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Abstract In this paper, we employ all the parameters as

trapezoidal interval type-2 fuzzy numbers to cope with

ambiguity and vagueness problem. There are two issues being

addressed in this paper. The first is the selection of the most

convenient transportation mode. We present a method for

solving multi-criteria decision-making problem to deal with

evaluating and ranking alternatives from the best to the worst

with respect to decision maker(s) preferences. This is applied

to find the most preferred transportation mode among avail-

able modes concerning some evaluation criteria for a trans-

portation problem. A possibility degree is used for

comparisons between the overall values of alternatives to raise

a possibility degree matrix. Based on that matrix, the alter-

natives are ranked according to the ranking vector derived

from the matrix, and the best one is selected. The second is to

construct a multi-item transportation problem using that pre-

ferred mode of transportation. To get the crisp model, a

defuzzification approach is adopted. To convert multi-objec-

tive transportation problem into a single-objective problem,

two different techniques (i) fuzzy goal programming method

and (ii) convex combination method are used. Then the

reduced single-objective problem is solved by generalized

reduced gradient method (LINGO-14.0) and a set of optimal

solutions are obtained and presented graphically.

Keywords Transportation problem � Interval type-2
fuzzy �Multi-criteria decision-making problem � Possibility
degree � Fuzzy goal programming method � Convex
combination method

1 Introduction

Transportation problem is one of the most important and

earliest network-structured linear programming problems

that comes up in several perspective and has obtained

ample of interest in the literature. A transportation prob-

lem (TP) mainly deals with the linear optimization

problem, which aspires to locate the best way to accom-

plish the demand of some destinations using the capacities

of some sources or origins. While trying to find the best

way, usually a variable minimum cost of shipping the

product from one supply point to a demand point or a

similar constraint should be taken into consideration. This

traditional TP considers only two types of constraints

related to sources and destinations. The solid transporta-

tion problem (STP), first introduced by Haley [1] in 1962,

is a generalization of the well-known TP in which three-

dimensional constraints are taken into account in the

objective. This extra constraint is mainly due to modes of

transportation (conveyances). In reality, as the con-

veyance capacity is another critical parameter in trans-

portation activities, numerous researchers have

concentrated their studies on the STP. For example, Ojha

et al. [3] considered a STP for an item with fixed charge,

vehicle cost and price discounted varying charge. Many

researchers developed multi-objective solid transportation

problems [8–10].

The objective of a STP is to satisfy some needs,

which essentially means to deliver items from some
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sources to destinations through different types of con-

veyances with minimization of cost and time. But time

or cost may not be the only factor. There may be several

other factors such as product volume or weight, safety

factor, flexibility. Depending on these several factors, all

modes may not be equally preferable for selection.

Generally, the available modes of transportation are rail,

road, water, air, etc. The selection of the best mode is

such complex decision situation in which the decision

maker(s), while evaluating, assessing and selecting

alternatives must take into account several often con-

tradictory points of view. Therefore, this is a multi-cri-

teria decision-making problem, and its solution requires

the use of MCDM methods. In the multi-criterion deci-

sion-making problem, the decision makers (DMs) may

provide the information about attribute weights with

value ranges or order relations, because of the fact that a

decision may be made under time pressure or lack of

knowledge of experts, or the DMs may have limited

attention and information processing capabilities. How-

ever, there is little research work accessible to handle

such cases. MCDM is a field which originates in oper-

ations research and which has been broadly studied by

researchers and practitioners [22, 23]. It concerns with

evaluating, assessing and selecting alternatives from the

best to the worst under conflicting criteria with respect

to decision maker(s) preferences. In some decision-

making problems, there are multiple experts analysing

the problem who add uncertainty and it makes more

sense than exact numbers. The assessment ratings of the

alternatives and criterion weights generally are not

always crisp, to a certain extent it may be expressed in

linguistic terms, which are usually represented by fuzzy

numbers and then the problem is called fuzzy multi-

criteria decision-making (FMCDM). By this means,

fuzzy multi-criteria decision-making problem is

appeared as an area that integrates fuzzy sets and

MCDM problems [6, 24, 25]. There are some available

methods for solving FMCDM problems such as fuzzy

analytical network process (FANP) [29, 30], fuzzy ana-

lytical hierarchy process (FAHP) [27, 28], fuzzy pref-

erence relation-based decision-making [26, 32], fuzzy

TOPSIS [23, 31]. FAHP and FANP methods consisting

of large number of fuzzy pair-wise comparison which

creates the methods difficult for computation. This is the

major disadvantage of these methods. Chen’s TOPSIS

method [31] needs some complex operational rules such

as square root. Again Lee’s method [32] using extended

fuzzy preference relation is computationally efficient,

but in case of two alternatives, this method constantly

gives total performance index of one alternative 1 and

that of another 0. So it is not possible to compare the

alternatives with each other in the sense that how much

one is preferable than the other.

In decision-making problem like transportation, the

available data, i.e. the possible values of the system

parameters cannot be always exactly determined and

known. There are numerous causes for this ambiguity like

lack of input information, fluctuating nature of parameter

values, multiple source of data, noise in data, uncertainty

in judgement, bad statistical analysis. For example,

transportation cost depends upon fuel price, labour char-

ges, tax charges, etc., each of which fluctuates from time

to time. So it is not so easy to calculate the exact trans-

portation cost of a route for certain time phase. Such type

of vagueness can be approximated by type-2 fuzzy set.

The idea of type-2 fuzzy set (T2 FS), at first established

by Zadeh [7], is an extension of the concept of type-1

fuzzy set (T1 FS) which was introduced by Zadeh [5].

The main difference between the two types of fuzzy sets

is that the membership grade of a T1 FS [33–35] is a real

number in [0, 1], whereas the membership grade of a T2

FS is a fuzzy number with a support bounded by the

interval [0, 1], that is T2 FS was introduced to capture the

fuzziness of the membership functions in fuzzy set theory.

The T1 FSs cannot completely handle all of the uncer-

tainty present in real world, that may be due to indis-

cretions like lack of input information, bad statistical

analysis, noise in data. It is sometimes not so easy to

establish exact membership grades and hence to create the

problems in terms of T2 FSs. Consequently, T2 FS has

emerged as a result of fuzziness in the membership

function. But because of this, the computational com-

plexity is very high to deal with T2 FSs. Yang et al. [12]

considered a STP in type-2 fuzzy environment. Jana et al.

[15] applied type-2 fuzzy set to a multi-level supply

chain. [16–21] are to name a few who have made recent

contributions in this field. For the high computational

complexity of general T2 FS, it has not widely applied to

real-world applications [11]. Interval type-2 fuzzy sets

(IT2FS) are the most regularly used type-2 fuzzy sets due

to their easiness and lessen computational effort in com-

parison with general T2 FSs. This paper tries to focus on

possibility degree to solve MCDM problems within the

decision environment of IT2FSs. Keeping all this in mind,

we are motivated to consider some transportation mode

selection problems to get the most convenient mode with

respect to several criteria for a particular transportation

system under interval type-2 fuzzy environment. And also

we are motivated to consider some innovative trans-

portation problems using that preferred mode of trans-

portation under uncertain environments, i.e. interval type-

2 fuzzy environment. The main contributions of this paper

are summarized as follows:
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• A method for solving multi-criteria decision-making

problem has been presented to rank the transportation

mode using possibility degree.

