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Abstract Over the years, high-dimensional, noisy, and

time-varying natures of the stock markets are analyzed to

carry out accurate prediction. Particularly, speculators and

investors are understandably eager to accurately predict

stock price since millions of dollars flow through the stock

markets. At this point, soft computing models have

empowered them to capture the data patterns and charac-

teristics of stock markets. However, one of the open

problems in soft computing models is how to systemati-

cally determine architecture of models for given

applications. In this study, Harmony Search is utilized to

optimize the architecture of Neural Network, Jordan

Recurrent Neural Network, Extreme Learning Machine,

Recurrent Extreme Learning Machine, Generalized Linear

Model, Regression Tree, and Gaussian Process Regression

for 1-, 2-, 3-, 5-, 7-, and 10-day-ahead stock price predic-

tion. The experimental results show worthy findings of

stock market behavior over different prediction terms and

stocks. This study also helps researchers understand which

prediction model performed the best and how different

conditions affect the prediction accuracy of the models.

Proposed hybrid models can be successfully used by

speculators and investors to make the investment or to

hedge against potential risk in stock markets.

Keywords Jordan Recurrent Neural Network · Recurrent

Extreme Learning Machine · Generalized Linear Model ·

Regression Tree · Gaussian Process Regression · Stock

price prediction

1 Introduction

Stock market can be defined as a complex nonlinear

dynamic system. Many factors have an influence on the

stock market, and also complex and subtle interrelation are

available between these factors [1, 2]. Therefore, analysis

of the stock market is one of the interesting points of stock

market research over the years. Especially with the stock

market continued to heat up, accurate stock market pre-

diction has become one of the key issues for countries all

over the world. One of the main ideas to remarkable stock

market research is providing the best prediction results

using the minimum relevant input data [3]. For these pur-

poses, a great deal of attention has been focused on the idea

of using soft computing models for stock market prediction

since correctly designed models can easily converge on the

optimal result. However, their performance depends on

parameter tuning and input variable selection. Particularly,

variable selection is a central issue for model developer. It

improves the performance of the proposed model. In

addition, variable selection not only provides faster and

more cost-effective predictors but also ensures a better

understanding of the fundamental system [4]. Variable
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selection models are essentially divided into filter models,

wrapper models, and embedded models. Filter models

choose subsets of input variables as a preprocessing step.

Wrapper models use the learning machine of interest as a

black box to evaluate input variable subsets considering

their predictive power. Embedded models perform input

variable selection in the process of training and are nor-

mally specific to given learning machines [4]. It should be

emphasized that not a single variable selection model is

universally superior to the others. To specify which vari-

able selection model is best to use and how to use it, one

should first determine the purpose of variable selection and

then study the characteristics of the dataset at hand [5].

To determine optimal settings of input variables and to

tune parameters for stock price prediction, Harmony

Search (HS) is used for Neural Network (NN), Jordan

Recurrent Neural Network (JRNN), Extreme Learning

Machine (ELM), Recurrent Extreme Learning Machine

(RELM), Generalized Linear Model (GLM), Regression

Tree (RT), Gaussian Process Regression (GPR) in this

study. The selection of input variables strongly influences

complexity and performance of models, but the perfor-

mance of models is also affected by different factors such

as the number of hidden neurons and the transfer function

type. Too few or too many hidden neurons can lead to

underfitting or overfitting issues, respectively, that greatly

degrade the generalization capability to lead with signifi-

cant deviation in prediction. In addition, the determination

of transfer functions can strongly affect complexity and

performance of the models. Hence, what kinds of transfer

functions should be selected is very important.

In literature, many variants of the soft computing based

architecture were created to improve the performance of

the models. For example, Zhu et al. [6] proposed an evo-

lutionary ELM model using differential evolution (DE),

which is utilized to find the optimal input weights and

hidden biases, and Moore–Penrose (MP)-generalized

inverse that is utilized to define the output weights. Evo-

lutionary ELM provides an opportunity to reduce the

hidden neurons and to improve the generalization perfor-

mance. Suresh et al. [7] used a real coded genetic algorithm

(RCGA) to determine proper values for the free parameters

in ELM whose input weights, bias values, and the number

of hidden neurons are specified automatically. RCGA-

based ELM has the ability to find small network to

approximate the classifier function, but the time taken to

receive the results is more. Lan et al. [8] proposed a con-

structive model for hidden neurons selection to become

stable and to handle the architectural design of ELM net-

work. Basically, proposed model is to identify the

significance of each hidden neuron and to determine the

optimal subset of hidden neurons achieving comparable

generalization performance. Saraswathi et al. [9] used a

particle swarm optimization (PSO), integer-coded genetic

algorithm, and ELM for accurate gene selection and sparse

data classification. In the study, the optimal input weights

are determined by PSO algorithm and integer-coded

genetic algorithm, which reduce the gene numbers, and are

used to reduce the computational effort. The proposed

model provides high classification accuracy with just

twelve genes. Lahoz et al. [10] assigned the biases and

hidden weights of the single-hidden layer feedforward

neural network (SLFN) using bi-objective microgenetic

algorithm that gives reasonable results while maintaining

the time of execution. Huang and Lai [11] employed the

PSO to optimize the structural risk minimization function

for the optimal number of hidden neurons in ELM. To

improve ELM classifier’s generalization performance, Xue

et al. [12] proposed a variable-length PSO algorithm to

determine the number of neurons in layer as well as cor-

responding input weights and hidden biases. Bazi et al. [13]

applied the DE to analyze the model selection problem of

ELM. Also, orthogonal crossover is used to improve the

search ability of the DE. The experimental result showed

that DE-based ELM is faster than the DE-based support

vector machine with accurate and efficient classification.

Hegazy et al. [14] used a flower pollination algorithm that

selects input weights and hidden biases to create more

compact network structure than traditional ELM model for

monthly stock price prediction. The proposed model has

the ability to achieve lowest error value with little advance

since its parameter is few and can be easily tuned. To

improve the balance between explorative and exploitive

power, Yang et al. [15] proposed a differential evolution

coral reef optimization (DECRO), where the DE is utilized

to perform the broadcast spawning. It is determined that

DECRO-based ELM is prone to improve the prediction

accuracy of DE-based ELM and coral reef optimization-

based ELM. Furthermore, it enhances the prediction speed

of the ELM. In recent years, RELM is also used to improve

the prediction performance of ELM [16, 17].

