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Abstract This article proposes two-step procedure for

solving the reactive power planning (RPP) problem. An

iterative method is introduced in the first step to place the

additional sources of reactive power and their associated

maximum sizes. In the second step, several integrated

strategies of differential evolution (DE) are suggested to

optimize the RPP variables. Three types of objective

function are investigated which aims at minimizing system

power losses, minimizing the costs of operation and VAR

investment and improving the voltage profile distribution at

load buses. The strategies performance is examined on

IEEE 30-bus test system and on the West Delta network as

a real Egyptian section. The evolution of the system con-

sidering the annual growth rate of peak load in the Egyp-

tian system has been taken into consideration at different

loading levels. Application of the proposed method is

carried out on large-scale power system of 354-bus test

system. The strategies robustness and consistency are

compared to DE, genetic algorithm and particle swarm

optimizer. The proposed two-step procedure using the

proposed DE strategy is assessed compared to single-step

RPP procedure. Furthermore, its mutation and crossover

scales are optimally specified. Simulation outcomes denote

that the proposed DE strategy is excessively superior, more

powerful and consistent than the other compared optimiz-

ers which indicate that the proposed strategy of DE algo-

rithm can be very efficient to solve the RPP. The proposed

strategies are proven as alternative solution strategies,

especially for large-scale power systems.

Keywords Reactive power planning problem � Annual
growth rate � DE strategies � Control parameter � Two-step
optimization procedure
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CMAES Covariance matrix adaptation evolution
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MNSGA-II Modified nondominated sorted genetic

algorithm-II

MOs Meta-heuristic optimizers

NLP Nonlinear programming

PSO Particle swarm optimizer

QP Quadratic programming

RGA Real-coding genetic algorithm

RPP Reactive power planning

& Ragab A. El-Sehiemy

elsehiemy@eng.kfs.edu.eg

A. M. Shaheen

engabdoushaheen@yahoo.com

S. M. Farrag

Sobhy_f@hotmail.com

1 South Delta Electricity Distribution Company (SDEDCo),

Tanta, Egypt

2 Electrical Engineering Department, Intelligent Systems

Research Group (ISRG), Faculty of Engineering,

Kafrelsheikh University, Kafrelsheikh, Egypt

3 Electrical Engineering Department, Faculty of Engineering,

Menoufiya University, Shebin El Kom, Egypt

123

Neural Comput & Applic (2019) 31:653–674

DOI 10.1007/s00521-017-3098-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3098-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3098-1&amp;domain=pdf


SO Seeker optimizer

SQP Sequential quadratic programming

WDN West Delta network

1 Introduction

Due to the constant growing of electrical loads, the existed

VAR sources became insufficient which resulted in gradual

drop of the system nodes voltage. Thus, VAR resources

shall be planned and disseminated throughout the power

systems to meet the future demands and ensure system

performance which is indicated as RPP.

The control variables of RPP problem are the generator

bus voltages, the injected reactive power from existing,

additional reactive power sources and tap ratio of trans-

formers. It has been exceedingly solved by various classi-

cal optimization methods (COMs) such as linear, quadratic,

mixed integer, nonlinear programming techniques and

interior point algorithm. COMs have still been imple-

mented and developed for solving the RPP. A NLP solver

has been applied in [1], while LP-based IP method has been

used in the second stage to minimize both the power losses

and the generator’s reactive cost function for each zone by

approximating it to a piecewise-linear function [2]. Both

NLP and MINLP solver using GAMS software have also

been implemented in [3]. Also, multiple stages of a

stochastic nonlinear RPP model have been handled using

MINLP [4]. A dual projected pseudoquasi-newton method

has been utilized as a solution procedure in [5] for the

capacitor placement patterns to reduce the transmission

losses, while the investment cost for VAR sources has been

handled as budget constraint. For the same purpose, IP

method has been employed where the weak buses have

been selected as candidates to install VAR sources based

on L-index as a voltage stability index [6].

In the last two decades, the RPP has been widely solved

using various meta-heuristic optimizers (MOs) such as GA

[7, 8], real-coding GA (RGA) [9], modified nondominated

sorted GA-II (MNSGA-II) [10], multi-objective fuzzy LP

(MFLP) [11–13], covariance matrix adaptation evolution

strategy (CMAES) [14], PSO [15–17], evolutionary pro-

gramming [18, 19], seeker optimizer (SO) [20], differential

search algorithm [21] and DE [22–29]. In [26], an

improved model of it has been presented where the muta-

tion factor changed dynamically instead of being constant.

In [27, 28], the original DE strategy has been modified

using a self-tuned mutation parameter. In [29], two DE

versions have been applied to the RPP for minimizing the

costs of operation and VAR investment. In spite of these

multi-executed references of the DE algorithm to the RPP

problem, the only applied DE strategy uses a randomly

chosen base vector mutated by appending a scaled random

difference vector [30]. In [31], a hybrid between DE

algorithm and the ant system has been proposed to mini-

mize the power losses, voltage deviation and operating

costs. In [32], gravitational search algorithm has been uti-

lized to enhance the voltage profile, the voltage stability or

minimize the power losses. Furthermore, optimal planning

of reactive power sources is proposed for enhancing the

power systems under contingencies [33].

The RPP problem could be formulated with single or

multiple objectives. However, modeling of each objective

function has different formulations [34]. The searching for

optimal solution is enhanced with unexpected locations for

new VAR sources when all load buses are considered as

candidate buses. However, the searching space, time-con-

suming, complexity and computational burden will be

high, especially in large power systems [35]. Thus, the

optimal placement of new reactive power sources may be

considered a first step in RPP which have maximum effect

on the technical and economical objects in power systems

where different methods have been implemented to choose

the candidate locations [36]. The reactive power dispatch

problem is solved by several integrated strategies of

backtracking search and ant colony algorithms in [37, 38],

respectively.

In the optimization field, several novel optimizers of

bioinspired meta-heuristic algorithms have been still pro-

posed for solving global numerical optimization problems

such as earthworm optimization algorithm [39], monarch

butterfly optimization [40] and krill herd algorithm incor-

porated a mutation scheme [41]. In [42], a novel chaotic

cuckoo search optimizer has been presented by emerging

chaotic effect into cuckoo search technique. Another novel

improved version of firefly algorithm has been applied for

global numerical optimization [43]. In [44], a hybridized

technique between krill herd and quantum PSO is pre-

sented for handling engineering optimization problems. In

[45], the fruit fly optimization algorithm was developed for

solving global optimization problem and applied for the

optimal design of shape design of tubular linear syn-

chronous motor.

COMs have been widely applied to solve the RPP for

years [1–6] because they are fast and so they provide the

capability to solve a high number of single optimizations in

case of different loading conditions and contingencies.

However, their main drawbacks are that they are usually

based on some simplifications such as linear approxima-

tions of nonlinear functions and constraints or using their

first and second differentiations. Another shortage of

COMs is the weakness treatment of multi-objective non-

linear optimization problems [35]. They may trap in a local

optimum result in divergences in solving RPP problems

[19, 35]. Furthermore, they cannot handle the nondiffer-

entiable factor in VAR sources installation function [8, 14].
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This paper proposes two-step procedure on account of

solving the reactive power planning (RPP). In the first step,

the candidate VAR locations are selected based on the

weakness voltage levels of the load buses with iterative

VAR injection. In the second step, various DE strategies

are proposed for handling the RPP. The proposed strategies

are distinguished with diverse exploration and exploitation

search capability which give diversified solutions. They are

analyzed in a comparison with the computation intelligence

techniques which have often been used to solve this

problem. Else, the optimal tuning of the mutation and

crossover parameters of the proposed algorithm is dis-

cussed. Its robustness indices are checked in comparison

with the other optimization algorithms. Added to that, the

proposed two-step procedure was assessed compared to

single-step RPP procedure.

In [46], a two-step approach has been implemented

analytically for voltage support by use of the design of

experiment (DOE) method where the optimal locations of

the VAR devices have been firstly identified and then a

sizing process of those devices has been carried out.