• Bi-objective multi-item interval type-2 fuzzy trans-

portation problem with fixed charge costs has been

developed.

• Multi-objective problems have been converted into

single objective using fuzzy goal method and convex

combination method.

• Reduced crisp problem has been solved by LINGO-

14.0.

• The models are illustrated by some numerical exam-

ples, and optimal results are presented in tabular forms.

The organization of this paper is as follows:

1. To characterize the uncertainty in the practical

decision environment, this paper treats all the

parameters as trapezoidal interval type-2 fuzzy

numbers. So, in Sect. 2 some preliminaries of

interval type-2 fuzzy number are precised, and in

Sect. 3 conversion techniques for multi-objective

into single objective are discussed.

2. We present a method for solving multi-criteria

decision-making (MCDM) problem for which a

possibility degree is used for comparisons between

the overall values of alternatives to raise a possibility

degree matrix and accordingly the transportation

mode is ranked. In Sect. 4, it is mentioned

elaborately.

3. To identify the most preferred transportation mode

among available modes for a solid transportation

problem (STP), the MCDM method is applied which

is shown in Sect. 5.

4. A multi-item TP is formulated using the most

preferred transportation mode in Sect. 7, and a crisp

model is obtained by applying defuzzification

method in Sect. 8.

5. In Sect. 9, we provide some numerical experiment

and a set of optimal solutions are obtained. Then

conclusions are given.

2 Preliminaries

In this section, we recall some basic knowledge of interval

type-2 fuzzy sets, which are characterized by primary and

secondary membership functions and are the extensions of

type-1 fuzzy sets.

Definition 1 A T2 fuzzy set eA in X is defined as eA ¼
fððx; uÞ; l

eA
ðx; uÞÞ : 8x 2 X; 8u 2 Jx � ½0; 1�; 0 � l

eA

ðx; uÞ� 1g, where Jx is the primary membership of x 2 X.

Here X is the domain of eA and l
eA
, denotes the membership

function of eA.

eA can be expressed as:

eA ¼
Z

x2X

Z

l2Jx
l
eA
ðx; uÞ=ðx; uÞ; Jx � ½0; 1�

Definition 2 A IT2 fuzzy set eA is said to be an IT2 fuzzy

set if all the secondary membership grades are 1 (i.e.

l
eA
ðx; uÞ ¼ 1; 8x; u)
So IT2FS can be expressed as a special case of the

general T2FS:

eA ¼
Z A

x2X

Z

l2Jx
1=ðx; uÞ; Jx � ½0; 1�

Definition 3 The uncertainty in the primary membership

of a IT2 fuzzy set eA consists of a bounded region called

the footprint of uncertainty (FOU). FOU is the union of

all primary memberships Jx. That is, FOUðeAÞ ¼
S

x2X Jx.

It is bounded by an upper membership function (UMF)

�l
eA
ðxÞ and a lower membership function (LMF) l

eA
ðxÞ,

which are type-1 membership functions so that

Jx ¼ ½�l
eA
ðxÞ; l

eA
ðxÞ�.

Definition 4 A TrIT2 fuzzy variable eA can be represented

as eA ¼ ðAU ;ALÞ ¼ ððaU1 ; aU2 ; aU3 ; aU4 ;H1ðAUÞ;H2ðAUÞÞ;
ðaL1 ; aL2 ; aL3 ; aL4 ;H1ðALÞ;H2ðALÞÞÞ where, aU1 ; a

U
2 ; a

U
3 ; a

U
4 are

four real numbers associated with upper membership

function taking the membership values 0;H1ðAUÞ;H2ðAUÞ
and 0, respectively, whereas aL1 ; a

L
2 ; a

L
3 ; a

L
4 are associated

with the lower membership function taking the member-

ship values 0;H1ðALÞ;H2ðALÞ and 0, respectively (in

Fig. 1).Fig. 1 Trapezoidal interval type-2 fuzzy number (eA)
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2.1 The arithmetic operations of IT2 fuzzy sets

Definition 5 eA1 and eA2 be two TrIT2 fuzzy numbers such

as

eA1 ¼ AU
1 ;A

L
1

� �

¼ aU11; a
U
12; a

U
13; a

U
14;H1 AU

1

� �

;H2 AU
1

� �� �

;
�

aL11; a
L
12; a

L
13; a

L
14;H1 AL

1

� �

;H2 AL
1

� �� ��

eA2 ¼ AU
2 ;A

L
2

� �

¼ aU21; a
U
22; a

U
23; a

U
24;H2 AU

2

� �

;H2 AU
2

� �� �

;
�

aL21; a
L
22; a

L
23; a

L
24;H2 AL

2

� �

;H2 AL
2

� �� ��

then,

(1) Addition:

eA1þ eA2 ¼ AU
1 ;A

L
1

� �

þ AU
2 ;A

L
2

� �

¼ aU11þ aU21;a
U
12þ aU22;a

U
13þ aU23;a

U
14þ aU24;H1 AU

1

� ���

þH1 AU
2

� �

�H1 AU
1

� �

:H1 AU
2

� ��

;

� aL11þ aL21;a
L
12þ aL22;a

L
13þ aL23;a

L
14þ aL24;H1 AL

1

� ��

þH1 AL
2

� �

�H1 AL
1

� �

:H1 AL
2

� ���

(2) Subtraction:

eA1 � eA2 ¼ AU
1 ;A

L
1

� �

� AU
2 ;A

L
2

� �

¼ aU11 � aU21; a
U
12 � aU22; a

U
13 � aU23; a

U
14 � aU24;H1 AU

1

� ���

þH1 AU
2

� �

� H1 AU
1

� �

:H1 AU
2

� ��

;

� aL11 � aL21; a
L
12 � aL22; a

L
13 � aL23; a

L
14 � aL24;H1 AL

1

� ��

þH1 AL
2

� �

� H1 AL
1

� �

:H1 AL
2

� ���

(3) Multiplication

eA1 � eA2 ¼ AU
1 ;A

L
1

� �

� AU
2 ;A

L
2

� �

¼ aU11; a
U
12; a

U
13; a

U
14;H1 AU

1

� �

:H1 AU
2

� �

;H2 AU
1

� �

:H2 AU
2

� �� �

;
�

aL11; a
L
12; a

L
13; a

L
14;H1 AL

1

� �

:H1 AL
2

� �

;H2 AL
1

� �

:H2 AL
2

� �� ��

where aT1i ¼ min aT1i; a
T
2i; a

T
1ia

T
2 5�ið Þ; a

T
1 5�ið Þa

T
2i;

�

aT1 5�ið Þa
T
2 5�ið ÞÞ;

T 2 fU; Lg; i 2 f1; 2g

(4) Multiplication with an ordinary number k:

keA1¼ k AU
1 ;A

L
1

� �

¼ kaU11;ka
U
12;ka

U
13;ka

U
14;1� 1�H1 AU

1

� �� �k
;1� 1�H2 AU

1

� �� �k
� �

;
�

kaL11;ka
L
12;ka

L
13;ka

L
14;1� 1�H1 AL

1

� �� �k
;1� 1�H2 AL

1

� �� �k
� ��

(5) Exponent:

eAk
1¼ AU

1 ;A
L
1

� �k

¼ aU11
� �k

; aU12
� �k

; aU13
� �k

; aU14
� �k

; H1 AU
1

� �� �k
; H2 AU

1

� �� �k
� �

;
�

aL11
� �k

; aL12
� �k

; aL13
� �k

; aL14
� �k

; H1 AL
1

� �� �k
; H2 AL

1

� �� �k
� ��

Since these operations are more reasonable, here

these are utilized [2].

