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Abstract In this work, load flow problems of both radial

distribution networks (RDNs) and mesh distribution net-

works (MDNs) have been solved using hybrid fuzzy-PSO

algorithm. A new voltage stability index (VSI) is also

indicated. Based on the suggested load flow, distributed

generation (DG) is ready to conduct through the require-

ment; and with the support of inserting the optimal-sized

DG unit in an exact way, the distribution system’s stability

is also studied. The exact position of each DG unit has been

computed using ‘‘loss sensitivity analysis,’’ whereas the

optimal sizing of each DG unit has been done with the help

of hybrid artificial bee colony and Cuckoo search algo-

rithm. The suggested method is tested in the regular

33-node and 69-node RDNs as well as in 85-node and

119-node MDNs. The transcendence of the proposed

operation has been centered with the aid of comparison to

the other existing methods. The suggested VSI is also

correlated with other two existing VSIs before and after

placement of DG unit(s).

Keywords Distributed generation � Power loss �
Sensitivity analysis � Fuzzy logic � Particle swarm

optimization (PSO)

1 Introduction

In electrical engineering, the load flow analysis is a

mathematical investigation of electric power flow into a

connected network [1]. A load flow analysis normally

utilizes streamlined documentation, for example, a single

line diagram and p.u. network, and importance on numer-

ous characteristics of power parameters, like voltages,

angles, real power and reactive power [2]. Load flow study

is foremost in forecasting forthcoming growth of electric

systems and moreover in selecting the pleasant procedure

of present programs [3]. The voltage magnitude and its

angle of each node as well as the computation of the total

losses are done by the load flow [4].

Marketable electric systems are most commonly

excessively critical to consider hand result of the load flow

[5]. To present research laboratory scale, physical repre-

sentations of electrical networks in detail had been con-

structed in the past years. However, PC programs

accomplish associated computations like stability studies,

short-circuit fault analysis, economic dispatch and unit

commitment [6]. Primarily, a few applications use linear

programming to discover the optimal load flow and the

circumstances that supply the lowermost cost per kilowatt

hour are also conveyed [7].

A load flow gain knowledge is notably a large for the

approaches with numerous load centers, equivalent to a

refinery complex. The load flow is an analysis of the pro-

cedure’s capability to correctly deliver the load connected

[8]. The aggregate losses of the system, and furthermore

line losses of the individual, are also tabularized. Tap

positions of the transformer are selected to guarantee the

precise voltage at principal locations equivalent to motor

control centers. For the examination of the distribution
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system, a significant tool is the distribution load flow and it

is utilized in the operation and the planning phases [9, 10].

Distribution network with the structure of radial and

broad ranging reactance and resistance values are essen-

tially unwell conditioned, and traditional power flow

approaches like Newton–Raphson, Fast Decoupled and

Gauss–Seidel strategies are incompetent in solving such

systems [11]. Distribution losses are as excessive as

20–30% of whole power production. As a result, in the case

of distributed systems, the venture is more stated. Due to

higher value of R in distribution networks, distribution

systems are the general cause behind these tremendous

power losses. The distribution systems are also functioning

at much decreased voltages [12, 13]. Appropriate location

and operating tactics are the responsibilities in the DG

application for loss reduction. Optimal location relies upon

the type of DG as well. For this reason, a try is made in this

method to strengthen easy analytical expressions for area,

which will also be with ease computed [14, 15].

In both the radial and mesh distribution networks, the

optimal DGs are set up at appropriate positions to curb the

losses of power along with the improvement of the voltage

profile within the distribution network. It is expected that

within the distribution network maximum of total power

generation is corrupted as losses. The currents that flow via

the network are reason for a part of these losses. Via the

DGs installation, the losses that occurred with reactive

currents are condensed, which is also valuable for control

of power flow, i.e., the curtailment of power loss and

enhancement of stability of the system. As a result, it is

essential to discover the ultimate position and rating of DG

for curtailment of losses and to maintain voltage. The paper

is organized to be geared up as follows. Previous works

regarding the load flow solution and DG placement in the

distribution networks are studied in Sect. 2. Section 3

shows the suggested procedure. The computational out-

comes and comparative study are offered in Sect. 4. At last,

Sect. 5 presents the conclusions.