Compared to the proposed procedure, the DOE approach

[44] has been tested on a small distribution networks (28-

bus radial medium voltage network) based on some sim-

plifications by reducing the number of control variables

(only 2) in the second stage which may not be suitable for

medium- and large-scale power systems. The DOE

approach employed the screening approach over a small set

of buses to identify the optimal VAR locations, and it did

not discuss the effects of the others. However, the reduc-

tion of the losses and including the voltage profile has been

utilized as objectives in the DOE approach, minimizing the

costs of operation, and VAR investment is a considerable

objective function in the planning problem [35] since it has

great effects on the optimal decision.

However, the presented paper deals with one of the

important optimization problems in power systems which

has been taken into consideration in many previous

published articles; it provides various contributions as

follows:

• Three types of objective function are investigated: (1)

minimizing system power losses, (2) minimizing the

costs of operation and VAR investment and (3)

improving the voltage profile distribution.

• Several strategies of differential algorithm are pro-

posed, compared and examined on IEEE 30 bus and

West Delta network (WDN) as a section in the

Egyptian power system. The strategies robustness and

consistency are compared to genetic algorithm (GA),

particle swarm optimizer (PSO) and DE.

• Also, application of the proposed method is carried out

on large-scale power system of 354-bus test system.

• The proposed two-step procedure using the proposed

DE strategy is assessed compared to single-step RPP

procedure.

• Furthermore, its mutation and crossover scales are

optimally specified. Simulation outcomes denote that

the proposed DE strategy is excessively superior, more

powerful and consistent than the other compared

optimizers which indicate that the proposed strategy

of DE algorithm can be very efficient to solve the RPP.

The proposed strategies are proven as alternative

solution strategies, especially for large-scale power

systems.

• Nevertheless, the evolution of the system considering

the annual growth rate of peak load in the Egyptian

system has been taken into consideration with different

loading levels.

The rest sections of this paper are ordered as follows:

Sect. 2 presents the RPP formulation. Section 3 introduces

the suggested procedure for solving the RPP. The simula-

tion results of the case studies are presented in Sect. 4,

while the last section represents the conclusion of the work.

2 Formulation of the reactive power planning

Conventionally, the RPP objective is to minimize the

investment cost of new VAR sources and the system

operational cost [27–29].

2.1 Objectives

2.1.1 Minimizing the costs of energy loss and investment

The operational cost (OC) is related to the annual cost of

energy losses, while the investment cost (IC) has two

components, fixed installation part and variable purchase

cost as follows:

MinF ¼ Min ðOC þ ICÞ

where;OC ¼ H
XNLoad

L¼1

dLP
L
lossand IC ¼

XNc

i¼1

ei þ Cci jQn
ci
j

ð1Þ

Ploss ¼
X

i;j2Nb

gij V2
i þ V2

j � 2ViVj cos hij
� �

ð2Þ

where NLoad indicates the number of load levels; H indi-

cates the energy cost in per unit; dL refers to each load

duration (hours); PL
Loss is the losses during each load period

L; Nc is the reactive compensator buses; e refers to fixed

installation cost of VAR sources; Cci is its corresponding

purchase cost; Qn
C refers to the reactive power output of the

additional VAR source; Nb indicates the buses number; gij
and hij indicate the branch conductance and voltage angle
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difference between buses i and j, respectively; V refers to

the voltage magnitude.

2.1.2 Improvement in voltage profile

The enchantment of voltage profile can be formulated by

minimizing the deviation of the load voltages (VD) at NPQ

load buses as:

Min VD ¼
XNPQ

i¼1

Vi � V ref
i

�� ��
 !

ð3Þ

This objective could be simply included to the classical

objective of the RPP using the weighted sum approach

[35]:

Min F ¼ Min ðOC þ ICÞ þ x � VD ð4Þ

where x is a suitable weight factor selected by the planner

to give an importance to each one of the objective

functions.

2.2 Equality and inequality constraints

The electric power networks have to maintain the equality

constraints, which are denoted by the load flow balance

equations and the inequality operational constraints of the

operational variables. These constraints could be formu-

lated as:

Qgi � QLi þ Qn
Ci
þ QCi � Vi

XNb

j¼1

VjðGij sin hij � Bij cos hijÞ

¼ 0; i ¼ 1; 2; . . .NPQ ð5Þ

Pgi � PLi � Vi

XNb

j¼1

VjðGij cos hij þ Bij sin hijÞ ¼ 0;

i ¼ 1; 2; . . .Nb � slack

ð6Þ

Qmin
gi �Qgi �Qmax

gi ; i ¼ 1; 2; . . .Npv ð7Þ

Vmin
i �Vi �Vmax

i ; i ¼ 1; 2; . . .Nb ð8Þ

Tmin
q � Tq � Tmax

q ; q ¼ 1; 2; . . .Nt ð9Þ

SflowL

�� ��� Smax
L ; L ¼ 1; 2; . . .NL ð10Þ

0�QCx �Qmax
Cx ; . . .x ¼ 1; 2; . . .NC ð11Þ

0�Qn
Cj �Q

maxðnÞ
Cj ; j 2 candidate buses ð12Þ

Pmin
s �Ps �Pmax

s ð13Þ

where Qg, QL and QC are the reactive power of generator,

power demand and for the existing VAR injections,

respectively; Gij and Bij are mutual conductance and sus-

ceptance between bus i and j, respectively; Pg and PL are

the active power output of generator and the active

demand, respectively; Npv is the voltage-controlled buses

number; Tq and Nt are the tapping change of a transformer

q and their total number, respectively; Sflow, Smax and NL

refer to the MVA flow through the transmission lines, their

maximum MVA rating and their total number, respec-

tively. Qcx and Q
max
c are the existing VAR injection at bus x

and its capacity; Ps, P
min
s and Pmax

s are the slack active

power, its minimum and maximum limits.

In the equality constraints, the tapping change of a

transformer (Tk) is modeled inside the bus admittance

matrix where the branches, phase shifters and transformers

are formulated with the standard p model [47]. Each

transmission line is modeled with branch admittance

matrix (Ybr) as follows:

Ybr ¼
yk þ j

bk

2

� �
1

T2
k

�yk
1

Tke�jhshift

�yk
1

Tkejhshift
yk þ j

bk

2

2
664

3
775 ð14Þ

where yk and bc are the series admittance and the total

charging capacitance of the line; hshift is the phase shift

angle of the transformer.

3 Proposed procedure for reactive power planning

3.1 Salient stages of DE algorithm

The major stages of DE algorithm are shown in Fig. 1. As

shown, it begins with initialization step after identifying

its parameters, the population size (NP) of the individuals

(X) with D-dimensional variables and the maximum

iterations number (Imax). The individuals in this initial

population are randomly distributed over the D-dimen-

sional search space. Then, the objective value of each

individual is evaluated. After that, each individual is

updated according to the mutation and crossover opera-

tions as follows:

Xi;jðI þ 1Þ

¼
Vi;jðI þ 1Þ ¼ Xr1;jðIÞ þ F � ðXr2;jðIÞ � Xr3;jðIÞÞ if randð0; 1Þ\Cr

Xi;jðIÞ else

�

ð15Þ

where Xr1, Xr2 and Xr3 are three randomly chosen and

similar vectors, V is the mutant vector, F is the mutation

constant in the range of [0.4–1], and Cr is the crossover

probability within the range [0, 1]. Then, the corresponding

objectives of the individuals are evaluated. Afterward, each

new individual is compared with the previous one on the

basis of the objective value and new population is selected

in the next iteration which provides better solutions. These
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steps are reiterated until the maximum number of iterations

is achieved or other stopping method is applied.

3.2 DE strategies

In Table 1, a summary is presented to define the basic

difference of different DE strategies from the DE algorithm

stated above. These strategies differ from each other based

on mutation operator. Each one is addressed as DE/a/b/

c. a indicates the kind of perturbation, b indicates the

number of difference individuals, and c indicates the kind

of crossover.