2.2 Possibility degree of trapezoidal interval type-2

fuzzy number

Definition 6 eA1 and eA2 be two TrIT2 fuzzy numbers such

that

eA1 ¼ AU
1 ;A

L
1

� �

¼ aU11; a
U
12; a

U
13; a

U
14;H1 AU

1

� �

;H2 AU
1

� �� �

;
�

� aL11; a
L
12; a

L
13; a

L
14;H1 AL

1

� �

;H2 AL
1

� �� ��

eA2 ¼ AU
2 ;A

L
2

� �

¼ aU21; a
U
22; a

U
23; a

U
24;H2 AU

2

� �

;H2 AU
2

� �� �

;
�

� aL21; a
L
22; a

L
23; a

L
24;H2 AL

2

� �

;H2 AL
2

� �� ��

Then, the possibility degree of eA1 over eA2 is defined as:

p eA1 � eA2

� �

¼ min max Y ; 0ð Þ; 1ð ÞÞ ð1Þ

where

where len ðv1Þ ¼ aL14 þ aL13 � aL11 � aL12, len ðv2Þ ¼ aU14 þ
aU13 � aU11 �aU12, len ðv3Þ ¼ aL24 þ aL23 � aL21 � aL22 and

len ðv4Þ ¼ aU24 þ aU23 � aU21 � aU22.

Definition 7 [2] Let eAi; i ¼ 1. . .n be n trapezoidal

interval type-2 fuzzy numbers. We can get all the pos-

sibility degree pij ði:e:pðeAi � eAjÞÞ by comparing every

two trapezoidal interval type-2 numbers using Eqs. 1 and

2 and can construct a matrix P ¼ ðpijÞn�n
, and then we

can find the rank as Rank ðAiÞ ¼ 1
nðn�1Þ

�
P

n

j¼1

pij þ 1
2
� 1

�

and then eAi 	 eAj if and only if Rank ðeAiÞ� Rank ðeAjÞ.

Y ¼

P

T2fL;Ug

�

aT13 þ aT14
� �

� aT21 þ aT22
� �

�

þ
P2

k¼1

�

max Hk AU
1

� �

� Hk AU
2

� �

; 0
� �

þ max HkðAL
1Þ � Hk AL

2

� �

; 0
� �

�

P4
k¼1 len ðvkÞ þ

P2
k¼1 jHk AU

1

� �

� Hk AU
2

� �

j þ
P2

k¼1 jHk AL
1

� �

� Hk AL
2

� �

j
ð2Þ
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2.3 Defuzzification method for type-2 fuzzy sets

Defuzzification of a type-2 fuzzy set consists of two steps. In

the first step, a type-2 fuzzy set is established as a type-1 fuzzy

set by using the type reduction process. Then one of the

defuzzification methods for ordinary (type-1) fuzzy sets is

employed to get the correspondence of the type-2 fuzzy set.

The defuzzification approach proposed by Kahraman

et al. [4] is adopted here. The defuzzified value of eA is

computed as

df eA
� �

¼ 1

2

�

1

4

�

aU4 � aU1
� �

þ H2 AU
� �


 aU2 � aU1
� �

þ H1 AU
� �


 aU3 � aU1
� �

�

þ aU1 þ 1

4

�

aL4 � aL1
� �

þ H2 AL
� �


 aL2 � aL1
� �

þ H1 AL
� �


 aL3 � aL1
� �

�

þ aL1

	

ð3Þ

3 Conversion techniques of multiple objectives
to a weighted function of single objective

In this segment, we will have a discussion about two dif-

ferent techniques: (i) convex combination method and (ii)

fuzzy goal method. We will change the proposed multi-

objective optimization problems into single-objective

optimization problem with the help of above-mentioned

methods.

3.1 Convex combination method (CCM)

We have considered the multi-objective model as follows:

min ziðxÞ; i ¼ 1; 2; . . .;M½ �
s.t fj � 0; j ¼ 1; 2; . . .;N

x 2 X

8

>

<

>

:

ð4Þ

Then by the convex combination method (Tanino

et al. [14]), we transfer the above problem into following

form as

min
P

M

i¼1

wiziðxÞ; where
P

M

i¼1

wi ¼ 1; 0\wi\1

s.t fj � 0; j ¼ 1; 2; . . .;N

x 2 X

8

>

>

>

<

>

>

>

:

ð5Þ

Corresponding x and ziðxÞ are the solutions of the problem

in equation (14).

3.2 Fuzzy goal programming method (FGPM)

The fuzzy goal method (FGM) was proposed by Sakawa

[13] to solve linear and nonlinear multi-objective

programming problems (MOPPs). The MOPPs can be

considered as:

max½z1ðxÞ; z2ðxÞ; . . .; zmðxÞ�
x 2 X:f

�

ð6Þ

Let us consider that decision makers have fixed the mem-

bership function liðziðxÞÞ and given the goal membership

function value ði ¼ 1; 2; . . .;mÞ. Let us assume the fol-

lowing programming problem as:

max
P

m

i¼1

d�i

liðziðxÞÞ þ dþi � d�i ¼ �li
x 2 X

dþi d
�
i ¼ 0; dþi ; d

�
i � 0; i ¼ 0; 1; 2; . . .;m

8

>

<

>

:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð7Þ

where dþi ; d
�
i denotes the positive and negative deviations.

Then, if x
 is the optimal solution of the problem (7) and

0\liðziðx
ÞÞ\1, dþi ¼ 0ði ¼ 1; 2; . . .;mÞ holds, then x
 is

an efficient solution of the problem in equation (6).

4 MCDM based on ranking alternatives using
possibility degree

Suppose A1;A2; . . .;Am are m alternatives and

C1;C2; . . .;Cn are n criteria. Let W1;W2; . . .;Wn are the

weights of the different criteria such that Wj [ 0 and
Pn

j¼1 Wj ¼ 1, where Wj is the weight of the criterion Cj

specifying its importance. The multi-criteria decision-

making method to get the best alternative is as follows:

Step 1: Aggregate all the criteria value for the

alternatives depending on the criteria weights to

get the overall values.

Step 2: Compute the possibility degree of every two

alternatives and construct a possibility matrix P.

Step 3: Rank all the alternatives according to the ranking

vectors calculated based on matrix P and select

the best one.

5 An application of the MCDM on transportation
mode selection

Suppose in a solid transportation problem there are two

modes of available transportation, those are rail and road.

The mode of selection depends on different criteria which

are very important for a transportation policy. The decision

makers want to rank the two modes with respect to eight

criteria, which are as follows:

(1) Transportation cost (C1): Cost for transportation of

goods from source to destination.

Neural Comput & Applic (2019) 31:605–617 609
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(2) Fixed cost (C2): Cost due to transport equipment,

maintenance, terminal facilities etc.

(3) Speed (S): The average speed that the conveyance

can provide.

(4) Loading or unloading time (T): The time taken for

loading and unloading of goods.

(5) Product characteristics (P): The volume or the

weight of the goods for shipment that the conveyance

can allow.