2 Associated work

The latest research work involving the load flow solution of

the distribution system is recorded underneath:

A brand new load model had been suggested by Marti

et al. [16] that characterized the voltage-dependent load

model. A curve-fitting method was utilized to derive it,

which cut up the load as a mixture of current source and

impedance. On the imaginary part of the voltages at nodes

with this illustration and a few numerical estimates, as a

linear power flow (LPF) resolution, it was feasible to

develop the load flow concern, which once not required

repetitions. The estimate was once proven in systems as

much as 3000 nodes with quality results. The LPF system

used to be peculiarly main for computerized smart distri-

bution systems for optimization purposes. In that method,

the load was to be formed at first as a summation of an

impedance and a current source and there was a need to

approximate in the imaginary part of the nodal voltage.

To analyze the effect of alteration with the distribution

system on power system threat evaluation, Jia et al. [17]

had presented any hierarchical solution. To simulate the

actual irregular output regarding DGs, the discrete possi-

bility style was currently employed. Like a standard con-

straint, available supply capacity (ASC) was utilized to

make sure the actual safety level of the distribution system

that required large consistency. The repetitive computation

involving transmission network and distribution network

was also embraced to originate risk indices together with

taking into consideration detail constructions with the

distribution network. Additionally, in system risk compu-

tation, the influence regarding a few factors, for example,

DGs’ locations, capacities, component outage probabilities

and also dispersions, was talking about. The power flow

constraints were not taken into account in that method.

Carpinelli et al. [18] had suggested any probabilistic

technique to review the actual steady-state operating cir-

cumstances associated with photovoltaic (PV) and wind

(WD) generation plants along with an active electrical

distribution system program. That technique took into

reason the real questions through renewable generation

regarding force production and power load requirements

and mixes multi-linearized power flow equations and

Monte Carlo simulation methods. Mathematical imple-

mentations were obtainable and reviewed with regards at

17 bus distribution systems seen as a WD and PV systems

hooked up with diverse bus bars. The outcomes achieved

with all the suggested criteria were better in contrast to the

outcomes achieved employing a Monte Carlo simulation

criteria. They did not implement their methods for med-

ium-size and large-size distribution networks.

Das [19] proposed a method to place single DG in

RDNs. She had used the loss sensitivity factor and Firefly

algorithm to get the location of DG placement and its

optimal size, respectively. She had used 33-node and

69-node RDNs. The reduction in loss obtained by the

proposed method was not appreciable compared to the

other methods available in the literature. The multi-DG

placement was not suggested.

To discover the exact position and proper size of DG

unit, Mohamed and Kowsalya [20] had presented a novel

technique with network power loss minimization, opera-

tional costs and making improvements to voltage stability

as an objective. To define the optimal locations of DG

unit’s installation, loss sensitivity factor was utilized. To

search out the optimal size of DG, ‘‘Bacterial Foraging
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Optimization Algorithm (BFOA)’’ was used. BFOA was a

swarm intelligence method, for aging policies of the

Escherichia coli microorganism, which modeled the indi-

vidual and workforce as a distributed optimization proce-

dure. The proposed technique was once confirmed on

33-node and 69-node RDNs at specific load levels with

numerous load models, and the efficacy and efficiency of

the method was validated. They did not execute their

method on any large RDNs. They were silent about the

placement of DG in MDNs.

Murty and Kumar [21] had provided an evaluation of

new ‘‘power loss sensitivity,’’ ‘‘power stability index’’

(PSI), and VSI approaches to achieve the appropriate

location and then found the size of the capacitor. The

chief impact of the paper was that the optimal placement

of DGs was established. They tested their method on

12-node, 69-node, 85-node and modified 15-node RDNs.