In Table 1, r1–r5 are random integers within the range [1,

NP], and they are unlike the vector i. Xbest refers to the vector

with best objective value. These DE strategies are workedwith

the binomial crossover operator as Eq. 15. Added to that, the

individual is reinitialized randomly if any dimensional variable

is exceeded its limits,while the dependent variables augmented

as penalty terms inside the objective function as follows:

f ¼ F þ Kv

X

NvV

DV2
Load þ Kq

X

NvQ

DQ2
g þ KPsDP

2
s

þ KSf

X

NvSf

DS2f ð16Þ

Fig. 1 Flowchart of the proposed two-step procedure

Table 1 Table summary of the

different DE strategies [30]
No. DE strategy Kind of mutation

DE 1 DE/rand/1 Vi;jðI þ 1Þ ¼ Xr1;jðIÞ þ F:ðXr2;jðIÞ � Xr3;jðIÞÞ
DE 2 DE/rand to best/1 Vi;jðI þ 1Þ ¼ Xi;jðIÞ þ F:ðXr1;jðIÞ � Xr2;jðIÞÞ þ F:ðXbest;jðIÞ � Xi;jðIÞÞ
DE 3 DE/best/1 [48] Vi;jðI þ 1Þ ¼ Xbest;jðIÞ þ F:ðXr1;jðIÞ � Xr2;jðIÞÞ
DE 4 DE/best/2 Vi;jðI þ 1Þ ¼ Xbest;jðIÞ þ F:ðXr1;jðIÞ � Xr2;jðIÞÞ þ F:ðXr3;jðIÞ � Xr4;jðIÞÞ
DE 5 DE/rand/2 Vi;jðI þ 1Þ ¼ Xr1;jðIÞ þ F:ðXr2;jðIÞ � Xr3;jðIÞÞ þ F:ðXr4;jðIÞ � Xr5;jðIÞÞ
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where Kv, Kq, KPs, KSf are the penalty factors, NvV refers to

the set of violated load voltages, NvQ refers to the set of

violated reactive outputs of generators, NvSf refers to the

overflow set of branches, DVLoad, DQg, DPs and DSf are
defined as follows:

DVLoad ¼
Vmin
Load � VLoad if VLoad\Vmin

Load

Vmax
Load � VLoad if VLoad [Vmax

Load

�
ð17Þ

DQg ¼
Qmin

g � Qg if Qg\Qmin
g

Qmax
g � Qg if Qg [Qmax

g

�
ð18Þ

DPs ¼
Pmin
s � Ps if Ps\Pmin

s

Pmax
s � Ps if Ps [Pmax

s

�
ð19Þ

DSf ¼ Smax
f � Sf if Sf [ Smax

f ð20Þ

where superscripts ‘‘min’’ and ‘‘max’’ indicate the mini-

mum and maximum of a variable.

3.3 Proposed procedure

A two-step procedure is proposed to handle the RPP. An

IM is introduced to place the additional sources of reac-

tive power and their associated maximum sizes in the first

step as depicted in Fig. 1. As shown, an AC load flow is

performed and if there are any violations of load buses

voltage out of the desired specified limits, the bus with

the exceeded/lowest voltage is determined. Subsequently,

an identified step size of a reactor/capacitor is added to

that violated, respectively. An AC load flow is performed

again and so until the voltage of the load buses is to be

inside the desired identified limits. This IM is flexible that

it can find different strategies for the RPP which is

helpful for various trends to operate the power system.

This can be achieved based on identifying the step size

and the desired voltage limits. The output of this IM is

the candidate VAR buses and their associated maximum

sizes to be utilized in the second step. For this purpose,

the compensation step and the minimum desired voltage

are specified at 0.1 MVAR and 1 p.u., respectively, while

Imax is 1000.

In the second step, various DE strategies are suggested

for handling the RPP. To assess the single-step optimiza-

tion procedure, only the second step of the two-step opti-

mization procedure is employed to obtain the RPP solution

considering all buses as candidate buses.

4 Applications

To estimate the performance and efficiency of the

suggested strategies to handle the RPP, IEEE 30 bus

and the WDN are used. These power systems are

considered at their peak loads, while the active power

outputs are predefined. Additional case study is applied

for IEEE 354-bus test network [49, 50] as a large-scale

power system.

For simulation studies, GA with crossover fac-

tor = 0.80 and mutation factor = 0.20 [7], DE/rand/1,

and PSO with learning factors = 2, and inertia factors

(xmax = 0.90 and xmin = 0.40) are utilized. The veloc-

ities related to PSO are reinitialized if they are violated

80% of their concerned particles. The DE’s crossover

and mutation factors are 0.90 and 0.60, respectively. h, ei
and Cci (Eq. 1) have been considered equal to 60 $/

MWh, 1000 $ and 30,000 $/MVAR, respectively, as

taken in most articles [8–10, 13, 15, 17, 18, 22, 26–28].

NP = 50 and Imax = 300. To show the capability of the

proposed strategies, three cases have been studied as

follows:

Case 1: Minimization of system power losses.

Case 2: Minimization of total costs of operation and

VAR investment.

Case 3: Voltage profile improvement.

Added to that, a comparative to the single-step opti-

mization procedure is presented. The effects of discrete

model are discussed compared to the continuous model of

decision variables.

4.1 Simulation results for IEEE 30-bus system

It comprises of 30 buses, 6 generators, 41 lines, 4 on-load

tap change transformers and 2 existed VAR sources at

buses 10 and 24. The generator, load voltages and tap

changing of transformer are bounded between 0.90 and

1.10. The data of IEEE 30-bus system are taken from

MATPOWER 5.0b1 [50].

In the first step, the proposed IM is carried out. Initially,

the weakest location is node 30 with lower voltage of 0.901

p.u. Thus, node 30 is firstly chosen and injected by a VAR

step (Qstep) equals 0.1 MVAR step (0.1 MVAR). Then,

power flow program is run again and so until the voltage of

the load buses is inside the desired identified limits.

Finally, the VAR candidate buses are identified at 18, 19,

21, 23, 24, 26, 27, 29 and 30 and their associated maximum

sizes are 0.70, 7.10, 7.70, 1.30, 11.40, 4.70, 2.10, 2.40 and

8.10 MVAR, respectively.

In the second step, GA, PSO and the proposed DE

strategies are employed. Tables 2 and 3 show the corre-

sponding results for Cases 1 and 2, respectively. In these

tables, Psave and Csave denote the percentage saving of the

power losses and the costs of energy loss and investment,

respectively, with respect to the initial condition. For

minimizing the power losses, DE 2 and DE 3 achieved the

highest reduction of losses with 18.98 and 18.99%,

respectively, where DE 1 and DE 4 attained reductions of
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18.92 and 18.93%, respectively. DE 5, GA and PSO

accomplished lower costs reduction of 18.28, 17.11 and

16.63, respectively.