Ruxanda and Badea [18] built various configurations of

NNs to make predictions on Bucharest Stock Market Index

and then evaluated NN models in terms of prediction

errors. In the study, the number of hidden neurons is altered

between 2 and 6, logistic sigmoid and hyperbolic tangent

sigmoid are used as a type of activation function, and

gradient descent and Broyden–Fletcher–Goldfarb–Shanno

method are applied as a training algorithm. Developing

more realistic models basically depends on NN parameters.

To increase the performance of NN models, a significant

amount of studies (especially, hybrid NN models) have

been done in this field. Guresen et al. [19] reviewed arti-

ficial NN and hybrid models for time series forecasting in a

detailed way and evaluated the performance of dynamic

artificial NN, hybrid NNs, and multilayer perceptron in
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forecasting time series used in market values. Hsieh et al.

[20] presented an integrated system for stock price pre-

diction that used wavelet transforms and Recurrent Neural

Network (RNN) whose weights and biases are determined

by artificial bee colony algorithm. To ensure that the

application of the model is sufficiently robust, proposed

model is applied to four stock markets. Wei and Cheng

[21] used RNN to build a prediction model and proposed

three refined processes in the hybrid model where essential

technical indicators are selected from popular indicators by

a correlation matrix, stepwise regression, and a decision

tree. The study supported that selecting the important

technical indicators reduces forecasting errors more effec-

tively. Zahedi and Rounaghi [22] used NN to predict stock

price and applied 20 accounting variables in principal

component analysis model to evaluate their effects on stock

price and to identify effective factors in stock price by

using real values. To reduce the computational complexity,

Anish and Majhi [23] combined the variable selection with

a feedback type of the functional link artificial NN model

trained with recursive least square algorithm for efficient

prediction of stock prices. Dash et al. [24] presented a

hybrid feedforward functional link dynamic neural network

model to ensure a trade-off between speed and accuracy.

To summarize, nowadays one is equipped with a mul-

titude of models, but the choice of the models that allow for

successful and efficient solution of a particular problem is

usually not trivial. The main problem is parameter tuning

since no definite and explicit model is available to deter-

mine optimal parameter setting for prediction model. In

this case, metaheuristics can be used to systematically

assign the optimal setting of parameters. In this study, HS

is used to tune optimal parameter for proposed models. The

reason of selecting HS can be summarized as follows: (1)

there is no need to use initial values for the decision

variables; (2) the derivative information is unnecessary

since a stochastic random search is used by HS; (3) HS is

able to adapt easily to a broad class of optimization prob-

lems due to its simplicity [25]. In the light of previous

studies, it can also be said that HS does not require

parameter fine-tuning to reach high-quality solutions. Thus,

it is less sensitive to the values of the chosen parameters

[26]. It is hoped that the present paper may help find the

best model, or at least filter out the ones that are not

promising in stock price prediction. The main aims of this

study are summarized as follows:

● Select the relevant technical indicators for NN, JRNN,

ELM, RELM, GLM, RT, and GPR models,

● Determine the proper number of hidden neurons for

NN, JRNN, ELM, RELM models,

● Determine the proper number of context neurons for

JRNN and RELM models,

● Determine the appropriate transfer function type for

NN, JRNN, ELM, RELM models,

● Create HS-NN, HS-JRNN, HS-ELM, HS-RELM, HS-

GLM, HS-RT, and HS-GPR models for 1-, 2-, 3-, 5-, 7-,

and 10-day-ahead prediction,

● Testing of the models with three stocks that are selected

among the BIST-100 companies, and their names are

Eregli Iron and steel company (EREGL), Eczacıbası

Pharmaceutical industry (ECILC), and Afyon cement

industry (AFYON),

● To compare the forecasting performance of models, five

performance measures namely Mean Absolute Percent-

age Error (MAPE), Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), Theil’s Inequality Coef-

ficient (TheilU), and Directional Prediction Statistics

(DS) are utilized.

The remainder of this paper is created as follows. The

basic structure of the proposed models is described in

Sect. 2. In Sect. 3, a detailed analysis of the models is

given. Section 4 is devoted to conclusions.

2 Proposed models

The lack of certain architectures in a particular model is

still a controversial issue. For soft computing models, the

performance of the proposed models is highly dependable

not only on input variable selection but also on many

architectural parameters. Therefore, we firstly used HS to

tune the optimum parameters to provide the desired output.

Then, we synthesized determined parameters and con-

structed the hybrid models for 1-, 2-, 3-, 5-, 7-, and 10-day-

ahead prediction, and three stocks are used.

Overall, dataset is divided into training and testing

datasets. Training dataset covers the period from April 17,

2013, up to September 11, 2015, and there are 1200 trading

sessions. Testing dataset cover the period from September

14, 2015, up to November 30, 2015, and there are 60

trading sessions. Original dataset is transformed to a nor-

malized dataset to increase convergence ability and

decrease the noise. In this study, sigmoid normalization is

applied as normalization technique using the following

equation:

ð1Þ
where xnew represents the value after normalization and xold
denotes the value before normalization. ʎ = 1/xmax, and

xmax is the maximum value of a dataset.

In stock price prediction, determination of relevant

technical indicators is one of the critical steps. A large

number of technical indicators can cause irrelevant infor-

mation, while a small number of technical indicators could
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be insufficient for proposed models. Since the chosen rel-

evant variables subset could signify better the original

character of dataset, prediction with these input variables

could increase the accuracy and efficiency. In this study,

relevant technical indicators are selected from initial vari-

able pool (Table 1). Note that initial variable pool is the

same as with the study of Göçken et al. [27], but only

today’s close–previous close price was extracted.

For particular stock or index, the fitness of a technical

indicator is dynamic. Stocks can also demonstrate con-

flicting trends on different time. The optimization of

technical indicators should be adaptive to changes in the

fitness and to generate new instances of the indicator as

required [28]. Relevant technical indicators can change

according to the proposed models. In this paper, the

number of candidate variables to be selected is fixed at five

for each model. When input variables (technical indicators)

are higher than five, the computational time increases. In

addition, the basic idea to effective forecasting in stock

market is ensuring the best results using the least complex

model with the minimum required input data [3]. There-

fore, the number of selected technical indicators is

restricted to be five in HS to improve performance of the

proposed hybrid models. The complete set of different

transfer functions for each model is given in Tables 2

and 3.

It is known that the selection of transfer function

strongly influences the complexity, but how to determine a

suitable transfer function is still an unresolved problem.

Actually, the choice of transfer functions depends on the

model type and the problem type. Hence, this study is to be

useful for researchers working on transfer functions.