(6) Flexibility (F): The ability to change the route of

transportation or the predetermined time schedule

due to unexpected cause at the time of transportation.

(7) Accidental rate (A): The accidental rate of the vehicle.

(8) Damageability (D): The rate of product being

damaged during transportation.

Accordingly at this juncture, we have the two alterna-

tives (road and rail) and eight criteria (C1, C2, S, T, P, F,

A and D). Here the decision makers employ the linguistics

terms and related trapezoidal interval type-2 fuzzy numbers

(as shown in Table 1). Seven-point scale is referred to

appraise the ratings which are divided into very high (VH),

high (H), medium high (MH), medium (M), medium low

(ML), low (L) and very low (VL). Each decision maker has

their own evaluation for each alternative based on their

knowledge and experience. But at last after the conversa-

tion, they come to a agreement on evaluation results for the

alternatives which is shown in Table 2. The decision

makers also provides the weight for each criteria as shown

in Table 3. Then the overall values of the alternatives are

calculated, as shown in Table 4.

The possibility degree matrix P is as follows:

P ¼ 0:5 0:2
0:8 0:5

� �

.

Now ranking vectors are calculated as: Rank(Road) = 0.1,

Rank(Rail) = 0.4. As a result, the alternatives are ranked as

Rail � Road : So, rail is preferred than road.

5.1 Comparative study

The above example is also solved with some other tech-

niques proposed by Chen et al. [26] based on ranking value

method. The results are as follows:

Using the same data, according to Chens ranking value

method, let the two preference matrices are constructed.

Then the ranking value of the alternatives is calculated as

Rank(Road) = 0.350957 and Rank(Rail) = 0.649043. So

the alternatives can be ranked as Rail � Road . It can be

observed that the overall ranking order is same for the two

methods. But in Chens method two preference matrices are

to be constructed, whereas here the possibility matrix is

calculated just only once, ensuing compact computing

time, which is the main advantage.

6 Assumptions and notations

6.1 Assumptions

In this solid profit transportation problem, the following

assumptions are made: (a) No damageability of the units

occurs, and (b) a single item of a homogeneous product

should be transported from sources to destinations.

Table 1 Linguistic terms and

their corresponding trapezoidal

interval type-2 fuzzy number

Linguistic terms Trapezoidal interval type-2 fuzzy number

Very high (VH) ((0.9, 1, 1, 1; 1, 1), (0.95, 1, 1, 1; 0.9, 0.9))

High (H) ((0.7, 0.9, 0.9, 1; 1, 1), (0.8, 0.9, 0.9, 0.95; 0.9, 0.9))

Medium high (MH) ((0.5, 0.7, 0.7, 0.9; 1, 1), (0.6, 0.7, 0.7, 0.8; 0.9, 0.9))

Medium (M) ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9))

Medium low (ML) ((0.1, 0.3, 0.3, 0.5; 1, 1), (0.2, 0.3, 0.3, 0.4; 0.9, 0.9))

Low (L) ((0, 0.1, 0.1, 0.3; 1, 1), (0.05, 0.1, 0.1, 0.2; 0.9, 0.9))

Low (L) ((0, 0, 0, 0.1; 1, 1), (0, 0, 0, 0.05; 0.9, 0.9))

Table 2 Linguistic ratings of the alternatives with respect to each

criteria

C1 C2 S T P F A D

Road MH MH H VH H VH MH H

Rail VH H H H VH MH H H

Table 3 Linguistic importance weights with respect to each criteria

Criteria C1 C2 S T P F A D

Weight 0.15 0.15 0.1 0.1 0.1 0.1 0.15 0.15

Table 4 Overall values of the alternatives

Alternatives Overall values

Road ((0.65,0.83,0.83,0.955;1,1),(0.74,0.83,0.83,

0.8925;0.9,0.9))

Rail ((0.73,0.905,0.905,0.99;1,1),(0.8175,0.905,0.905,

0.9475;0.9,0.9))
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6.2 Notations

To formulate the transportation model with respect to the

above suitable transportation mode, i.e. the rail, the fol-

lowing notations are used:

(i) m = number of sources.

(ii) n = number of destinations.

(iii) L = number of items.

(iv) zk = the objective functions, where k ¼ 1; 2.

(v) ~pil = the purchasing price of the lth item at the

ith source.

(vi) ~sjl = the selling price of the lth item at the jth

destination.

(vii) ~cijl = the unit transportation cost of lth item

from ith source to jth destination.

(viii) ~fij = the fixed charge of the transportation

problem from the ith source to jth destination.

(ix) xijl = the decision variable which is the

amount of lth item to be transported from

ith source to jth destination.

(x) ~til = transportation time with respect to the

transportation activity from ith source to jth

destination (hrs).

(xi) ~al = loading and unloading time with respect

to the transportation activity of lth item (hrs).

(xii) ~ail = the amount of the lth item available at the

ith source.

(xiii) ~bjl = the demand of the lth item at the jth

destination.

Here, ~denotes IT2FNs throughout this investigation.

7 Model formulation

We assume m origins (or sources) Oi ði ¼ 1; 2; . . .;mÞ,
n destinations (i.e. demands) Djðj ¼ 1; 2; . . .; nÞ and l items.

Furthermore, in this model, the objectives are to maxi-

mize the profit incurred by the transportation activities and

to minimize the total transportation time. The constraints,

respectively, are the supply constraints and demand con-

straints. In reality, as it is not so easy to specifically esti-

mate the amount of related parameters, it is suitable to

consider the parameters as trapezoidal interval type-2 fuzzy

variables due to the complexity, changeability and non-

decidability of the decision environment. With this con-

cern, we formulate the problem assuming that the selling

prices, purchasing prices, transportation costs, fixed charge

costs, supplies and demands are all trapezoidal interval

type-2 fuzzy variables.

One objective of the problem is to maximize the total

profit, which is as follows:

max ~z1 ¼
X

m

i¼1

X

n

j¼1

X

L

l¼1

~sjl � ~pil � ~cijl
� �

xijl �
X

m

i¼1

X

n

j¼1

~fijyij

Here if the products are transported from ith source to jth

destination, then only the fixed-charged cost will be taken.

So, we introduce a binary relation as

yij ¼
1; if

P

L

l¼1

xijl [ 0;

0; if
P

L

l¼1

xijl ¼ 0

8

>

>

>

<

>

>

>

:

ð8Þ

The other objective is to minimize the total transportation

time, which is as follows:

min ~z2 ¼
X

m

i¼1

X

n

j¼1

~tijyij þ
X

m

i¼1

X

n

j¼1

X

L

l¼1

~alxijl

Now, as the quantity of a particular product from a source

cannot exceed the supply capacity of that, we have

X

n

j¼1

xijl � ~ail; i ¼ 1; 2; 3; . . .;m; l ¼ 1; 2; . . .; L

Again the quantity of a particular product transported to a

destination should not be less than its demand, that is

X

m

i¼1

xijl � ~bjl; j ¼ 1; 2; 3; . . .; n; l ¼ 1; 2; . . .; L

It is usual to have the nonnegativity of decision variable

xijl, that is

xijl�0; i¼ 1;2;3; j¼ 1;2;3; . . .;n; l¼ 1;2; . . .;L

So, the multi-objective transportation problem can be

written as:

max ~z1 ¼
X

m

i¼1

X

n

j¼1

X

L

l¼1

ð~sjl � ~pil � ~cijlÞ xijl �
X

m

i¼1

X

n

j¼1

~fijyij ð9Þ

min ~z2 ¼
X

m

i¼1

X

n

j¼1

~tijyij þ
X

m

i¼1

X

n

j¼1

X

L

l¼1

~alxijl

and eq. (8)

ð10Þ

subject to

P

n

j¼1

xijl� ~ail; i¼ 1;2;3; . . .;m; l¼ 1;2; . . .;L

P

m

i¼1

xijl� ~bjl; j¼ 1;2;3; . . .;n; l¼ 1;2; . . .;L

xijl�0; i¼ 1;2;3; j¼ 1;2;3; . . .;n; l¼ 1;2; . . .;L

8

>

>

>

>

>

<

>

>

>

>

>

:

ð11Þ
Here, the solid transportation problem is formulated with

uncertain market demands and costs. So since the selling

prices, purchasing prices, transportation costs, fixed charge

costs, supplies and demands of the above model are all
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trapezoidal interval type-2 fuzzy variables, we apply

defuzzification method presented in Sect. 2.3.