For minimizing the costs of energy loss and investment

(Case 2), the obtained results by the proposed strategies of

DE algorithm are compared with other MOs such as

Table 2 Simulation results of

the compared approaches to

minimize the losses for IEEE

30-bus test system (Case 1)

Variables Initial GA PSO DE 1 DE 2 DE 3 DE 4 DE 5

Vg1 1.050 1.0995 1.0968 1.0999 1.10 1.10 1.0999 1.0998

Vg2 1.040 1.0914 1.0862 1.0935 1.0943 1.0943 1.0941 1.0940

Vg5 1.010 1.0732 1.0712 1.0734 1.0748 1.0748 1.0746 1.0753

Vg8 1.010 1.0758 1.0651 1.0756 1.0765 1.0765 1.0763 1.0762

Vg11 1.050 1.0742 1.0944 1.0967 1.0992 1.10 1.0963 1.057

Vg13 1.050 1.0949 1.0903 1.0999 1.10 1.10 1.0996 1.0905

Tap6–9 1.0780 1.0221 1.0562 1.0232 1.0758 1.0917 1.0423 1.0345

Tap6–10 1.0690 0.9658 0.9483 0.981 0.9162 0.9 0.963 0.9517

Tap4–12 1.0320 1.03 1.0134 0.9778 0.9703 0.9713 0.9716 0.9765

Tap28–27 1.0680 1.0295 1.0013 0.9832 0.9777 0.9765 0.9835 0.9991

Qc10 19 4.2988 8.5474 15.6831 16.2137 15.4389 17.1797 17.4024

Qc18 0 0.44 0.4482 0.5981 0.6123 0.6967 0.6932 0.2393

Qc19 0 1.0764 6.0428 4.8124 4.6191 4.5177 4.7244 6.2288

Qc21 0 6.1826 4.6433 7.6331 7.6919 7.6953 7.4614 6.8622

Qc23 0 1.0165 1.2123 1.1742 1.2955 1.2992 1.2626 0.9219

Qc24 4.3 8.4129 3.966 6.6863 6.8881 6.8805 7.4917 6.2272

Qc26 0 0.5696 4.035 2.0887 1.9447 1.9799 2.1608 2.6655

Qc27 0 0.3889 1.8509 0.9593 0.4954 0 0.7964 1.9901

Qc29 0 1.6845 2.1499 0.7637 0.7517 0.8575 0.9511 1.6535

Qc30 0 4.5385 2.9974 1.7331 1.9242 1.8829 1.6739 2.4318

Plosses (MW) 5.596 4.638 4.6652 4.5371 4.5336 4.5333 4.5363 4.5726

Psave % – 17.11% 16.63% 18.92% 18.98% 18.99% 18.93% 18.28%

Table 3 Simulation results of

the compared approaches to

minimize the costs of energy

loss and investment for IEEE

30-bus test system (Case 2)

Plosses (MW) Ic ($) Oc ($) Total costs ($)

Initial 5.596 0 2,941,300 2,941,300

MOs

GA 4.7621 164,783 2,503,000 2,667,800

PSO 4.9263 8221 2,589,300 2,597,500

DE 1 4.6842 8147 2,462,000 2,470,200

DE 2 4.6694 0 2,454,236 2,454,236

DE 3 4.6690 0 2,453,990 2,453,990

DE 4 4.6855 5096 2,462,700 2,467,796

DE 5 4.7512 8134 2,498,000 2,506,134

EP [17] 4.6835 0 2,461,600 2,461,600

EP [18] 4.963 0 2,608,500 2,608,500

DE [21] 4.6835 0 2,469,600 2,469,600

RGA [21] 4.6987 0 2,461,600 2,461,600

Improved GA [8] 4.963 0 2,608,815 2,608,815

DE [28]* 4.545 0 2,421,600 2,421,600

CMAES [13] 4.946 0 2,600,085 2,600,085

COMs

BFGSM [18] 5.736 1,000,000 3,013,280 4,013,280

SQP [13] 4.951 0 2,602,106 2,602,106

LP [8] 5.68 0 2,985,408 2,985,408

* Refers to infeasible operating point
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evolutionary programming (EP) [18, 19], DE [22, 29],

improved GA [8], RGA [22], improved GA [8] and

CMAES [14] and COMs such as Broyden–Fletcher–

Goldfarb–Shanno method [19], sequential QP (SQP) [14]

and LP [8] in Table 3. From this comparison, the greatest

costs reduction is acquired using DE 2 and DE 3 except the

best solution that got hold of DE [29], but it is an infeasible

solution that the reactive outputs at generator buses 2 and 4

were -25.25 and 85.6914 MVAR, respectively, which

exceeded their corresponding limits [49]. Thus, the

proposed algorithm outperforms these MOs and COMs

which establish the efficacy of the proposed RPP

methodology.

Figure 2 shows the convergence features of the GA,

PSO and the proposed DE strategies for both studied cases.

It was explicated that DE 2 and DE 3 converged to the

minimum objective at the 80th and 70th iteration for both

Cases 1 and 2, respectively. DE 1 and DE 4 continued

through the 300 iterations and remained minimizing the

objective, while PSO got stuck in a local minimum at the

Fig. 2 Convergence characteristics of the compared approaches for solving the RPP (IEEE 30-bus test system). a Case 1, b Case 2
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100th and 80th iteration for both Cases 1 and 2,

respectively.

4.2 Results for West Delta network

This second network comprises of 52 bus, 8 generator

buses and 108 lines [12] as illustrated in Fig. 3. The gen-

erator and load voltages are bounded between 0.94 and

1.06, while tap changing of transformer is between 0.9 and

1.1 p.u. Its nominal power demand equals

(889.75 ? j539.98) MVA. The voltages at load buses 18

and 20–22 exceeded their minimum value.

Similarly, the VAR candidate buses are identified at 18,

19, 20, 21, 24, 32, 33, 35, 49 and 50 and their associated

maximum sizes are 13.70, 0.80, 24.20, 12.70, 0.10, 10,

26.50, 3, 4.20 and 4.70 MVAR, respectively. Tables 4 and

5 represent the simulation results of GA, PSO and DE

strategies for Cases 1 and 2, respectively.

For Case 1, the minimal power losses are obtained by

the proposed strategies DE 2 and DE 3 with 23.29% (from

19.015 to 14.586 MW) and 23.25% (from 19.015 to

14.5936 MW), respectively. Very close results are

accomplished by DE 1 and DE 4 which attained real losses

reduction of 23.13 and 23.09%, respectively. DE 5, PSO

and GA achieved less reduction of 21.93, 20.93 and

20.63%, respectively.

For Case 2, the greatest costs reduction is attained by

DE 3 and DE 2 that procured reduction of 15.41 and

15.408%, respectively. On the other hand, DE 1 and DE 4

acquired a relative reduction of 15.406 and 15.403%,

respectively, while DE 5 and PSO achieved a significant

reduction of 15.09 and 14.491%, respectively.

In this case, although the IM is developed to identify the

candidate buses, DE 2 and DE 3 acquired the minimal

losses without installing additional VAR sources compared

to other algorithms for IEEE 30 bus and WDN. This

illustrates that the optimal solutions found by proposed DE

2 and DE 3 strategies are achieved via controlling the

generator voltages and tap settings of transformers which

are sufficient for Case 2.

Figure 4 displays the convergence features of GA, PSO

and DE strategies which illustrates that DE 2 and DE 3

Fig. 3 Single-line diagram of West Delta network [12]
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converge to the minimum objective at the 70th and 50th

iteration for Cases 1 and 2, respectively. DE 1, DE 4 and

DE 5 take the 300 iterations still reducing the objective.

PSO achieves similar costs reduction; nevertheless, it

remains stuck within a local minimum, while GA’s solu-

tion remains unchanged for a large number of iterations

and obtained higher objective value compared to other

approaches.

Taking into consideration the evolution of the sys-

tem, the annual growth rate of peak load in the Egyp-

tian system is approximately 6–8% in the previous

year’s [51]. For this purpose, the proposed algorithm

(DE 3) is performed for three-year plan with 8% annual

growth rate of peak load. Therefore, the active and

reactive power loads are increased with 8% and con-

sequently the active power generations are increased

with the same percentage. As planning for installing

fixed capacitors, their values are considered optimally

fixed for the three-year plan, while the generator bus

voltages and tap ratio of transformers are optimally

varied with increasing loading level. Table 6 shows the

corresponding results for handling Case 1 which

demonstrates the capability of the proposed algorithm

to obtain savings of 22.93, 22.87 and 24.06% for the

consecutive three years, respectively. Besides that, the

initial voltages are improved and become within the

acceptable range since the minimum voltages after

installing the new VAR sources are recorded at bus 44

with values of 1.001, 0.996 and 1.000 p.u. for the

consecutive 3 years, respectively.