What’s more, we used HS as a simple and efficient

model to set the proper number of hidden and context

neurons since the number of neurons directly influences the

generalization performance of the models.

2.1 Harmony Search (HS)

HS mimics the improvisation process of musicians. To find

a best harmony, each musician plays a note. In same

manner, the decision variables of the cost (or profit)

function can be typically represented by musicians in

optimization problems. HS attempts to determine an opti-

mal solution vector in this function where each decision

variable (musician) produces a value (note) [29]. In general

optimization problem, basic steps of the HS can be sum-

marized as follows [30]:

Table 1 Initial variable pool

Index Variable name Index Variable name

1 Previous close 23 Close price accelerator

2 Previous high 24 Opening price momentum

3 Previous low 25 High price momentum

4 Previous open 26 Low price momentum

5 5-day simple moving average 27 Close price momentum

6 6-day simple moving average 28 Chaikin volatility

7 10-day simple moving average 29 K% stochastic

8 20-day simple moving average 30 D% stochastic

9 5-day exponential moving average 31 Slow K% stochastic

10 6-day exponential moving average 32 Slow D% stochastic

11 10-day exponential moving average 33 William %R

12 20-day exponential moving average 34 Relative strength index

13 5-day triangular moving average 35 Middle Bollinger band

14 6-day triangular moving average 36 Upper Bollinger band

15 10-day triangular moving average 37 Lower Bollinger band

16 20-day triangular moving average 38 Highest high value

17 Accumulation distribution oscillator 39 Lowest low value

18 Closing price moving average convergence divergence 40 Median price

19 9-day moving average of close moving average convergence divergence 41 Price rate of change

20 Opening price accelerator 42 Typical price

21 High price accelerator 43 Weighted close

22 Low price accelerator 44 William’s accumulation/distribution line
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Step 1 The optimization problem is briefly described.

Minimize ðor MaximizeÞ f ðx~Þ
subjected to xi 2 Xi; i ¼ 1; 2; . . .;N :

ð2Þ

where f �ð Þ denotes a scalar objective function; x~ repre-

sents a solution vector including decision variables xi; Xi

denotes the set of possible range of values for each

decision variable xi and changes between the lower Lxið Þ
and upper bounds (Uxi) for each decision variable; and

N represents the number of decision variables. In this

step, harmony memory size (HMS), harmony memory

considering rate (HMCR), pitch adjusting rate (PAR)

and the number of improvisations (NI) are also

initialized.

Step 2 HM is initialized using Eq. (3).

x ji ¼ Lxi þ randðÞ Uxi � Lxið Þ ð3Þ
where j ¼ 1; 2; 3; . . .;HMS and randðÞ is a uniformly dis-

tributed random number between 0 and 1.

Step 3 This step is responsible for creating a new

potential variation. The new harmony vector

(x~0 ¼ x01; x
0
2; . . .; x

0
N Þ is created using memory consideration,

pitch adjustment, and random selection. The value of the

decision variables for the new vector is selected from any

of the values already existing in the current HM.

x0i 2 x0i 2 x1i ; x
2
i ; . . .::x

HMS
i ; with probability HMCR

x0i 2 Xi; with probability 1� HMCR

�
ð4Þ

Then, parameter PAR is applied by using following

equation:

x0i ¼
x0i � randðÞ � bw with probability PAR

x0i with probability 1� PARð Þ
�

ð5Þ
where bw represents an arbitrary distance bandwidth.

For JRNN and RELM models, HM includes five parts.

The number of hidden neurons, the number of context

neurons, and transfer function type are represented by first,

second, and third parts, respectively. The fourth part

denotes the information on whether the considered tech-

nical indicator is selected or not. The last part of the HM

represents the objective function. Note that similar repre-

sentation of the HM matrix can be found in [27]. For NN

and ELM models, HM includes four parts. The number of

hidden neurons and transfer function type are represented

by first and second parts, respectively. The third part

denotes the input variable selection. The final part of the

HM represents the objective function. For GLM, RT, and

GPR models, HM only includes two parts. First one

Table 2 List of available

transfer function types in HS-

NN/HS-JRNN models

Transfer functions Formula

1 Hyperbolic tangent sigmoid transfer function tansig nð Þ ¼ 2= 1þ exp �2 � nð Þð Þ � 1

2 Elliot sigmoid transfer function elliotsig nð Þ ¼ n= 1þ abs nð Þð Þ
3 Log-sigmoid transfer function logsig nð Þ ¼ 1= 1þ exp �nð Þð Þ
4 Radial basis transfer function radbas nð Þ ¼ exp �nð Þ2

� �
5 Pure linear transfer function purelin nð Þ ¼ n

6 Normalized radial basis transfer function radbasn nð Þ ¼ exp �nð Þ2
� �

=sum exp �nð Þ2
� �� �

7 Soft max transfer function softmax nð Þ ¼ exp nð Þ=sum exp nð Þð Þ
8 Triangular basis transfer function tribas nð Þ ¼ 1� abs nð Þ; if � 1� n� 1

0; otherwise

�
9 Net inverse transfer function netinv nð Þ ¼ 1=n

Table 3 List of available

transfer function types in HS-

ELM/HS-RELM

Transfer functions Formula

1 Sigmoid function G a; b; xð Þ ¼ 1= 1þ exp � axþ bð Þð Þð Þ
2 Sine function G a; b; xð Þ ¼ sin a� xþ bð Þ
3 Hard limit function G a; b; xð Þ ¼ 1; if a� xþ b� 0

0; otherwise

�

4 Triangular basis

function

G a; b; xð Þ ¼ 1� a� xþ bj j; if a� xþ bj j � 1

0; otherwise

�

5 Radial basis function G a; b; xð Þ ¼ exp � axþ bð Þ2
� �
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denotes input variables, and second part represents the

objective function.

Step 4 A new harmony vector (x~0 ¼ x01; x
0
2; . . .::x

0
N ) is

improvised in HM. Then, HM is updated and the generated

solution is evaluated. If its fitness value is better than the

worst harmony in the HM, it will replace the worst har-

mony with the new one. Otherwise, it is eliminated.

Step 5 HS terminates after a certain maximum number of

iterations. Otherwise, HS will repeat steps 3 and 4. HS

parameter values for proposed models are given in Table 4.

Note that these values were determined by considering

upper bound of parameters in [31] where HMS value

ranges between 10 and 50, value of HMCR ranges between

0.7 and 0.95, and PAR is set between 0.01 and 0.3.