8 Equivalent crisp problem

Since ~sjl ~pil, ~cijl, ~fij, ~tij,~al,~ail and ~bjl are trapezoidal interval

type-2 fuzzy numbers, these can be denoted as:

respectively. Then the earlier transportation model takes

the following form

max df ½~z1� ¼
X

m

i¼1

X

n

j¼1

X

L

l¼1




ðdf ½~sjl� � df ½~pil� � df ½~cijl�Þ xijl

�

�
X

m

i¼1

X

n

j¼1

df ½~fij�yij ð12Þ

min df ½~z2� ¼
X

m

i¼1

X

n

j¼1

df ~tij
� 

yij þ
X

m

i¼1

X

n

j¼1

X

L

l¼1

df ~al½ �xijl

and eq. (8)

ð13Þ

subject to

P

n

j¼1

xijl�df ½~ail� i¼ 1;2;3; . . .;m; l¼ 1;2; . . .;L

P

m

i¼1

xijl�df ½~bjl� j¼ 1;2;3; . . .;n; l¼ 1;2; . . .;L

xijl�0; i¼ 1;2;3; j¼ 1;2;3; . . .;n; l¼ 1;2; . . .;L

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð14Þ

Using Eq. (3) the above Eqs. (12)–(14) reduce to the

deterministic form as

~sjl ¼ sUjl ; s
L
jl

� �

¼ sUjl1; s
U
jl2; s

U
jl3; s

U
jl4;H1 sUjl

� �

;H2 sUjl

� �� �

; sLjl1; s
L
jl2; s

L
jl3; s

L
jl4;H1 sLjl

� �

;H2 sLjl

� �� �� �

~pil ¼ pUil ; p
L
il

� �

¼ pUil1; p
U
il2; p

U
il3; p

U
il4;H1 pUil

� �

;H2 pUil
� �� �

; pLil1; p
L
il2; p

L
il3; p

L
il4;H1 pLil

� �

;H2 pLil
� �� �� �

~cijl ¼ cUijl; c
L
ijl

� �

¼ cUijl1; c
U
ijl2; c

U
ijl3; c

U
ijl4;H1 cUijl

� �

;H2 cUijl

� �� �

; cLijl1; c
L
ijl2; c

L
ijl3; c

L
ijl4;H1 cLijl

� �

;H2 cLijl

� �� �� �

~fij ¼ f Uij ; f
L
ij

� �

¼ f Uij1; f
U
ij2; f

U
ij3; f

U
ij4;H1 f Uij

� �

;H2 f Uij

� �� �

; f Lij1; f
L
ij2; f

L
ij3; f

L
ij4;H1 f Lij

� �

;H2 f Lij

� �� �� �

~tij ¼ tUij ; t
L
ij

� �

¼ tUij1; t
U
ij2; t

U
ij3;