They had used approximate VSI index to get the most

sensitive node of the network. They were confined to

place only single DG unit and silent for placement of

multi-DG units. They had not considered any MDN to

implement their method.

Hung andMithulananthan [22] had examined the difficulty

of multiple distributed generators (DG units) placement for

obtaining loss reduction in RDNs. In that paper, an improved

analytical (IA) approach was disclosed. On three distribution

experiment techniques, IA procedure was once tested and

authenticated with various sizes and difficulty. Results

showed that IAprocedurewas once powerful aswhenput next

with LSF and ELF solutions. They had used exhaustive load

flow technique, and the loss for base caseof 69-nodeRDNwas

lower compared to that obtained by the other load flow tech-

niques. In some cases, the results obtained by ELF are not

superior to those by IA or LSF. There was no implementation

of their method to any large RDN and any type of MDN.

Kaur et al. [23] presented an MINLP method to place the

appropriate size of DGs in the proper locations so that the

system loss will be decreased and voltage profile will be

enhanced. They tested their methods on 33-node and 69-node

RDNs and also compared with ELF-, IA- and PSO-based

methods. They provided the test results for small andmedium

RDNs. Theywere silent regarding the implementation of their

method to any large RDNs and any type of MDN. They had

not provided the comparison of CPU time with the other

existing methods used by them for comparison.

Viral and Khatod [24] presented a novel technique to

obtain the optimal positions of DGs and also their sizes.

They had used the analytical approach. They at first iden-

tified the nodes for placement of DGs and then determined

the size of DGs after minimizing the loss saving equations.

They tested their methods on 15-node and 33-node RDNs.

They did not execute the proposed method on medium- and

large-type RDNs and any type of MDN.

Kansal et al. [25] presented a hybrid technique to place

multiple DGs optimally in RDNs. They also placed different

types of DGs in RDNs. They had used 33-node and 69-node

RDNs to validate the proposed method, and they also com-

pared their proposed method with the PSO and IA methods.

The results in some cases obtained by PSO are superior to

those obtained by the proposedmethod. They did not carry out

their method on any large-size RDN and any type of MDN.

Saha and Mukherjee [26] proposed a novel method to

place DG in RDNs using ‘‘chaos embedded SOS algorithm.’’

They placed the DGs in 33-node, 69-node and 118-node

RDNs. They compared their method with other available

method including ‘‘SOS studied.’’ The CPU time provided

by them for different methods was not in the same platform,

and hence proper comparison of speed of the proposed

method with the other reported method was not feasible.

They were silent regarding DG placement in MDNs.

Das et al. [27] used ‘‘symbiotic organism search algo-

rithm’’ to place DGs in RDNs. They used LSF to find the

sensitive nodes of the networks to place DGs, and SOS

algorithm had been used to find the size. They compared

their method with other available methods. They placed the

DGs in 33-node and 69-node RDNs. In 69-node network,

the Cuckoo search method has faster convergence com-

pared to proposed SOS method as provided by the authors.

They were also silent regarding the implementation of their

method to any large-size RDN and any type of MDN.

However, all above-mentioned classical methods suffer

from the disadvantage of finding the optimal solution for

the nonlinear optimization problem. Placement of DG in

the distribution system is highly nonlinear optimization

problem. Conventional optimization techniques are not

suitable for solving such type of problems. Moreover, there

is no criterion to decide whether a local solution is also a

global solution. Large computational time is another

drawback of most of these techniques. And also, it may be

found that most of these population-based optimization

techniques have been successfully used to determine the

size, placement and loss minimization problem of DG in

RDNs. However, many of them suffer from local opti-

mality and require large computational time for the simu-

lation. These motivate the present authors to introduce

new, simple, efficient and fast population-based optimiza-

tion technique to solve optimal DG placement problem of

the distribution networks.