2.2 Hybrid models

Although various models and algorithms have been pre-

sented in literature for input variable selection, determining

the transfer function type is still controversial. However, the

selection of transfer functions can strongly affect complexity

and performance of models and has been said to play a sig-

nificant role in the convergence of the models. Hence, we

used HS for variable selection and parameter tuning

including the determination of the transfer function type, and

the optimal number of hidden and context neurons.After HS-

NN, HS-JRNN, HS-ELM, HS-RELM, HS-GLM, HS-RT,

and HS-GPR are created using all optimal solutions that are

generated by HS. Thus, proposed models calculate an output

to the problem based on the parameters specified by HS that

takes a number of iterations for convergence. Note that the

number of iteration in hybrid models is same with HS.

The general structure of proposed hybrid models is seen

in Fig. 1. Initially, the dataset is divided randomly into four

subsets of equal size. Then, each subset is divided to 80%

of data as training and 20% of data as testing set. However,

the percent distributions of training and testing dataset can

be any other ratios such as 50/50, 60/40, 70/30, and 95/5. In

subsequent sections, each step of the models is described to

give the details of the hybrid modes.

2.2.1 Harmony Search-based Neural Network (HS-NN)

NNs are formed in layer by layer basis. Each layer can

include one or more computational neurons. The jth neuron

of a NN can be expressed as:

yj ¼ uj

X
i

wjixi � bj

 !
ð6Þ

where yj is the output of jth neuron, wji is the connection

weight between ith neuron and jth neuron, xi is ith input, bj
is the bias at the jth neuron, and uj �ð Þ denotes the transfer

function at jth neuron. Since x represents the input (known)
and variable y specifies the output (to be computed), we

need information on the other remaining variables using a

training process that may help determine the optimal val-

ues. More details can be found in [32].

The selected variables and optimized parameter values

of HS-NN model are given in Table 5. Hyperbolic tangent

sigmoid transfer function (1) and elliot sigmoid transfer

function (2) are generally used in HS-NN. Also, the most

commonly used number of hidden neurons is 20 neurons.

Typical price (42) is the most commonly used technical

indicator as input variables.

2.2.2 Harmony Search-based Jordan Recurrent Neural
Network (HS-JRNN)

JRNN can be considered as an extended version of the

NN models. It includes input, hidden, output, and

context layers. Note that temporal information is

extracted from the input data by means of context layer.

In JRNN, connections between the context layers and

the output layer are fixed with a weight of one. Weights

are set to carry out a specific application. Then, learn-

ing algorithm is performed in JRNN and input data are

used to calculate the output of the network. In proposed

model, data from lower layer neurons are propagated

forward to upper layer neurons through feedforward

connection network (see Hikawa and Araga [33] for

details).

For HS-JRNN, the number of input variables, the

transfer function type, and the number of hidden and

context neurons are optimized with HS algorithm

(Table 6).

In HS-JRNN, two most commonly used transfer func-

tion types are pure linear transfer function and normalized

radial basis transfer function. The most commonly used

number of hidden layer neurons is 9 neurons, while the

most commonly used number of neurons in the context

layer is 10 neurons. K % stochastic (29) is the most com-

monly used technical indicator.

Table 4 HS parameter values

Parameter Value

HMS 50

HMCR 0.95

PAR 0.3

Maximum number of iteration 50
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2.2.3 Harmony Search-based Extreme Learning Machine
(HS-ELM)

A new learning algorithm for the SLFN called the ELM

overcomes the aforementioned disadvantages of NN.

ELM avoids being stuck at local optimization and is

reasonably faster than the traditional gradient-based

algorithms. In addition, it ensures NN models with better

generalization performance [15]. ELM has an ability to

reach the smallest training error and obtain the smallest

Fig. 1 Block diagram of proposed hybrid models

Table 5 Selected variables and optimized parameter values for HS-NN

Prediction term Stocks Transfer function type Number of hidden neurons Selected variables’ index

1-day-ahead ECILC 2 11 14 16 20 22 42

EREGL 1 20 4 11 35 42 43

AFYON 2 18 10 20 21 25 33

2-day-ahead ECILC 1 20 4 11 35 42 43

EREGL 1 20 4 11 35 42 43

AFYON 2 18 10 20 21 25 33

3-day-ahead ECILC 1 20 4 11 35 42 43

EREGL 1 20 4 11 35 42 43

AFYON 2 18 10 20 21 25 33

5-day-ahead ECILC 1 20 4 11 35 42 43

EREGL 4 20 15 24 25 26 28

AFYON 5 7 18 26 30 37 41

7-day-ahead ECILC 2 11 14 16 20 22 42

EREGL 2 11 14 16 20 22 42

AFYON 5 7 18 26 30 37 41

10-day-ahead ECILC 8 10 10 16 23 29 43

EREGL 6 3 13 15 22 28 44

AFYON 8 10 10 16 23 29 43
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norm of weights [34]. On the other hand, without the

proper input layer weights and bias, more hidden layer

neurons are required to enhance the performance of

ELM [15]. In ELM, the input weights and hidden biases

are randomly determined and MP-generalized inverse is

utilized to define the output weights [6]. Details can be

found in [34]. Briefly, the steps of the ELM are:

Given a training set U ¼ xk ; tkð Þj xkð Þ 2 Rn;f
tk 2 R; k ¼ 1; 2; . . .;Ng, hidden neuron transfer function

type h xð Þ, and the number of hidden neurons, L,

1. Randomly initiate considering any continuous sam-

pling distribution hidden neuron parameters.

2. Calculate the hidden layer output matrix H :

H ¼
h x1ð Þ
..
.

h xNð Þ

2
64

3
75 ¼

h1 x1ð Þ � � � hL x1ð Þ
..
. . .

. ..
.

h1 xNð Þ � � � hL xNð Þ

2
64

3
75 ð7Þ

where hi xð Þ denotes a transfer function of the ith
neuron. The ith column of H represents the ith hidden

neuron output vector with respect to inputs

x1; x2; . . .:; xN .
3. Calculate the output weights bi:

b ¼ HyT ð8Þ

where b ¼ b1; b2; . . .; bL½ �T specifies the vector of the

output weights, T ¼ t1; t2; . . .; tN½ �T represents the

training data output matrix, and Hy denotes the MP-

generalized inverse of matrix H . b is a result of the

minimization of approximation error:

min kHb� Tk ð9Þ

The output function of ELM is defined as (one output

case):

fL xð Þ ¼
XL
i¼1

fi xð Þ ¼
XL
i¼1

bihi xð Þ ¼ h xð Þb ð10Þ

where fi xð Þ = bihi xð Þ is the weighted output of the ith
hidden neuron.