U
ij4 ;H1 tUij

� �

;H2 tUij

� �� �

; tLij1; t
L
ij2; t

L
ij3; t

L
ij4;H1 tLij

� �

;H2 tLij

� �� �� �

~al ¼ aUl ; a
L
l

� �

¼ aUl1; a
U
l2; a

U
l3; a

U
l4;H1 aUl

� �

;H2 aUl
� �� �

; aLl1; a
L
l2; a

L
l3; a

L
l4;H1 aLl

� �

;H2 aLl
� �� �� �

~ail ¼ aUil ; a
L
il

� �

¼ aUil1; a
U
il2; a

U
il3; a

U
il4;H1 aUil

� �

;H2 aUil
� �� �

; aLil1; a
L
il2; a

L
il3; a

L
il4;H1 aLil

� �

;H2 aLil
� �� �� �

~bjl ¼ bUjl ; b
L
jl

� �

¼ bUjl1; b
U
jl2; b

U
jl3; b

U
jl4;H1 bUjl

� �

;H2 bUjl

� �� �

; bLjl1; b
L
jl2; b

L
jl3; b

L
jl4;H1 bLjl

� �

;H2 bLjl

� �� �� �

max df ½~z1� ¼
X

m

i¼1

X

n

j¼1

X

L

l¼1


�

1

2

�

1

4

�

sUjl4 � sUjl1

� �

þ H2 sUjl

� �


 sUjl2 � sUjl1

� �

þ H1ðsUjl Þ 
 sUjl3 � sUjl1

� �

�

þ sUjl1

þ 1

4

�

sLjl4 � sLjl1

� �

þ H2 sLjl

� �


 sLjl2 � sLjl1

� �

þ H1 sLjl

� �


 sLjl3 � sLjl1

� �

�

þ sLjl1

�	

þ
�

1

2

�

1

4

�

~pUil4 � pUil1
� �

þ H2ðpUil Þ 
 pUil2 � pUil1
� �

þ H1 pUil
� �


 pUil3 � pUil1
� �

�

þ pUil1

þ 1

4

�

pLil4 � pLil1
� �

þ H2ðpLilÞ 
 pLil2 � pLil1
� �

þ H1ðpLilÞ 
 pLil3 � pLil1
� �

�

þ pLil1

�	

�
�

1

2

�

1

4

�

~cUijl4 � cUijl1

� �

þ H2ðcUijlÞ 
 cUijl2 � cUijl1

� �

þ H1ðcUijlÞ 
 cUijl3 � cUijl1

� �

�

þ cUijl1

þ 1

4

�

cLijl4 � cLijl1

� �

þ H2ðcLijlÞ 
 cLijl2 � cLijl1

� �

þ H1ðcLijlÞ 
 cLijl3 � cLijl1

� �

�

þ cLijl1

�	�

xijl

�
X

m

i¼1

X

n

j¼1




1

2

�

1

4

�

~f Uij4 � f Uij1

� �

þ H2ðf Uij Þ 
 f Uij2 � f Uij1

� �

þ H1ðf Uij Þ 
 f Uij3 � f Uij1

� �

�

þ f Uij1

þ 1

4

�

f Lij4 � f Lij1

� �

þ H2ðf LijÞ 
 f Lij2 � f Lij1

� �

þ H1ðf LijÞ 
 f Lij3 � f Lij1

� �

�

þ f Lij1

	�

yij

ð15Þ
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min df ½~z2� ¼
X

m

i¼1

X

n

j¼1




1

2

�

1

4

�

~tUij4 � tUij1

� �

þ H2ðtUij Þ 
 tUij2 � tUij1

� �

þ H1ðtUij Þ 
 tUij3 � tUij1

� �

�

þ tUij1

þ 1

4

�

tLij4 � tLij1

� �

þ H2ðtLijÞ 
 tLij2 � tLij1

� �

þ H1ðtLijÞ 
 tLij3 � tLij1

� �

�

þ tLij1

	�

yij ð16Þ

þ
X

m

i¼1

X

n

j¼1

X

L

l¼1




1

2

�

1

4

�

~aUl4 � aUl1
� �

þ H2ðaUl Þ 
 aUl2 � aUl1
� �

þ H1ðaUl Þ 
 aUl3 � aUl1
� �

�

þ aUl1

þ 1

4

�

aLl4 � aLl1
� �

þ H2ðaLl Þ 
 aLl2 � aLl1
� �

þ H1ðaLl Þ 
 aLl3 � aLl1
� �

�

þ aLl1

	�

xijl

and eq. (8) ð17Þ

subject to

9 Numerical experiment

In this set of experiments, we consider a transportation

problem with two sources, three destinations and two types

of items. So m ¼ 2; n ¼ 3; and l ¼ 3. The selling prices,

purchasing costs of products, availabilities of the corre-

sponding origins (i.e. resources), demands of the destina-

tions, unit transportation costs, fixed charge costs are

assumed as interval type-2 fuzzy numbers which are

tabulated.

9.1 Input data

Here all the relevant costs, i.e. ~sjl, ~pil, ~cjl, ~fij and times, i.e.

~tij, ~al, which are represented by trapezoidal interval type-2

fuzzy variables, are, respectively, given in Tables 5, 6, 7, 8,

9, 10. Again the supplies and demands which are also

trapezoidal interval type-2 fuzzy variables are, respec-

tively, given in Tables 11 and 12.

9.2 Optimum results

The deterministic optimization problems given by

Eqs. (15) and (18) of the model in Eqs. (11) and (8) are

solved for the above data. The solution techniques used

here are the generalized reduced gradient (GRG) technique

(using LINGO-14.0 solver). We have calculated the values

of z0k z1k ; ðk ¼ 1; 2Þ: These values are given as follows:

z01 ¼ 2522:947; z11 ¼ 4518:138; z02 ¼ 821:4156;

z12 ¼ 586:5237;

So we now formulate the membership functions of z1 and

z2 as follows:

l1ðz1ðxÞÞ ¼

1 for z1ðxÞ[4518:138

z1ðxÞ� 2522:947

4518:138� 2522:947
for 2522:947\z1ðxÞ\4518:138

0 for z1ðxÞ\2522:947

8

>

>

<

>

>

:

l2ðz2ðxÞÞ ¼

1 for z2ðxÞ[821:4156

821:4156� z2ðxÞ
821:4156� 586:5237

for 586:5237\z2ðxÞ\821:4156

0 for z2ðxÞ\586:5237

8

>

>

<

>

>

:

P

n

j¼1

xijl �
1

2

�

1

4

�

~aUil4 � aUil1
� �

þ H2 aUil
� �


 aUil2 � aUil1
� �

þ H1 aUil
� �


 aUil3 � aUil1
� �

�

þ aUil1

þ 1

4

�

aLil4 � aLil1
� �

þ H2 aLil
� �


 aLil2 � aLil1
� �

þ H1 aLil
� �


 aLil3 � aLil1
� �

�

þ aLil1

	

P

m

i¼1

xijl �
1

2

�

1

4

�

~bUjl4 � bUjl1

� �

þ H2 bUjl

� �


 bUjl2 � bUjl1

� �

þ H1 bUjl

� �


 bUjl3 � bUjl1

� �

�

þ bUjl1

þ 1

4

�

bLjl4 � bLjl1

� �

þ H2 bLjl

� �


 bLjl2 � bLjl1

� �

þ H1 bLjl

� �


 bLjl3 � bLjl1

� �

�

þ bLjl1

	

xijl � 0

where i ¼ 1; 2; 3; . . .;m; j ¼ 1; 2; 3; . . .; n; l ¼ 1; 2; . . .; L

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð18Þ
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Table 7 Input data for TrIT2F unit transportation cost ~cijl

~c111 ¼ ðð5; 7; 12; 15; 0:9; 0:8Þ; ð6; 9; 10; 13; 0:7; 0:5ÞÞ ~c112 ¼ ðð8; 11; 15; 18; 1; 0:8Þ; ð10; 12; 14; 16; 0:6; 0:5ÞÞ
~c113 ¼ ðð14; 17; 22; 25; 1; 0:8Þ; ð16; 18; 19; 23; 0:7; 0:5ÞÞ ~c121 ¼ ðð5; 8; 11; 14; 0:9; 0:8Þ; ð7; 9; 10; 12; 0:7; 0:6ÞÞ
~c122 ¼ ðð7; 10; 14; 16; 0:9; 0:8Þ; ð8; 11; 12; 15; 0:6; 0:5ÞÞ ~c123 ¼ ðð8; 10; 15; 17; 0:9; 0:7Þ; ð9; 12; 13; 16; 0:6; 0:4ÞÞ
~c131 ¼ ðð5; 9; 13; 15; 0:9; 0:8Þ; ð7; 10; 11; 14; 0:7; 0:5ÞÞ ~c132 ¼ ðð5; 6; 10; 13; 0:9; 0:7Þ; ð6; 7; 8; 11; 0:6; 0:5ÞÞ
~c133 ¼ ðð6; 9; 12; 15; 0:9; 0:8Þ; ð7; 10; 11; 13; 0:7; 0:6ÞÞ ~c211 ¼ ðð9; 12; 17; 20; 0:9; 0:7Þ; ð11; 14; 15; 19; 0:6; 0:4ÞÞ
~c212 ¼ ðð5; 8; 13; 15; 0:9; 0:8Þ; ð7; 10; 11; 14; 0:7; 0:6ÞÞ ~c213 ¼ ðð7; 12; 20; 25; 0:9; 0:7Þ; ð11; 14; 17; 22; 0:6; 0:3ÞÞ
~c221 ¼ ðð3; 5; 9; 11; 1; 0:8Þ; ð4; 6; 8; 10; 0:7; 0:6ÞÞ ~c222 ¼ ðð7; 12; 15; 19; 0:9; 0:7Þ; ð10; 13; 14; 17; 0:6; 0:4ÞÞ
~c223 ¼ ðð12; 17; 22; 27; 1; 0:8Þ; ð15; 19; 20; 25; 0:6; 0:5ÞÞ ~c231 ¼ ðð4; 8; 14; 16; 0:9; 0:8Þ; ð5; 10; 12; 15; 0:7; 0:5ÞÞ
~c232 ¼ ðð3; 5; 12; 16; 1; 0:8Þ; ð4; 8; 10; 14; 0:7; 0:5ÞÞ ~c233 ¼ ðð3; 7; 16; 20; 0:9; 0:8Þ; ð6; 10; 11; 18; 0:7; 0:6ÞÞ