To discuss the sensitivity of the optimal sizing and

positioning of the VAR sources for the system state

Table 4 Simulation results of

the compared approaches to

minimize the losses for WDN

(Case 1)

Initial GA PSO DE 1 DE 2 DE 3 DE 4 DE 5

Vg1 1 1.0581 1.0528 1.0598 1.06 1.06 1.0598 1.0564

Vg2 1 1.0552 1.0552 1.0598 1.06 1.06 1.0596 1.0561

Vg3 1 1.0593 1.0579 1.0597 1.06 1.06 1.0586 1.0577

Vg4 1 1.0562 1.0323 1.0574 1.0587 1.0594 1.0582 1.0436

Vg5 1 1.0569 1.0574 1.0587 1.0591 1.0591 1.0587 1.0585

Vg6 1 1.0317 1.0174 1.0326 1.0327 1.0337 1.0331 1.0298

Vg7 1 1.017 1.0016 1.025 1.0253 1.0263 1.0248 1.0216

Vg8 1 1.017 1.0155 1.0407 1.0393 1.0402 1.0426 1.0433

Tap4-7 1 1.0134 0.985 1.0018 0.9991 0.9991 1.0013 0.9979

Tap4-9 1 0.9913 0.9988 0.9956 0.9952 0.9952 0.9921 0.9854

Qc18 0 9.3191 13.0552 12.0245 13.26 13.71 13.5022 7.5621

Qc19 0 0.2424 0.0383 0.4152 0.4018 0.7899 0.7063 0.3064

Qc20 0 16.4477 16.7512 19.2924 21.6338 19.1607 21.3964 19.505

Qc21 0 10.1998 10.0679 10.8568 9.1628 11.6034 10.5964 8.4218

Qc24 0 0.0985 0.0906 0.0465 0.055 0.1 0.0523 0.0576

Qc32 0 8.5058 9.0403 10.0972 10.0999 10.1 9.6193 9.3802

Qc33 0 20.2297 25.6712 26.0819 26.4359 26.4999 25.93 26.1455

Qc35 0 1.9774 2.8604 2.6533 2.992 3 2.5851 1.0033

Qc49 0 0.596 3.3041 3.3961 4.198 4.1989 4.065 0.8298

Qc50 0 4.6367 4.0813 4.1546 4.1077 4.1908 3.3134 4.1364

Plosses (MW) 19.015 15.0914 15.0338 14.6159 14.5936 14.586 14.6243 14.8456

Psave % 0 20.63% 20.93% 23.13% 23.25% 23.29% 23.09% 21.93%

Table 5 Simulation results of the compared approaches to minimize the costs of energy loss and investment for WDN (Case 2)

Initial GA PSO DE 1 DE 2 DE 3 DE 4 DE 5

Plosses (MW) 19.015 16.1189 16.215 16.0854 16.0851 16.0849 16.086 16.1456

Ic ($) 0 627,497 23,182 0 0 0 0 0

Oc ($) 9,994,284 8,472,103 8,522,818 8,454,486 8,454,328 8,454,223 8,454,802 8,486,127

Total costs ($) 9,994,284 9,099,600 8,546,000 8,454,486 8,454,328 8,454,223 8,454,802 8,486,127

Csave % – 8.95% 14.491% 15.406% 15.408% 15.4095% 15.403% 15.09%
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changes due to different loading situations and considering

the annual growth rate of these loading, three loading

conditions are taken into account as shown in Table 7.

Table 8 shows the related simulation results for WDN

for handling Case 1. Great savings are obtained using the

proposed algorithm at each loading situation through the

consecutive three years, respectively. This proves the

ability of the proposed procedure to deal with different

loading situations and considering the annual growth rate

which provide some kind of dynamic optimization on a

larger set of system states instead of implementing on a

static state of the power system.

4.3 Statistical analysis

In evolutionary optimization, the definition of robustness is

not uniform, but a solution is commonly defined as a robust

solution if it behaves well with slightly diverse situations

[52]. Therefore, the algorithm that provided a robust

solution against diverse initial populations due to the ran-

domization existed in evolutionary optimization is con-

sidered a robust one.

For this purpose, the compared approaches have been

applied for 30 runs in each case study and the statistics of

best, worst, mean, standard deviation (Std) and standard

Fig. 4 Convergence characteristics of the compared approaches for solving the RPP (WDN). a Case 1, b Case 2
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error (Ste) are listed in Table 9 to solve the RPP for IEEE

30-bus test system and WDN. Added to that, the conver-

gence frequency in obtaining the minimal losses or total

costs is recorded in Tables 10 and 11 for IEEE 30 bus and

WDN, respectively. Moreover, statistical tests to judge the

significance of the obtained results by the proposed method

are carried out in Table 12 using a parametric test of paired

t test and a nonparametric test of Wilcoxon’s rank-sum test

[53].

From Tables 9, 10, 11 and 12, it can be concluded as

follows:

Table 6 Simulation results for

WDN considering its evolution

by 8% annual growth rate (Case

1)

Year 1

Peak loading

Year 2

?8% increase

Year 3

?8% increase

Sum (Pload) MW 889.75 960.93 1037.804

Sum (Qload) MVAr 539.984 583.1827 629.8373

Sum (Pg) MW 908.7651 983.6002 1064.898

Initial Plosses (MW) 19.01507 22.67018 27.09315

Initial related costs (million $) 9.99432 11.91545 14.24016

Initial total costs (million $) 36.14992

Initial minimum voltage (p.u.) 0.903 @ bus 20 0.892 @ bus 20 0.880 @ bus 20

Vg1 1.059997 1.059861 1.059921

Vg2 1.059975 1.059816 1.059998

Vg3 1.059993 1.05992 1.059497

Vg4 1.05805 1.057371 1.05939

Vg5 1.059109 1.046503 1.059129

Vg6 1.027697 1.021775 1.029387

Vg7 1.018484 1.014528 1.019645

Vg8 1.027485 1.027051 1.037043

Tap4–7 1.000069 1.000328 0.999393

Tap4–9 0.99451 0.99451 0.99451

Qc18 13.67722

Qc19 0.773036

Qc20 23.32679

Qc21 12.49209

Qc24 0.043632

Qc32 8.685839

Qc33 26.49966

Qc35 2.994285

Qc49 4.056532

Qc50 4.642492

Optimized Plosses (MW) 14.65439 17.48457 20.57423

Optimized related costs (million $) 7.70235 9.18989 10.81381

Optimized total costs (million $) 27.70605

Saving % 22.93% 22.87% 24.06%

Optimized minimum voltage (p.u.) 1.001 @ bus 44 0.996 @ bus 44 1.000 @ bus 44

Table 7 RPP for different loading conditions and their duration for WDN

Peak loading condition Medium loading condition (80% of the peak) Light loading condition (60% of the peak)

Sum (Pload) MW 889.75 711.8 533.85

Sum (Qload) MVAr 539.984 431.9872 323.9904

Sum (Pg) MW 908.7651 723.3396 540.0058

dL (h) 2920 2920 2920
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Table 8 Simulation results considering different loading conditions and their growth rate for WDN (Case 1)

Year 1 initial loading Year 2 ?8% increase Year 3 ?8% increase

Light Medium Peak Light Medium Peak Light Medium Peak

Vg1 1.003327 1.059001 1.044841 1.000844 1.007662 1.041258 1.01893 1.03285 0.998631

Vg2 1.013691 1.052474 1.019076 1.019415 1.048132 1.046111 1.003856 1.009216 1.016361

Vg3 0.999185 1.049687 1.008645 1.00476 1.043563 1.052043 1.00011 1.005091 1.006948

Vg4 1.002999 1.014184 1.018945 0.994329 1.052525 1.00954 0.986676 1.005909 0.992227

Vg5 0.998609 1.022524 1.04059 1.013018 1.031471 1.055854 1.025011 1.023726 1.019537

Vg6 0.971396 0.987684 1.013359 0.995816 1.006811 1.017252 1.017673 0.98894 0.979445

Vg7 0.967014 0.983714 1.00224 0.995371 0.991763 1.009055 1.017627 0.98045 0.97297

Vg8 0.968662 0.993187 1.018917 1.001226 1.014278 1.017874 1.034156 1.00678 0.988831

Tap4–7 0.999621 0.995599 0.999887 0.998955 0.992926 1.01911 1.000467 0.995499 0.998962