The output function fL xð Þ is a linear combination of the

transfer functions hi xð Þ [35].
In HS-ELM, triangular basis is used as transfer function

type for 1-, 2-, 3-, 5-, 7-, and 10-day-ahead prediction

models except 10-day-ahead prediction models for EREGL

that is used sigmoidal transfer function type. The number

of hidden neurons is usually 16 neurons. Previous high (2),

10-day simple moving average (7), 10-day triangular

moving average (15), high price accelerator (21), and

opening price momentum (24) are generally selected as

technical indicators (Table 7).

Table 6 Selected variables and optimized parameter values for HS-JRNN

Prediction term Stocks Transfer function type Number of hidden neurons Number of context neurons Selected variables’ index

1-day-ahead ECILC 5 9 10 2 12 32 36 39

EREGL 5 14 14 23 24 29 32 43

AFYON 8 16 9 4 8 10 11 44

2-day-ahead ECILC 5 11 2 6 29 30 31 32

EREGL 6 9 10 2 6 11 29 38

AFYON 8 16 9 4 8 10 11 44

3-day-ahead ECILC 5 9 10 6 23 29 32 39

EREGL 2 11 13 2 6 21 25 29

AFYON 6 16 12 4 9 18 37 43

5-day-ahead ECILC 5 9 10 6 23 29 32 39

EREGL 2 11 13 2 6 21 25 29

AFYON 6 29 12 7 16 26 29 36

7-day-ahead ECILC 5 19 4 23 30 31 36 39

EREGL 6 19 8 16 26 38 42 44

AFYON 6 29 12 7 16 26 29 36

10-day-ahead ECILC 6 10 1 9 14 15 35 39

EREGL 4 10 15 10 19 20 22 23

AFYON 8 9 7 2 12 18 23 25
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2.2.4 Harmony Search-based Recurrent Extreme Learning
Machine (HS-RELM)

RELM has been shown a novel training approach for a

single-hidden layer JRNN whose output can be defined by

Ertugrul [17]:

T ¼
Xm
j¼1

bjg
Xn
i¼1

wi;jxi þ
Xnþr

i¼nþ1

wi;jd t � iþ nð Þ þ bj

 !

ð11Þ
where m is the neuron numbers in the hidden layer and n is

the neuron numbers in the input layers. d denotes delay,

t shows the instance order, r represents the employed

context neuron numbers that are backward connections

from the output layer to the input layer.

The feedbacks in RELM are taken as new inputs with

delay and attached to the H matrix. Note that the major

difference between RELM and ELM is that RELM is built

for sequential (time ordered) datasets, but the order of the

data in the dataset is not important in ELM. Details can be

found in [17]. In this paper, the number of input variables,

transfer function type, number of hidden, and context

neurons, are optimized. In HS-RELM, sigmoidal transfer

function type is applied for all models. The number of

hidden layer neurons is generally 21 neurons, and the

number of context neurons is usually 16 neurons for pro-

posed models. In general, previous open (4), 10-day

exponential moving average (11), William %R (33), lower

Bollinger band (37), and median price (40) are selected as

technical indicators (Table 8).

2.2.5 Harmony Search-based Generalized Linear Model
(HS-GLM)

In GLMs, the predictor variables Xj j ¼ 1; . . .; pð Þ are

combined to generate a linear predictor (LP) that is related

to the expected value l ¼ E Yð Þ of the response variable Y
through a link function g(), such as:

g E Yð Þð Þ ¼ LP ¼ aþ XTb ð12Þ
where Y is the response variable, a is a constant denoted

the intercept, X ¼ X1; . . .;Xp

� �
denotes a vector of p pre-

dictor variables, b ¼ b1; . . .; bp
� �

represents the vector of

p regression coefficients [36]. In HS-GLM, close price

accelerator (23) is found to be the most commonly used

technical indicator as seen in Table 9.

2.2.6 Harmony Search-based Regression Tree (HS-RT)

RT is an automatic classifier and creates a binary tree

structure classifier. The repeated splits of subsets into two

descendant subsets are used to produce the tree. Every split

is an inquiry about the input variables, and the answers of

“yes” and “no” lead to the left and right descendant sub-

sets, respectively. Details of RT can be found in [37]. In

Table 7 Selected variables and optimized parameter values for HS-ELM

Prediction term Stocks Transfer function type Number of hidden neurons Selected variables’ index

1-day-ahead ECILC 4 16 2 7 15 21 24

EREGL 4 16 2 7 15 21 24

AFYON 4 16 2 7 15 21 24

2-day-ahead ECILC 4 16 2 7 15 21 24

EREGL 4 16 2 7 15 21 24

AFYON 4 16 2 7 15 21 24

3-day-ahead ECILC 4 16 2 7 15 21 24

EREGL 4 16 2 7 15 21 24

AFYON 4 16 2 7 15 21 24

5-day-ahead ECILC 4 16 2 7 15 21 24

EREGL 4 16 2 7 15 21 24

AFYON 4 16 2 7 15 21 24

7-day-ahead ECILC 4 16 2 7 15 21 24

EREGL 4 16 2 7 15 21 24

AFYON 4 16 2 7 15 21 24

10-day-ahead ECILC 4 22 3 10 17 18 28

EREGL 1 18 5 11 21 25 37

AFYON 4 16 2 7 15 21 24
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HS-RT model, 6-day simple moving average (6), 5-day

triangular moving average (13), low price accelerator (22),

close price accelerator (23), and K % stochastic (29) are

selected as input variables for 1-, 2-, 3-, 5-, 7-, and 10-day-

ahead prediction models and three stocks (ECILC,

EREGL, and AFYON).

2.2.7 Harmony Search-based Gaussian Process Regression
(HS-GPR)

GPR is a flexible model to handle the problems of non-

linear regression. In GPR, gaussian process is a collection

of random variables t ¼ t x1ð Þ; t x2ð Þ; . . .ð Þ which have a

gaussian joint distribution,

P tjC; xnð Þ ¼ 1

Z
exp � 1

2
t � lð ÞTC�1 t � lð Þ

	 

ð13Þ

for any input sets xnf g. C represents the covariance matrix

denoted by the covariance function C xn; xm;Hð Þ which is

parametrized by hyperparameters H, and l denotes the

mean function. GPR predict ~t on the new data point ~x
giving predictive mean and variance of the posterior

distribution.

