with 1,000,000 times

of calling the limit state function is 3.380 in [29], which has

only 1.4% alteration in comparison with the GMDH-RSM-

SORM method.

Table 14 Comparison of the results in example 4

No. Method Number of calls b pf e1% e2%

1 RS min [28] 87 3.290 0.0005010 0.00 38.01

2 Direct Monte Carlo simulation [29] 1,000,000 3.380 0.0003630 27.54 0.00

3 Importance sampling [30] 500,000 3.510 0.0002240 55.29 38.29

4 Method 1 in [24] 220 3.410 0.0003240 35.33 10.74

5 Method 2 in [24] 220 3.350 0.0004020 19.76 10.74

6 Method 3 in [24] 132 3.250 0.0005770 15.17 58.95

7 Method 4 in [24] 132 3.250 0.0007640 52.49 110.46

8 Adaptive RSM in [31] FORM 259 3.220 0.0006410 27.94 76.58

9 SORM 259 3.154 0.0008050 60.67 121.76

10 RSM in [32] 149 3.630 0.0001415 71.76 61.01

11 MPP-based univariate with numerical integration [29] 600 3.365 0.0003829 23.57 5.48

12 MPP-based univariate with simulation [33] 600 3.373 0.0003720 25.75 2.48

13 FORM [29] 474 3.160 0.0007891 57.50 117.38

14 SORM (Hohenbichler) [34] 1143 3.633 0.0001402 72.02 61.38

15 Proposed method (GMDH–RSM–FORM) 50 3.316 0.0004561 8.96 25.65

16 (GMDH–RSM–SORM) 50 3.333 0.0004292 14.33 18.24

17 (GMDH–RSM–MCS) 50 3.296 0.0004900 2.19 34.98

18 Proposed Method (GMDH–RSM–FORM) (3 hidden layer) 200 3.296 0.0004903 2.13 35.07

19 (GMDH–RSM–MCS) 200 3.249 0.0005800 15.77 59.78
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The need for a small number of finite element analyses,

in comparison with the Monte Carlo method, and saving in

calculations cost, are dominant advantages of the proposed

method. Additionally, this example showed that this

method may as well be used in the reliability analysis of

high-dimensional problems with correlated variables.

4 Conclusions

A new response surface reliability analysis method based

on GS-GMDH-type neural network was introduced to

determine failure probability of high-dimensional struc-

tural systems with different random variables. This

approach is indeed a combination of response surface

obtained using GS-GMDH-type neural networks and either

of FORM, SORM, or Monte Carlo methods. The proposed

method was evaluated through four examples including

numerical and structural problems. The results are as

follows:

• The proposed approach is applicable in determining the

failure probability in a wide range of problems

including explicit mathematical functions and finite

elements without any explicit function.

• Reliability analysis achievements resulted from the

proposed method (GMDH–RSM) are very close to the

exact values and reduce the number of finite element

analyses and computational cost.

• In the proposed method, the explicit response surface

function is determined using GS-GMDH-type neural

networks; therefore, the direct use of FORM and

SORM is possible, which reduces computational time.

• The application of GS-GMDH-type neural networks,

from which the restriction of using only the adjacent

layer to produce a new one is removed, leads to a

simpler limit state function with lower error, which, as

a result, improves the accuracy of reliability analysis

results.

• High accuracy and simplicity are two advantages of the

response surface function produced with GMDH-type

neural network, compared to the one produced with

finite element analysis-based method.

• The reliability of the large structural problems with

correlated members and without explicit limit state

function can be analyzed with the proposed method.
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