Tap4–9 0.997938 0.997938 0.997938 0.997938 0.997938 0.997938 0.997938 0.997938 0.997938

Qc18 8.090666

Qc19 0.618159

Qc20 21.3202

Qc21 11.57566

Qc24 0.024828

Qc32 10.04242

Qc33 25.3419

Qc35 2.91543

Qc49 3.952814

Qc50 3.501348

Initial MW Plosses 6.155764 11.53958 19.01507 7.273149 13.68864 22.6701 8.600984 16.26191 27.09315

Initial costs (million $) 1.07849 2.021734 3.33144 1.274256 2.398251 3.971815 1.506893 2.849087 4.746719

Optimized MW Plosses 5.70696 9.577911 15.85409 6.58833 11.53652 18.14835 7.850915 14.04829 23.46187

Optimized costs (million $) 0.99986 1.67805 2.777636 1.154277 2.021199 3.179592 1.37548 2.461261 4.11052

Saving % 7.29% 17% 16.64% 9.41% 15.72% 19.94% 8.72% 13.61% 13.4%

Table 9 Comparison between the compared approaches to solve the RPP

Case study Test system Index GA PSO DE 1 DE 2 DE 3 DE 4 DE 5

Case 1

Real power losses (MW)

IEEE 30-bus test system Best 4.638 4.6652 4.5371 4.5336 4.5333 4.5363 4.5726

Mean 4.7434 4.8162 4.5949 4.5757 4.5333 4.6072 4.758

Worst 5.0141 4.8673 4.6475 4.6017 4.5339 4.6614 4.8158

Std 0.0799 0.0585 0.0346 0.0234 1.12E-04 0.0393 0.0773

Ste 0.0146 0.0107 0.0063 0.0043 2.05E-05 0.0072 0.0141

WDN system Best 15.0914 15.0338 14.6159 14.5936 14.586 14.6243 14.8456

Mean 15.5504 15.9533 14.8783 14.6182 14.5864 14.9246 15.7568

Worst 15.9051 16.3018 15.0654 14.627 14.5869 15.1448 16.1577

Std 0.1851 0.3485 0.1296 0.0097 3.23E-04 0.1584 0.3695

Ste 0.0338 0.0636 0.0237 0.0018 5.89E-05 0.0289 0.0675

Case 2

Total costs range ($)

IEEE 30-bus test system Best 2,667,800 2,597,500 2,462,000 2,454,236 2,453,900 2,467,796 2,506,200

Mean 2,827,000 2,610,900 2,465,500 2,454,500 2,453,900 2,470,700 2,533,900

Worst 3,015,300 2,819,000 2,515,000 2,454,940 2,454,000 2,503,700 2,680,800

Std 71,100 39,480 7892 231.4356 19.2179 5795 29,587

Ste 13,000 7208 1441 42.2542 3.5087 1058 5402

WDN system Best 9,099,600 8,546,000 8,454,486 8,454,328 8,454,223 8,454,802 8,486,127

Mean 9,413,100 8,680,600 8,467,400 8,464,480 8,456,500 8,470,000 8,515,600

Worst 9,633,000 9,699,000 8,569,600 8,498,200 8,472,300 8,631,100 8,925,000

Std 138,500 198,280 19,394 6357.8 1654.8 30,557 79,697

Ste 25,300 36,201 3541 1161 302.1317 5578.9 14,551
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• The proposed DE 3 strategy is the most robust

algorithm to handle the RPP compared to the other

approaches.

• DE 3 achieved trivial Std and Ste in Case 1 with

1.12E-04 and 2.05E-05 for IEEE 30-bus system and

3.23E-04 and 5.89E-05 for the WDN system,

respectively. This states the high potency of the

proposed DE 3 strategy to find the global minimal

regardless of the initial guesses.

• Moreover, its superiority over the compared approaches

is proven as the DE 3 strategy always obtains mean

objective very near to its obtained best and lower than

the achieved best of the other compared approaches

except DE 2 best of WDN for Case 2.

Table 10 Convergence frequency of IEEE 30-bus test system

Solution algorithms Case 1 Case 2

Real power losses (MW) Total costs range (million $)

Range 4.5–4.6 4.6–4.7 4.7–4.8 Greater than 4.8 2.3–2.5 2.5–2.7 2.7–2.9 2.9–3.1

GA – 30% 60% 10% – 3.33% 83.33% 13.33%

PSO – 6.67% 16.67% 76.66% – 96.67% 3.33% –

DE 1 53.33% 46.67% – – 96.67% 3.33% – –

DE 2 80% 20% – – 100% – – –

DE 3 100% – – – 100% – – –

DE 4 40% 60% – – 96.67% 3.33% – –

DE 5 6.67% 13.33% 36.67% 43.33% – 100% – –

Table 11 Convergence frequency of WDN

Case 1 Real power losses (MW)

Range 14.5–14.6 14.6–14.7 14.7–14.8 14.8–14.9 14.9-15 Greater than 15

GA – – – – – 100%

PSO – – – – – 100%

DE 1 – 13.33% 13.33% 22.34% 30% 20%

DE 2 10% 90% – – – –

DE 3 100% – – – – –

DE 4 – 13.33% 13.33% 16.67% 16.67% 40%

DE 5 – – – 3.33% 3.33% 93.34%

Case 2 Total costs range (million $)

Range 8.4–8.5 8.5–8.6 8.6–8.7 8.7–8.8 8.8–9 Greater than 9

GA – – – – – 100%

PSO – 3.33% 86.67% 3.33% 3.33% 3.33%

DE 1 96.67% 3.33% – – – –

DE 2 100% – – – – –

DE 3 100% – – – – –

DE 4 96.67% – 3.33% – – –

DE 5 76.67% 20% – – 3.33% –

Table 12 t test and Wilcoxon’s rank-sum test between DE 3 and the compared approaches to solve the RPP (Case 2) for IEEE 30-bus test

system

Index GA-DE 3 PSO-DE 3 DE 1-DE 3 DE 2-DE 3 DE 4-DE 3 DE 5-DE 3

t value 28.10594 20.6375725 8.2211523 8.647397 10.914177 13.2926443

Related p value Less than 0.001 Less than 0.001 Less than 0.001 Less than 0.001 Less than 0.001 Less than 0.001

z value (Wilcoxon) 4.78213 4.78213 4.78213 4.4622 4.78213 4.78213

Related p value 0.0001 0.0001 0.0001 0.00015 0.0001 0.0001
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• The proposed DE 3 strategy is the most consistent

algorithm to solve the RPP problem as its success rates

compassed always perfect (100%) in the first range for

both systems and higher than other methods. The

nearest results are obtained by DE 2 strategy with

perfect success rates (100%) in the first range for both

systems in Case 2.

• In Table 12, z values are evaluated based on Wil-

coxon’s rank-sum test so it does not be varied except

for DE 2–DE 3. This is due to that the obtained worst

objective value using the proposed DE 3 is better than

the best values of GA, PSO, DE 1, DE 4 and DE 5.

• Table 12 indicates that the p values of the statistical

t test and Wilcoxon’s rank-sum test prove that the

obtained results of the proposed method do not happen

by chance in spite of the stochastic nature of the meta-

heuristic algorithms. Thus, the significance of the

obtained results is verified.

Fig. 5 Effects of varying Cr and F of DE 3 strategy on the power losses (Case 1). a IEEE 30-bus test system. b WDN
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4.4 Parametric analysis of the suggested DE 3

strategy for solving the RPP

In DE algorithm, two parameters have to be adjusted

which are Cr and F. The parameter Cr controls the

number of individuals to be varied in each iteration, while

F guides the directions and the appended values through

the search space. In this section, a parametric analysis of

the suggested DE 3 strategy by varying Cr and F on the

costs of energy loss and investment is studied. Figures 5

and 6 show the effects of simultaneous varying Cr and F

of the proposed DE 3 strategy for Cases 1 and 2 for IEEE

30 and WDN, respectively. For minimizing the power

losses, the optimal ranges of F and Cr, as illustrated in

Fig. 5, are inside [0.50, 0.90] and [0.10, 0.90] for IEEE

30-bus system and WDN. For Case 2, the optimal ranges

of F and Cr, as illustrated in Fig. 6, are inside [0.50, 0.80]

and [0.30, 0.90] for IEEE 30-bus system, respectively.