~y ~xð Þ ¼ k ~xð ÞC�1
N t ð14Þ

r2~y ~xð Þ ¼ C ~x; ~xð Þ � k ~xð ÞC�1
N k ~xð Þ ð15Þ

where k ~xð Þ ¼ C x1; ~xð Þ; . . .;C xN ; ~xð Þð Þ represents the

covariance between the training data and ~x, and CN denotes

the N � N covariance matrix of training data points given

Table 8 Selected variables and optimized parameter values for HS-RELM

Prediction term Stocks Transfer function type Number of hidden neurons Number of context neurons Selected variables’ index

1-day-ahead ECILC 1 21 16 4 11 33 37 40

EREGL 1 21 16 4 11 33 37 40

AFYON 1 21 16 4 11 33 37 40

2-day-ahead ECILC 1 21 16 4 11 33 37 40

EREGL 1 21 16 4 11 33 37 40

AFYON 1 21 16 4 11 33 37 40

3-day-ahead ECILC 1 21 16 4 11 33 37 40

EREGL 1 21 16 4 11 33 37 40

AFYON 1 21 16 4 11 33 37 40

5-day-ahead ECILC 1 21 16 4 11 33 37 40

EREGL 1 21 16 4 11 33 37 40

AFYON 1 21 16 4 11 33 37 40

7-day-ahead ECILC 1 21 16 4 11 33 37 40

EREGL 1 21 16 4 11 33 37 40

AFYON 1 21 16 4 11 33 37 40

10-day-ahead ECILC 1 17 9 11 16 19 38 42

EREGL 1 21 16 4 11 33 37 40

AFYON 1 17 9 11 16 19 40 42

Table 9 Optimal variable subset for HS-GLM

Prediction term Stocks Selected variables’ index

1-day-ahead ECILC 6 13 22 23 29

EREGL 6 13 22 23 29

AFYON 13 20 26 33 41

2-day-ahead ECILC 6 13 22 23 29

EREGL 18 23 35 38 40

AFYON 13 20 26 33 41

3-day-ahead ECILC 6 13 22 23 29

EREGL 6 13 22 23 29

AFYON 6 13 22 23 29

5-day-ahead ECILC 6 13 22 23 29

EREGL 6 13 22 23 29

AFYON 5 19 21 23 39

7-day-ahead ECILC 6 13 22 23 29

EREGL 6 13 22 23 29

AFYON 5 19 21 23 39

10-day-ahead ECILC 8 21 26 35 37

EREGL 6 13 22 23 29

AFYON 6 13 22 23 29
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the covariance function C.C�1
N t specifies independent of

the new data. Details of GPR can be found in [38]. In this

study, 6-day simple moving average (6), 5-day triangular

moving average (13), low price accelerator (22), close

price accelerator (23), and K % stochastic (29) are deter-

mined as the input variables for HS-GPR model.

3 Results and discussion

There exists ample evidence that stock markets serve as

one of the leading indicator for the economy, and hence,

stock price prediction at higher frequencies can provide

early indication to the direction the economy might be

headed, besides providing information about rising imbal-

ances and risks. We presented how hybrid soft computing

models are applied effectively to the problem of analyzing

stock market and to prognosticate future price in a useful

and applicable manner. We aimed at encouraging

researchers to seek and embrace new opportunities of soft

computing models in stock markets. In this study, HS is

utilized to construct seven robust hybrid models for stock

price prediction. To ensure that proposed hybrid models

can be applicable in other stock markets, our work is also

applied to three stocks (ECILC, EREGL, and AFYON). To

clarify which prediction model performed the best under

different conditions, five different statistical performance

measures including MAPE, MAE, RMSE, TheilU, and DS

are used. MAPE is a relative measure that denotes errors as

a percentage of the actual data. It is simple to calculate and

easy to understand [39]. MAPE is calculated as follows:

MAPE ¼ 100

N

XN
t¼1

Xt � Ft

Xt

����
���� ð16Þ

Ft is predicted stock price, Xt is actual stock price, and N

denotes total number of tests for all performance measures.

The MAPE values for 1-, 2-, 3-, 5-, 7-, and 10-day-ahead

prediction models are given in Table 10 for three stocks. It

is clearly seen that although the prediction accuracy of the

models changes according to prediction terms and stocks,

HS-JRNN is the best model according to the MAPE values.

Also, HS-RELM model for ECILC and AFYON has good

prediction performance in comparison with other models.

The MAPE performances of AFYON are quite worse than

the other stocks (ECILC and EREGL).

MAE is dependent on the scale of the dependent vari-

able, but it is less sensitive to large deviations than the

usual squared loss. Its formula:

MAE ¼ 1

N

XN
t¼1

Xt � Ftj j ð17Þ

RMSE formula is given in Eq. (18).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

ðXt � FtÞ2
vuut ð18Þ

HS-JRNN is the best model according to MAE and RMSE

values (Tables 11 and 12). Note that the smaller difference

between RMSE and MAE means the smaller variance in

the individual errors of the sample.

TheilU is scale invariant and lies between 0 and 1. Note

that 0 shows a perfect fit, and hence, low values are the

ideal case of perfect forecast. TheilU is calculated as

follows:

TheilU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1ðXt � FtÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1ðXtÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1ðFtÞ2

q ð19Þ

The assigned values by DS are assumed to be between 0

and 100. The larger values of DS mean better performance

in stock market prediction. DS is calculated using Eqs. 20

and 21. The TheilU and DS values for 1-, 2-, 3-, 5-, 7-, and

10-day-ahead prediction models are given in Tables 13 and

14.

DS ¼ 100

N

XN
t¼1

at ð20Þ

at ¼ 1; Xt � Xt�1ð Þ Ft � Xt�1ð Þ	 0

0 otherwise

�
ð21Þ

Although the prediction performances of models vary

according to the prediction terms and stocks, HS-JRNN is

reasonably better than the other models considered in this

study. Furthermore, the comparison of RMSE and/or

MAPE values showed that especially HS-JRNN model for

3-day-ahead prediction of AFYON stocks generally gives

more promising forecasting results than many other studies

[20, 21, 23, 40–42]. The findings supported that HS-JRNN

has the ability to extract remarkable forecasting results

from selected technical indicators. Also, Dematos et al.

[43] presented that recurrent networks can be helpful for

forecasting financial prices since they use information from

the sequence or time dependence of the inputs as well as

the inputs themselves. In this direction, we can say that HS-

JRNN can be successfully used for stock market forecast-

ing due to the advantage of time dependence.