3 Upgraded load flow solution for RDN and MDN
using hybrid fuzzy-PSO approach

As the network is the ultimate connection between a large

power system and customers, the investigation of distri-

bution network is a major subject of exercise. In the present
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work, a load flow solution as well as the stability analysis

of radial and the mesh distribution networks will be

boosted based on hybrid fuzzy-PSO algorithm. The pro-

posed work comprises three phases; these are fuzzification,

knowledge-based decision logic and defuzzification. In

fuzzification, the power parameter like total power loads

(active and reactive) shall be estimated and finally changes

to fuzzy sets or linguistic terms. The knowledge base

comprises data concerning the domains of the fuzzy sets,

and variables related to the linguistic phrases and rule base

within the type of semantic control principles are kept in

the knowledge base. Decision logic defines expertise con-

cerning the parameters with the aid of the input values that

are measured and knowledge base. The knowledge-based

decision logic is employed via making use of PSO algo-

rithm, that is a global optimization technique, so that it will

furnish the easier selection based on the input value and

base knowledge.

The mission of defuzzification is to produce a crisp

control price out of the expertise concerning the manipulate

parameter of the decision logic with the aid of utilizing a

suitable transformation. The fuzzy-PSO will provide a

greater resolution of the power flow problem, which is

suitable for each radial and mesh distribution approach.

Then, on the basis of load flow solution multi-DGs are

positioned to fulfill the requirement, and by using the DGs

in a more effective method, the stability of the distribution

system will probably be analyzed. To find the ultimate DG

location, loss sensitivity analysis (LSA) is used, and for

sizing DG, hybrid artificial bee colony and Cuckoo search

(ABC–CS) algorithm is used here. The proposed process

will be demonstrated in 33-node and 69-node RDNs as

well as in 85-node and 119-node MDNs.

The proposed methodology begins with the evaluation

of load flow and stability study of RDNs and MDNs given

as input to the proposed approach for evaluation. This

evaluation standard helps the fuzzy logic present within the

proposed approach in making decision regarding the DG

placement within the bus system. Figure 1 shows the pro-

posed framework.

3.1 Stability analysis

In voltage stability study, the main aim is to suggest an

exact VSI expression so that the exact values of VSI for

each node will be obtained. The node, which will have the

minimum value of VSI, will be the most sensitive node

(MSN) of the network. The VSI is expressed from a two-

bus system, and design equations are given below.

�Vm1 ¼ �Vm2 þ �Ik �Zk ð1Þ

Vm1j j\dm1 ¼ Vm2j j\dm2 þ Irealk þ jIimagk

� �
Rk þ jXk½ � ð2Þ

where Ik is the flow of current through the branch k.

Vm1j j and Vm2j j are the voltage magnitudes of nodes m1

and m2.

dm1 and dm2 are the respective angles of Vm1 and Vm2.

Zk ¼ Rk þ jXk, where Rk and Xk are the resistance and

reactance of the branch k between bus m1 and bus m2.

Vm2j j cos dm2 þ j Vm2j j sin dm2 ¼ Vm1j j cos dm1
þ j Vm1j j sin dm1 � IrealkRk � IimagkXk

� �

� j IrealkXk þ IimagkRk

� �
ð3Þ

From (3), we have

Vm2j j cos dm2 ¼ Vm1j j cos dm1 � A ð4Þ
Vm2j j sin dm2 ¼ Vm1j j sin dm1 � B ð5Þ

where A ¼ IrealkRk � IimagkXk, B ¼ IrealkXk þ IimagkRk:
Then, we have

tan dm2 ¼
Vm1j j sin dm1 � B

Vm1j j cos dm1 � A
ð6Þ

From (4) and (5), we have

Distribu�on Network (Radial or Meshed)

Fuzzy-PSO Load Flow Analysis of the present 
network

Stability Analysis of the present network

Selec�on of Loca�on of each DG by LSF and 
its Sizing by ABC-CS algorithm 

Load flow (Fuzzy-PSO) and Stability analysis of 
the modified network in each case

Fig. 1 Proposed framework
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Vm1j j2�2 A cos dm1 þ B sin dm1½ � Vm1j j þ A2 þ B2
� �

¼ Vm2j j2

Since |Vm2| is always greater than 0, the following

condition must be met.