Fig. 6 Effects of varying Cr and F of DE 3 strategy on the total costs (Case 2). a IEEE 30-bus test system. b WDN
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Similarly for the WDN, the optimal ranges of F and Cr

are inside [0.50, 0.80] and [0.10, 0.90], respectively. By

crossing these ranges, F and Cr of the proposed DE 3

strategy are recommended to be within [0.50, 0.80] and

[0.30, 0.90], respectively, to handle the RPP for any

electrical network.

4.5 Solving the RPP problem including the voltage

profile improvement for IEEE 30-bus system

For solving the RPP problem including the voltage profile

improvement (Case 3), a robust DE variant (DE/best/1) is

employed with high ability of global exploitation and fast

convergence as proven previously. Table 13 tabulates the

related results for IEEE 30-bus system where the system

voltage profile obtained by the proposed DE variant in all

studied cases compared to the initial case is shown in

Fig. 7. It is evident that the voltage profile distribution is

quite improved compared to the initial case and Cases 1–2.

4.6 Application of the proposed DE 3 strategy

for the RPP on large-scale power system

In order to show the efficiency of the proposed approach in

solving the RPP for large-scale systems, a 354-bus system

[49, 50] is used. The concerned results using the proposed

DE 3 strategy to minimize the total costs of both of system

operational losses and VAR investment are illustrated in

Table 14. As shown, 57 new VAR sources are installed

where the power losses are 390.82 MW. All the bus volt-

ages are within its bounds where the minimum voltage is

0.95597 p.u. at bus 1091 and the maximum one is 1.04359

p.u. at bus 2041.

4.7 Application of single-step optimization

procedure

The RPP problem could be solved using single- step

optimization procedure for searching for the optimal

solution considering all load buses as candidate VAR

locations. Table 15 shows a comparison between single-

Table 13 Application of the proposed DE 3 strategy for voltage

profile improvement for IEEE 30-bus test system

Initial Case 1 Case 2 Case 3

Vg1 1.050 1.1 1.1 1.066671

Vg2 1.040 1.0943 1.0943 1.056612

Vg5 1.010 1.0748 1.0747 1.031714

Vg8 1.010 1.0765 1.0766 1.03289

Vg11 1.050 1.1 1.1 1.02776

Vg13 1.050 1.1 1.1 1.046178

Tap6–9 1.078 1.0917 1.085 1.085145

Tap6–10 1.069 0.9 0.9 0.934431

Tap4–12 1.032 0.9713 0.9925 1.031658

Tap28–27 1.068 0.9765 0.9654 0.973567

Qc10 19 15.4389 18.9998 18.65532

Qc18 0 0.6967 0 0.000362

Qc19 0 4.5177 0 2.89E-05

Qc21 0 7.6953 0 9.31E-06

Qc23 0 1.2992 0 9.11E-05

Qc24 4.3 6.8805 4.2996 4.299604

Qc26 0 1.9799 0 0.002299

Qc27 0 0 0 0.000141

Qc29 0 0.8575 0 0.001491

Qc30 0 1.8829 0 0.00275

Plosses (MW) 5.596 4.5333 4.6690 5.102

Total costs ($) – 2,957,578 2,453,990 2,689,718

Fig. 7 Voltage profile using the

DE strategy for all studied cases

with IEEE 30-bus test system
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Table 14 Application of the proposed DE 3 strategy to solve the RPP for 354-bus test system (Case 2)

Variables Value Variables Value Variables Value Variables Value Variables Value

Vg1 0.978389 Vg1010 0.979125 Vg2019 0.980837 Tap1038–1037 0.941676 Qc1046 1.040947

Vg4 1.034174 Vg1012 1.012883 Vg2024 1.043997 Tap1063–1059 0.965119 Qc1048 0.058911

Vg6 1.007828 Vg1015 0.994315 Vg2025 1.04182 Tap1064–1061 0.951955 Qc1053 1.786993

Vg8 1.036198 Vg1018 0.997196 Vg2026 1.000175 Tap1065–1066 0.988739 Qc1057 0.018859

Vg10 1.01174 Vg1019 0.992303 Vg2027 1.044524 Tap1068–1069 1.02891 Qc1058 0.073653

Vg12 1.002316 Vg1024 0.984823 Vg2031 1.006573 Tap1081–1080 0.98325 Qc1063 0.035175

Vg15 0.986663 Vg1025 1.021765 Vg2032 1.030058 Tap2008–2005 0.971542 Qc1074 0.050398

Vg18 0.988356 Vg1026 0.98994 Vg2034 1.000644 Tap2026–2025 1.008889 Qc1079 0.529278

Vg19 0.981317 Vg1027 1.018316 Vg2036 0.993733 Tap2030–2017 1.021518 Qc1082 2.314376

Vg24 0.990774 Vg1031 0.97757 Vg2040 0.990387 Tap2038–2037 0.946139 Qc1083 0.323715

Vg25 0.989989 Vg1032 1.003342 Vg2042 0.995866 Tap2063–2059 0.950788 Qc1105 0.346983

Vg26 1.016329 Vg1034 1.011999 Vg2046 0.996626 Tap2064–2061 0.963045 Qc1106 0.339573

Vg27 1.012012 Vg1036 1.010247 Vg2049 1.02828 Tap2065–2066 0.977063 Qc1107 0.071593

Vg31 1.023311 Vg1040 1.006993 Vg2054 1.03381 Tap2068–2069 1.028477 Qc1108 0.045308

Vg32 1.007217 Vg1042 0.993654 Vg2055 1.023486 Tap2081–2080 0.969011 Qc1109 0.014927