One of the most important contributions is that signifi-

cant improvements are made through the proposed hybrid

models. They have proven to be useful in variable selection

and parameter determination that is an active and fruitful

field of research in soft computing models. It is noteworthy

that according to the results of performance measures, our

proposed models can serve desirable approach in the stock

price prediction. The results also indicate that one should

first determine the characteristics of the stocks to determine
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which model is the best to use. Also, architecture of the

model is reasonably important to improve the prediction

performance of the models. The prediction performance of

the model directly depends on how the parameters are

selected, but an almost unlimited number of variations are

available to be used by models. The primary advantage of

using HS-based hybrid model is to provide a generic

framework that captures the underlying dynamics of noisy

and dimensional stock market data. HS determines the

most relevant technical indicators and simultaneously

Table 10 MAPE values for proposed models

Prediction term Stock HS-NN HS-JRNN HS-ELM HS-RELM HS-GLM HS-RT HS-GPR

1-day-ahead ECILC 9.48 0.02 13.31 1.93 2.32 3.81 2.33

EREGL 7.69 0.02 74.26 5.25 4.94 6.00 4.71

AFYON 98.75 0.42 88.17 12.42 20.91 31.62 21.71

2-day-ahead ECILC 3.57 0.01 2.97 2.55 2.88 4.23 3.00

EREGL 18.32 0.01 73.19 6.58 6.16 7.69 6.13

AFYON 98.62 0.30 88.96 19.20 27.61 40.10 28.05

3-day-ahead ECILC 9.65 0.01 13.67 3.19 3.41 5.28 3.53

EREGL 14.74 0.02 72.76 7.60 7.55 9.19 7.44

AFYON 98.50 0.0002 89.24 25.41 34.47 49.00 34.21

5-day-ahead ECILC 11.35 0.01 13.25 4.14 4.33 7.19 4.58

EREGL 14.63 0.06 75.27 9.34 10.19 11.27 10.01

AFYON 125.1 0.01 88.56 35.54 45.87 76.99 45.11

7-day-ahead ECILC 12.43 0.01 13.31 4.76 4.78 7.71 5.18

EREGL 17.57 0.0005 77.65 11.82 11.99 13.25 11.88

AFYON 126.4 0.01 88.84 35.86 58.56 124.1 57.11

10-day-ahead ECILC 11.03 0.0013 7.71 5.17 5.48 7.91 5.44

EREGL 12.80 0.73 16.14 13.73 14.41 12.88 13.98

AFYON 75.66 0.03 92.92 40.25 78.98 118.7 79.17

Table 11 MAE values for proposed models

Prediction term Stock HS-NN HS-JRNN HS-ELM HS-RELM HS-GLM HS-RT HS-GPR

1-day-ahead ECILC 0.0071 0.000014 0.0100 0.0015 0.0018 0.0029 0.0018

EREGL 0.0015 0.000003 0.0144 0.0010 0.0010 0.0012 0.0009

AFYON 0.0044 0.000017 0.0041 0.0003 0.0005 0.0007 0.0005

2-day-ahead ECILC 0.0027 0.000006 0.0102 0.0019 0.0022 0.0032 0.0023

EREGL 0.0035 0.000002 0.0143 0.0013 0.0012 0.0015 0.0012

AFYON 0.0044 0.000010 0.0041 0.0005 0.0006 0.0008 0.0007

3-day-ahead ECILC 0.0073 0.000006 0.0103 0.0024 0.0026 0.0040 0.0027

EREGL 0.0029 0.000003 0.0142 0.0015 0.0015 0.0018 0.0014

AFYON 0.0044 0.00000 0.0041 0.0006 0.0008 0.0010 0.0008

5-day-ahead ECILC 0.0086 0.000005 0.0099 0.0032 0.0033 0.0054 0.0035

EREGL 0.0030 0.000012 0.0146 0.0018 0.0020 0.0022 0.0019

AFYON 0.0055 0.00000 0.0041 0.0008 0.0010 0.0015 0.0010

7-day-ahead ECILC 0.0093 0.000006 0.0099 0.0036 0.0036 0.0058 0.0039

EREGL 0.0036 0.00000 0.0150 0.0023 0.0023 0.0026 0.0023

AFYON 0.0055 0.00000 0.0041 0.0008 0.0012 0.0022 0.0013

10-day-ahead ECILC 0.0082 0.000001 0.0059 0.0039 0.0041 0.0060 0.0041

EREGL 0.0025 0.000137 0.0030 0.0026 0.0028 0.0025 0.0027

AFYON 0.0014 0.000001 0.0041 0.0008 0.0017 0.0020 0.0017
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searching the most appropriate transfer function type and