Table 5 Input data for TrIT2F unit selling price ~sjl

~s11 ¼ ðð68; 75; 85; 87; 0:9; 0:8Þ; ð74; 77; 81; 86; 0:7; 0:5ÞÞ ~s12 ¼ ðð55; 60; 68; 79; 0:9; 0:8Þ; ð58; 61; 65; 75; 0:6; 0:6ÞÞ
~s13 ¼ ðð45; 53; 60; 68; 1; 0:9Þ; ð50; 55; 58; 63; 0:7; 0:5ÞÞ ~s21 ¼ ðð50; 58; 63; 70; 1; 0:8Þ; ð54; 61; 62; 64; 0:7; 0:6ÞÞ
~s22 ¼ ðð52; 58; 70; 75; 0:9; 0:8Þ; ð55; 60; 65; 72; 0:7; 0:5ÞÞ ~s23 ¼ ðð60; 65; 73:5; 75; 1; 0:9Þ; ð62; 72; 73; 74; 0:6; 0:5ÞÞ
~s31 ¼ ðð60; 70; 83; 87; 0:9; 0:8Þ; ð65; 75; 80; 84; 0:7; 0:5ÞÞ ~s32 ¼ ðð70; 75; 85; 89; 1; 0:8Þ; ð74; 77; 82; 87; 0:7; 0:6ÞÞ
~s33 ¼ ðð65; 76; 83; 85; 0:9; 0:8Þ; ð72; 78; 80; 84; 0:6; 0:5ÞÞ -

Table 6 Input data for TrIT2F unit purchasing price ~pil

~p11 ¼ ðð30; 34; 38; 42; 1; 0:9Þ; ð33; 36; 37; 40; 0:7; 0:5ÞÞ ~p12 ¼ ðð30; 41; 44; 48; 0:9; 0:8Þ; ð38; 42; 43; 46; 0:7; 0:6ÞÞ
~p13 ¼ ðð29; 37; 45; 48; 0:9; 0:8Þ; ð36; 38; 40; 46; 0:7; 0:6ÞÞ ~p21 ¼ ðð23; 26; 35; 40; 0:9; 0:8Þ; ð25; 27; 30; 38; 0:7; 0:5ÞÞ
~p22 ¼ ðð25; 29; 38; 42; 0:9; 0:8Þ; ð26; 30; 35; 40; 0:7; 0:6ÞÞ ~p23 ¼ ðð24; 28; 41; 47; 1; 0:8Þ; ð26; 30; 36; 45; 0:7; 0:6ÞÞ

Table 8 Input data for TrIT2F fixed charges ~fij

~f11 ¼ ðð1; 2:5; 3:5; 4:8; 0:8; 0:6Þ; ð2; 2:6; 3; 4; 0:5; 0:4ÞÞ ~f12 ¼ ðð2; 3; 5; 5:2; 0:9; 0:6Þ; ð2:5; 4; 4:5; 5:1; 0:5; 0:3ÞÞ
~f13 ¼ ðð0:5; 1; 2:2; 2:5; 0:8; 0:7Þ; ð0:8; 1:5; 1:8; 2:4; 0:6; 0:3ÞÞ ~f21 ¼ ðð1; 2:2; 3; 3:2; 1; 0:7Þ; ð2; 2:4; 2:5; 3:1; 0:6; 0:3ÞÞ
~f22 ¼ ðð0:3; 0:7; 1:2; 2:2; 1; 0:9Þ; ð0:5; 0:8; 1; 1:8; 0:8; 0:4ÞÞ ~f23 ¼ ðð1:5; 2; 3; 3:5; 0:9; 0:7Þ; ð1:8; 2:4; 2:8; 3:2; 0:6; 0:3ÞÞ

Table 9 Input data for TrIT2F transportation time ~tij

~t11 ¼ ðð18; 20; 21:5; 22:5; 1; 0:9Þ; ð19; 20:4; 21; 22:1; 0:8; 0:7ÞÞ ~t12 ¼ ðð15; 17; 19:5; 21; 1; 0:8Þ; ð16; 17:5; 18; 20; 0:7; 0:6ÞÞ
~t13 ¼ ðð20:6; 21:6; 22:5; 23:1; 1; 0:9Þ; ð21; 21:8; 22:2; 23; 0:8; 0:6ÞÞ ~t21 ¼ ðð17:5; 18:5; 20; 22; 1; 0:9Þ; ð18; 19; 19:8; 21; 0:8; 0:7ÞÞ
~t22 ¼ ðð7; 8; 10; 11; 1; 0:9Þ; ð7:5; 9; 9:6; 10:2; 0:7; 0:5ÞÞ ~t23 ¼ ðð11:5; 12:5; 13:7; 14:1; 1; 0:95Þ; ð12; 12:8; 13; 14; 0:8; 0:7ÞÞ

Table 10 Input data for TrIT2F loading and unloading time ~al

~a1 ¼ ðð5; 5:3; 5:7; 5:82; 1; 0:9Þ; ð5:1; 5:4; 5:5; 5:8; 0:8; 0:65ÞÞ ~a2 ¼ ðð2:9; 3:2; 3:5; 3:8; 1; 0:85Þ; ð3; 3:3; 3:4; 3:7; 0:8; 0:7ÞÞ
~a3 ¼ ðð3:9; 4:3; 4:54; 4:8; 1; 0:9Þ; ð4:2; 4:4; 4:5; 4:6; 0:8; 0:6ÞÞ -

Table 11 Input data for TrIT2F availabilities ~ail

~a11 ¼ ðð18; 30; 45; 51; 0:9; 0:7Þ; ð25; 36; 43; 49; 0:6; 0:3ÞÞ ~a12 ¼ ðð22; 29; 49; 53; 1; 0:9Þ; ð24; 34; 43; 52; 0:6; 0:4ÞÞ
~a13 ¼ ðð20; 30; 43; 48; 1; 0:9Þ; ð25; 33; 40; 46; 0:7; 0:6ÞÞ ~a21 ¼ ðð15; 25; 34; 38; 1; 0:8Þ; ð20; 30; 32; 36; 0:7; 0:5ÞÞ
~a22 ¼ ðð20; 25; 35; 38; 1; 0:9Þ; ð22; 28; 33; 36; 0:8; 0:6ÞÞ ~a23 ¼ ðð27; 35; 45; 48; 1; 0:8Þ; ð30; 38; 42; 46; 0:7; 0:5ÞÞ
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Then we compute the following model to get the solution,

max d�1 � d�2

�z1ðxÞ � 2522:947

4518:138� 2522:947
þ dþ1 � d�1 ¼ �l1

821:4156� �z2ðxÞ
821:4156� 586:5237

þ dþ2 � d�2 ¼ �l2

x 2 X

dþi d
�
i ¼ 0; dþi ; d

�
i � 0; i ¼ 0; 1; 2; . . .;m:

and (14)
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ð19Þ

After solving the model in Eq. (19), we get the solutions

for total profit ðz1Þ and total transportation time ðz2Þ of

proposed Model, which are listed in Table 13.

Here, the above results are the optimal solutions of the

problem (19) for different values of �l1 and �l2. Moreover,

dþi ¼ 0ði ¼ 1; 2; . . .;mÞ holds. So these are efficient solu-

tions of the problem in Eqs. (15), (18).

Applying convex combination method stated in

Sect. 3.1, for different weights on z1 and z2, we get the

following Table 14.

The comparison between the optimum results calculat-

ing by different methods for the model is given in

Table 15.