Vg34 0.973118 Vg1046 0.978564 Vg2056 1.026488 Qc3 0.04048 Qc1110 0.089978

Vg36 0.966775 Vg1049 1.021678 Vg2059 1.028538 Qc13 0.259425 Qc1114 0.181218

Vg40 1.020129 Vg1054 0.965824 Vg2061 1.00586 Qc20 0.725036 Qc1115 0.25974

Vg42 1.028868 Vg1055 0.963553 Vg2062 0.998125 Qc21 0.00343 Qc1118 10.19201

Vg46 0.997369 Vg1056 0.965169 Vg2065 0.994055 Qc28 0.241155 Qc2001 0.228235

Vg49 1.013746 Vg1059 0.973976 Vg2066 1.01677 Qc29 0.454858 Qc2013 0.033572

Vg54 1.018982 Vg1061 1.000766 Vg2069 1.039196 Qc34 0.543943 Qc2020 0.214447

Vg55 1.00623 Vg1062 0.992948 Vg2070 1.011361 Qc38 0.029644 Qc2021 0.44543

Vg56 1.009945 Vg1065 1.006617 Vg2072 0.999911 Qc39 0.017285 Qc2028 0.011023

Vg59 0.98997 Vg1066 1.010828 Vg2073 1.029656 Qc41 0.611687 Qc2029 0.059316

Vg61 0.982329 Vg1069 1.032513 Vg2074 0.973197 Qc44 0.838182 Qc2034 1.5284

Vg62 0.981633 Vg1070 0.987779 Vg2076 0.957823 Qc45 0.278498 Qc2038 1.328001

Vg65 0.996852 Vg1072 0.999569 Vg2077 0.996846 Qc46 0.564884 Qc2039 0.032945

Vg66 1.013648 Vg1073 0.994514 Vg2080 1.024485 Qc48 1.05418 Qc2041 0.01401

Vg69 1.052652 Vg1074 0.963448 Vg2085 0.986769 Qc53 0.15561 Qc2044 0.371456

Vg70 0.997182 Vg1076 0.953707 Vg2087 0.985823 Qc57 0.028255 Qc2045 0.365617

Vg72 0.992049 Vg1077 1.004459 Vg2089 1.000596 Qc58 0.336388 Qc2046 0.299192

Vg73 0.971064 Vg1080 1.036629 Vg2090 0.994592 Qc63 0.142534 Qc2048 0.180828

Vg74 0.987432 Vg1085 0.991013 Vg2091 1.040313 Qc74 2.821826 Qc2053 0.084318

Vg76 0.9913 Vg1087 1.039902 Vg2092 1.005607 Qc79 1.317698 Qc2057 0.018818

Vg77 1.022196 Vg1089 0.990027 Vg2099 1.029972 Qc82 2.158411 Qc2058 0.022566

Vg80 1.048509 Vg1090 0.998419 Vg2100 1.036241 Qc83 0.142051 Qc2063 0.390924

Vg85 1.008714 Vg1091 0.951714 Vg2103 1.026851 Qc105 1.347197 Qc2074 0.154108

Vg87 0.991093 Vg1092 0.983192 Vg2104 1.009076 Qc106 1.184674 Qc2079 1.745292

Vg89 1.032207 Vg1099 1.041672 Vg2105 1.008059 Qc107 0.012585 Qc2082 2.744744

Vg90 1.00297 Vg1100 1.022333 Vg2107 1.035414 Qc108 0.082858 Qc2083 0.606731

Vg91 0.987905 Vg1103 1.015946 Vg2110 0.996874 Qc109 0.009363 Qc2105 2.074437

Vg92 1.018664 Vg1104 1.004841 Vg2111 0.988119 Qc110 0.568476 Qc2106 0.266277

Vg99 1.040078 Vg1105 1.003617 Vg2112 1.014903 Qc114 0.05159 Qc2107 0.074188

Vg100 1.047415 Vg1107 1.013315 Vg2113 1.014589 Qc115 0.058387 Qc2108 0.109816

Vg103 1.024962 Vg1110 1.005877 Vg2116 0.962435 Qc118 43.52831 Qc2109 0.071822

Vg104 1.00954 Vg1111 1.034215 Tap8–5 1.010062 Qc1003 0.377127 Qc2110 0.130525

Vg105 1.005052 Vg1112 0.996806 Tap26–25 1.037109 Qc1013 0.187193 Qc2114 0.00113
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step and two-step procedures using DE 3 to minimize the

total costs for IEEE 30-bus system. As shown the two-step

procedure achieved more reduction of the total costs

(16.57%) where the single-step method recorded 12.93%.

Thus, it is evident that reducing the search space with the

effective VAR buses enables the optimization algorithm to

find the optimal results.

4.8 Effect of discretizing the noncontinuous

variables

DE algorithm can be adjusted to handle the discrete vari-

ables using a rounding operator which is involved after the

initialization and mutation process [51]. Thus, the capacitor

banks step is chosen of 0.1 MVAR, while 32 steps of on-

load tap changers are considered as it generally provides

±10% automatic adjustment regulation [54]. Table 16

shows the discretization effect compared to its continuous

considerations for Cases 1 and 2. As shown, the optimal

settings and results are slightly changed and so the opti-

mization process is influenced to a small degree.

5 Conclusions

This paper proposes a two-step procedure for handling the

reactive power planning problem. The candidate locations

for installing new VAR sources and their concerned max-

imum sizes are identified by employing a proposed itera-

tive method. In addition, various strategies of DE algorithm

are suggested as solution tools in order to solve the RPP

optimization problem. A performance comparison with

Table 14 continued

Variables Value Variables Value Variables Value Variables Value Variables Value

Vg107 1.028899 Vg1113 1.013075 Tap30–17 0.967105 Qc1020 0.160744 Qc2115 0.269651

Vg110 0.990007 Vg1116 1.001558 Tap38–37 1.0196 Qc1021 0.180715 Qc2118 7.166524

Vg111 0.970908 Vg2001 0.986788 Tap63–59 0.929337 Qc1028 0.154271 Losses 390.82 MW

Vg112 0.997441 Vg2004 1.020479 Tap64–61 1.048542 Qc1029 0.337263 Min voltage 0.95597 @

bus 1091

Vg113 0.987633 Vg2006 1.006994 Tap65–66 0.961787 Qc1034 0.020627

Vg116 0.989021 Vg2008 1.018224 Tap68–69 0.974792 Qc1038 3.337642 Max voltage 1.04359 @

bus 2041

Vg1001 0.984292 Vg2010 1.04799 Tap81–80 0.917687 Qc1039 0.048806

Vg1004 1.018281 Vg2012 1.008936 Tap1008–1005 0.994568 Qc1041 0.435884 Total costs

million $

207.7806

Vg1006 1.014141 Vg2015 0.982506 Tap1026–1025 0.960585 Qc1044 0.243051

Vg1008 1.013849 Vg2018 0.986228 Tap1030–1017 1.014606 Qc1045 0.113242

Table 15 Comparison between single-step optimization and proposed two-step procedure using DE 3 to minimize the total costs for IEEE

30-bus system

Variables Single step Two step Variables Single step Two step Variables Single step Two step

Vg1 1.0998 1.1 Qc7 0.6888 – Qc23 0.0703 0

Vg2 1.0931 1.0943 Qc9 0.00211 – Qc24 3.4857 4.2996

Vg5 1.0719 1.0747 Qc10 7.972 18.9998 Qc25 0.0041 –

Vg8 1.0733 1.0766 Qc12 0.0152 – Qc26 0.1882 0

Vg11 1.0993 1.1 Qc14 0.0872 – Qc27 0.0119 0

Vg13 1.0999 1.1 Qc15 0.0185 – Qc28 0.0529

Tap6–9 0.9693 1.085 Qc16 0.0029 – Qc29 0.0138 0

Tap6–10 1.02038 0.9 Qc17 0.0013 – Qc30 0.212 0

Tap4–12 1.0467 0.9925 Qc18 0.0064 0 Plosses (MW) 4.725 4.669

Tap28–27 0.9687 0.9654 Qc19 0.0076 0 Ic ($) 77,557 0

Qc3 0.0326 – Qc20 0.0049 0 Oc ($) 2,483,352 2,453,990

Qc4 0.0053 – Qc21 0.0023 0 Total costs ($) 2,560,909 2,453,990

Qc6 0.02524 – Qc22 0.3967 – Csave % 12.93% 16.57%
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GA, PSO and the original DE variant DE/rand/1 is dis-

cussed and examined on the IEEE 30 bus and the WDN.

An additional application to large-scale power system is

implemented on IEEE 354-bus system.

The minimization of the power losses is considered as

single objective function, while the minimization of both

the VAR investment and costs of energy loss is handled

using the mathematical sum approach. Additional technical

objective is considered to enhance the voltage profile.

Although DE/rand/1 strategy is exceedingly utilized for

solving the RPP optimization that accomplished greater

reduction in energy losses and costs, DE/rand to best/1 and

DE/best/1 are able to obtain lesser values, but also they

demonstrate more speedy convergence and the load volt-

ages are ameliorated. While DE/rand/1 and DE/best/2

achieved a comparable reduction percentage of the power

losses or the total costs, they recorded further reduction

with more generations. DE and its strategies have better

performance over PSO and GA. Also, robustness statistics

are evaluated of the optimizing algorithms in solving the

RPP problem which indicates that the suggested DE/best/1

strategy is frequently superior and highly robust than the

other compared approaches for minimizing the real power

losses or the total costs and its ability to converge near

optimally values distinguishes DE/best/1 strategy over

others. Though the DE/rand/2 performance shows worse

than the other DE strategies, it is generally more robust and

consistent than PSO and GA, especially for minimizing the

total costs of VAR investment and operational power los-

ses. Furthermore, a parametric analysis of the crossover

and mutation factors related to the suggested DE/best/1

algorithm is studied and their optimal tuning is declared.

The proposed optimization procedure was checked for

discrete and continuous models of decision variables. A

comparative study between the single-step optimization

procedure and the proposed two-step procedure was

studied.
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