neuron numbers in hidden and context layer. The interac-

tions of the parameters clearly influence the prediction

performance, and therefore, determining critical parame-

ters of the model increases the prediction speed and

accuracy. However, not all parameters affecting the hybrid

model were taken into account in this paper. In the ongoing

research, it can be interesting to consider all other param-

eters such as training functions, iteration number in the

designing of HS-based hybrid model. In this study,

Table 12 RMSE values for proposed models

Prediction term Stock HS-NN HS-JRNN HS-ELM HS-RELM HS-GLM HS-RT HS-GPR

1-day-ahead ECILC 0.0087 0.000015 0.0118 0.0019 0.0022 0.0044 0.0022

EREGL 0.0020 0.000005 0.0184 0.0012 0.0011 0.0014 0.0011

AFYON 0.0049 0.000018 0.0046 0.0005 0.0008 0.0012 0.0008

2-day-ahead ECILC 0.0036 0.000012 0.0118 0.0025 0.0028 0.0037 0.0029

EREGL 0.0042 0.000003 0.0183 0.0015 0.0014 0.0018 0.0014

AFYON 0.0049 0.000011 0.0046 0.0007 0.0010 0.0014 0.0010

3-day-ahead ECILC 0.0084 0.000007 0.0119 0.0032 0.0034 0.0052 0.0035

EREGL 0.0039 0.000006 0.0183 0.0018 0.0018 0.0023 0.0018

AFYON 0.0049 0.00000 0.0046 0.0009 0.0012 0.0016 0.0012

5-day-ahead ECILC 0.0100 0.000006 0.0116 0.0040 0.0042 0.0072 0.0045

EREGL 0.0037 0.000013 0.0185 0.0022 0.0024 0.0027 0.0024

AFYON 0.0060 0.00000 0.0046 0.0012 0.0015 0.0020 0.0015

7-day-ahead ECILC 0.0121 0.000006 0.0118 0.0045 0.0046 0.0074 0.0048

EREGL 0.0042 0.00000 0.0187 0.0028 0.0029 0.0033 0.0029

AFYON 0.0060 0.00000 0.0046 0.0012 0.0018 0.0030 0.0018

10-day-ahead ECILC 0.0090 0.000001 0.0078 0.0049 0.0051 0.0072 0.0052

EREGL 0.0030 0.000140 0.0038 0.0032 0.0034 0.0034 0.0033

AFYON 0.0021 0.000001 0.0045 0.0012 0.0023 0.0029 0.0023

Table 13 TheilU values for proposed models

Prediction term Stock HS-NN HS-JRNN HS-ELM HS-RELM HS-GLM HS-RT HS-GPR

1-day-ahead ECILC 0.0594 0.000099 0.0747 0.0124 0.0148 0.0288 0.0147

EREGL 0.0524 0.000116 0.3437 0.0300 0.0286 0.0360 0.0281

AFYON 0.9738 0.001793 0.8313 0.0471 0.0774 0.1113 0.0795

2-day-ahead ECILC 0.0242 0.000080 0.0751 0.0162 0.0183 0.0242 0.0190

EREGL 0.1156 0.000079 0.3419 0.0382 0.0354 0.0450 0.0364

AFYON 0.9735 0.001080 0.8384 0.0694 0.0973 0.1329 0.0988

3-day-ahead ECILC 0.0584 0.000049 0.0756 0.0209 0.0221 0.0339 0.0229

EREGL 0.1054 0.000158 0.3422 0.0449 0.0459 0.0594 0.0455

AFYON 0.9736 0.000001 0.8375 0.0905 0.1158 0.1546 0.1152

5-day-ahead ECILC 0.0697 0.000038 0.0733 0.0266 0.0276 0.0468 0.0292

EREGL 0.1003 0.000321 0.3456 0.0561 0.0607 0.0691 0.0602

AFYON 0.9917 0.000048 0.8349 0.1116 0.1390 0.1865 0.1421

7-day-ahead ECILC 0.0827 0.000043 0.0748 0.0292 0.0299 0.0482 0.0315

EREGL 0.1162 0.000003 0.3498 0.0687 0.0724 0.0863 0.0714

AFYON 0.9911 0.000050 0.8401 0.1129 0.1605 0.2697 0.1649

10-day-ahead ECILC 0.0564 0.000008 0.0529 0.0320 0.0332 0.0469 0.0336

EREGL 0.0788 0.003569 0.0921 0.0782 0.0839 0.0857 0.0811

AFYON 0.1945 0.000066 0.7929 0.1207 0.1988 0.2565 0.1984
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following problems are solved in order to carry out accu-

rate prediction.

(i) How many input variables (technical indicators)

should be used in for NN, JRNN, ELM, RELM,

GLM, RT, and GPR models?

(ii) How many neurons can be used in hidden layer?

(iii) How many neurons can be used in context layer?

(iv) Which transfer function should be used?

Our work can be helpful to determine robust model

architecture. Also, the prediction accuracy of our proposed

hybrid models will empower speculators and investors to

decide investment strategy in stock markets.

4 Conclusion

It is important to keep in mind that determination of model

parameters is one of the most important factors in predic-

tion. However, the process of determining optimal

architecture of models for a stock market problem is still a

controversial issue. Particularly, how to select relevant

input variables to predict stock price accurately is one of

the most important issues to make an investment decision.

Accordingly, the emphasis of previous studies is generally

on input variable selection and therefore neglecting the

importance of transfer functions. However, the determi-

nation of transfer functions can strongly affect complexity

and performance of model. The uniqueness of our proposed

models comes from the fact that HS is used for variable

selection and parameter tuning. Thus, transfer function

type, and number of hidden and context neurons are suc-

cessfully optimized with HS algorithm. Findings of

analyses indicate that close price accelerator (23) and K %

stochastic (29) are two mostly used technical indicators for

proposed prediction models. HS-NN and HS-JRNN models

commonly used elliot sigmoid transfer function and pure

linear transfer function, while sigmoidal transfer function

type is generally used for HS-ELM and HS-RELM. The

number of hidden neurons for HS-NN, HS-JRNN, HS-

ELM, and HS-RELM varies between 3 neurons and 29

neurons. The most commonly used number of hidden

neurons is 16 neurons. For HS-JRNN and HS-RELM, the

number of context neurons varies between 1 neuron and 16

neurons. The most commonly used number of context

neurons is 16 neurons.

To create further comparison, proposed hybrid models

are applied for six different prediction terms (1-, 2-, 3-, 5-,

7-, and 10-day-ahead prediction) and three stocks (ECILC,

EREGL, and AFYON). According to the obtained MAPE,

MAE, RMSE, TheilU, and DS values, HS-JRNN outper-

forms the others. However, other proposed models can also

be very suitable for prediction with highly complex stock

market data. HS-JRNN gives a promising direction to the

study of stock price prediction and other stock markets.

Although proposed hybrid models have a satisfactory

prediction performance, some insufficiencies should be

considered to be enhanced. For instance, it can be better to

Table 14 DS values for proposed models

Prediction term Stock HS-NN HS-JRNN HS-ELM HS-RELM HS-GLM HS-RT HS-GPR

1-day-ahead ECILC 35 59 30 39 35 35 36

EREGL 26 59 34 24 27 31 29

AFYON 28 59 28 33 30 33 29

2-day-ahead ECILC 41 59 32 35 35 31 32

EREGL 33 59 32 23 24 35 25

AFYON 28 59 28 32 28 38 29

3-day-ahead ECILC 34 59 34 32 35 34 35

EREGL 32 59 33 26 27 30 26

AFYON 28 59 28 32 30 31 31

5-day-ahead ECILC 34 59 33 33 34 34 35

EREGL 33 59 26 26 25 27 25

AFYON 28 59 28 32 32 28 32

7-day-ahead ECILC 32 59 36 35 35 34 35

EREGL 32 59 27 26 28 32 30

AFYON 28 59 28 35 32 31 33

10-day-ahead ECILC 34 59 36 39 35 35 38

EREGL 31 59 32 28 29 32 31

AFYON 31 59 28 34 34 38 33
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use improved HS for architecture optimization in soft

computing models. Moreover, different metaheuristics

such as genetic algorithm and PSO can be utilized to

compare the performance of the hybrid models. Finally,

fundamental indicators such as inflation rates, foreign

exchange rates, money supply, import–export figures,

employment rate, financial ratios of companies, and other

stock index series can be added as initial input variables

pool.
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