10 Discussion

Since mode of transportation plays vital role in trans-

portation problem, the available modes are ranked to find

the most preferred transportation mode. Here, we obtain

Rank(Road) = 0.1, Rank(Rail) = 0.4, i.e. rail is preferred

than road. Subsequently, the proposed multi-objective

multi-item TP bears all the parameters with respect to rail.

The multi-objective optimization problems are converted

into single objective using two different techniques:

(i) fuzzy goal programming method and (ii) convex com-

bination method. The optimum results are presented in

optimistic labels of different parameters. So decision maker

only can choose the optimum values of total profit and time

by the choice of different optimistic labels, i.e. different

�liði ¼ 1; 2Þ, which is shown in Table 13. From Table 13, it

is observed that if �l1 is constant and �l2 increases, both total
profit and total transportation time z1 and z2 decrease. This

phenomenon is depicted in Fig. 2, where the dotted line

represents transportation time and the bold line represents

profit. Similarly with constant l2 as l1 increases, z1 and z2
decrease. But at some of the different optimistic labels the

values are same. Again in case of convex combination

method, the optimum results are different for the choice of

weight function wiði ¼ 1; 2Þ which is shown in Table 14.

At this juncture, as w1 þ w2 ¼ 1, while we increase the

value of w1, we decrease the value of w2. Now increase in

Table 12 Input data for TrIT2F unit demands ~bjl

~b11 ¼ ðð9; 15; 19; 22; 1; 0:8Þ; ð12; 17; 18; 21; 0:7; 0:4ÞÞ ~b12 ¼ ðð12; 17; 23:5; 28; 0:9; 0:8Þ; ð14; 18; 20; 26; 0:6; 0:4ÞÞ
~b13 ¼ ðð7; 16; 19; 23; 1; 0:7Þ; ð12; 17; 17:5; 22; 0:6; 0:4ÞÞ ~b21 ¼ ðð10; 14; 18; 22; 1; 0:8Þ; ð12; 15; 16; 20; 0:7; 0:5ÞÞ
~b22 ¼ ðð6; 10; 18; 22; 0:9; 0:8Þ; ð8; 12; 15; 20; 0:7; 0:5ÞÞ ~b23 ¼ ðð11; 14; 20; 25; 1; 0:8Þ; ð13; 15; 16; 22; 0:7; 0:5ÞÞ
~b21 ¼ ðð10; 14; 22; 26; 1; 0:9Þ; ð13; 15; 17; 24; 0:7; 0:6ÞÞ ~b22 ¼ ðð5; 9; 18; 21; 1; 0:8Þ; ð8; 14; 16; 19; 0:7; 0:5ÞÞ
~b23 ¼ ðð4; 8; 15; 19; 1; 0:8Þ; ð6; 10; 12; 16; 0:7; 0:6ÞÞ -

Table 13 Optimum results via fuzzy goal programming method

�l1 �l2 ðz1Þ ðz2Þ �l1 �l2 ðz1Þ ðz2Þ

0.9 0.1 3811.835 797.9269 0.8 0.1 3826.228 797.9275

0.2 3741.182 774.4376 0.2 3755.575 774.4381

0.3 3662.751 750.9484 0.3 3684.579 750.9489

0.4 3570.102 727.4591 0.4 3614.934 727.4595

0.5 3477.115 703.9698 0.5 3477.116 703.9700

0.6 3354.039 680.4815 0.6 3354.033 680.4806

0.7 3257.035 656.9922 0.7 3257.037 656.9925

0.8 3014.112 633.5033 0.8 3042.984 639.5935

0.9 2902.764 610.0154 0.9 3042.984 639.5935

0.1 0.1 4389.626 797.9264 0.1 0.9 3452.122 658.5864

0.2 4259.711 774.4372 0.2 2794.247 586.5237

0.3 4129.415 750.9480 0.3 2791.398 586.5237

0.4 3979.136 727.4588 0.4 2794.247 586.5237

0.5 3809.342 703.9696 0.5 2794.247 586.5237

0.6 3626.253 680.4805 0.6 2794.247 586.5237

0.7 3452.122 658.5864 0.7 2791.398 586.5237

0.8 3452.122 658.5864 0.8 2791.398 586.5237

0.9 3452.122 658.5864 0.9 2791.398 586.5237

Table 14 Optimum results via

convex combination method
w1 w2 z1 z2

0 1 2522.947 586.5237

0.2 0.8 2652.122 625.8461

0.5 0.5 3452.122 658.5864

.8 0.2 4518.138 821.4156

0.9 0.1 4518.138 821.4156
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the value of w1 means we give more weightage in the first

objective, i.e. total profit, and simultaneously decrease in

the value of w2 means we give less weightage in the second

objective, i.e. total transportation time. Here we see in

Table 14 that as we increase the value of w1 and simulta-

neously decrease the value of w2, the total profit increases

and total transportation time also increases which is quite

expected because we want to maximize the first objective

and minimize the second objective.

11 Conclusions and future research

The selection of suitable transportation mode is one of the

most important decision issues in transportation system. In

this paper, we proposed a multi-criteria decision-making

method to find the most ideal transportation mode among

available modes concerning some evaluation criteria for a

transportation problem. Moreover, there exists uncertainty

in realistic TPs. In fact, uncertainty exists everywhere in

the practical life. So here we made an effort to utilize

trapezoidal interval type-2 fuzzy numbers to explain the

uncertain information, and so all the parameters are

considered as trapezoidal interval type-2 fuzzy numbers.

On the other hand, a multi-item TP was addressed using the

desired transportation mode. A crisp model was also

established which was solved by one of the available

software LINGO-14.0. There are numerous possible

extensions of the current study that could constitute future

research activities in this field. The methodologies used in

this paper are quite general and computationally efficient.

We expect that the methodologies which we used in the

first part of this paper, i.e. in the selection of suit-

able transportation mode, have potential applications and it

can be applied in many industry-based MCDM problems in

the future. These can be applied to the decision-making

problems in different areas such as inventory control sys-

tem, supply chain, portfolio selection with type-2 fuzzy

parameters. Again the presented transportation problem

can be extended to different types of realistic transportation

problems including space constraints, price discounts on

the basis of amount of transported units, breakable/deteri-

orating items. Further research activities are dealing with

the inclusion of different types of uncertainty level about

other available vague information and test the formulation

to transportation problem for supply chain network.

Table 15 Comparison of

optimum results
Method z1 z2 Values of decision variables

FGPM 3809.342 703.9696 14.3,0,0,0,12.09,15.11,5,21.1,1.28,0

12.75,25.23,13.99,0,0,11.06,14.34,8.82

CCM 3452.122 658.5864 14.3,0,0,0,12.09,15.11,5,21.1,0

0,12.75,13.94,13.99,0,0,11.06,14.34,10.10
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Fig. 2 Change of total profit and transportation time w.r.t different optimistic labels

616 Neural Comput & Applic (2019) 31:605–617

123



Compliance with ethical standards

Conflict of interest The authors have no conflict of interest for the

publication of this paper.

References

1. Haley K (1962) The solid transportation problem. Oper Res

10:448–463

2. Hu J, Zhang Y, Chen X, Liu Y (2013) Multi-criteria decision

making method based on possibility degree of interval type-2

fuzzy number. Knowl Based Syst 43:21–29

3. Ojha A, Das B, Mondal S, Maiti M (2010) A solid transportation

problem for an item with fixed charge, vechicle cost and price

discounted varying charge using genetic algorithm. Appl Soft

Comput 10:100–110
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