Vm1j j2 � 2 A cos dm1 þ B sin dm1½ � Vm1j j þ A2 þ B2
� �

� 0

Let

Lm2 ¼ Vm1j j2 � 2 A cos dm1 þ B sin dm1½ � Vm1j j
þ A2 þ B2
� �

� 0 ð7Þ

The computed dm2 of branch k will be used as dm1 for

the next branch, i.e., k ? 1. Irealk is the real part of the

current Ik through branch k, and Iimagk is the imaginary part

of the current Ik through branch k. The value of dm1 ¼ 0:0

when k = 1. The proposed voltage stability index is to be

compared with the voltage stability indices available in

[28, 29].

3.2 Radial and mesh distribution network load flow

analysis

Here, both radial and mesh systems are evaluated for the

analysis of load flow. The total I2R loss (PTOTAL) in a

network having a NB amount of branches is expressed

by

PTOTAL ¼
XNB

k¼1

I2k Rk ð8Þ

Here, Ik is the current through branch k and Rk is the

resistance of branch k. The current in each branch is bought

from the load flow analysis. There are two components in

branch current, active and reactive elements. PTOTAL

expressed in (8) is rewritten below in terms of Ireal and

Iimag. Pka and Pkr are due to real and reactive components

of I.

PTOTAL ¼ Pka þ Pkr ð9Þ

PTOTAL ¼
XNB

k¼1

I2realkRk þ
XNB

k¼1

I2imagk
Rk ð10Þ

From (10), the power loss in real and reactive compo-

nents of current of any RDN or MDN is formulated.

3.3 Fuzzy- and PSO-based load flow analysis

Fuzzy logic is utilized to update d and V in fuzzy-based

load flow analysis

DP
DQ

� �
¼ H N

M L

� �
Dd
DV

� �
ð11Þ

3.3.1 Algorithm involved in fuzzy logic

The expression in (11) specified above is stated as for

projected fuzzy index given by

DF ¼ J½ � :DX ð12Þ

It implies that at every node of the network the alteration

of state vector DX � DF. On the prior equation, the

designed load flow is developed. However, the repetitive

state vector updating of the process might be carried out by

DX ¼ fuzzy DFð Þ ð13Þ

In this procedure, the parameters like DFp and DFq

� �

active and reactive power are computed and presented to

the respective fuzzy logic controller (FLC) as shown in

Fig. 2. The procedure performs the state vector DX
specifically alteration of Dd for the P� d cycle and DV for

the q� V cycle. Figure 2 shows the steps of load flow

based on fuzzy logic.

3.3.2 Controller structure

The core construction of the FLC contains three principle

elements

– Fuzzification interface

– Knowledge base decision logic.

– Defuzzification.

3.3.3 Fuzzification interface

The FLC includes the subsequent functions through

iteration.

– Compute the p.u. power parameters at each system

node.

Insert    

Fuzzy Logic Controller

Calculate

To           CycleC

Fuzzy Logic Controller

Cycle

CycleC

Fig. 2 Load flow based on fuzzy logic
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– The variables are chosen as hard input signals. The

extreme power parameter DFpmax
ðorÞDFqmax

� �
regulates

the scope of rule plotting that handovers the input into

an equivalent universe of dissertation at each iteration.

Then, into equivalent fuzzy signals the input signals are

got fuzzified DFpfuz or DFqfuz

� �
with seven linguistic

variables. These are ‘‘small negative (SN), large negative

(LN), zero (ZR), medium negative (MN), medium positive

(MP), small positive (SP) and large positive (LP).’’

3.3.4 Fuzzification

Then, in triangular membership function it is characterized

as shown in Fig. 3, which outlines these functions.

Each three points are designed as

LN : �1; �DFmax; � DFmax=3

h i
;

MN : �DFmax; � DFmax=2 :0
h i

;

SN : �DFmax=3;�DFmax=6; 0
h i

;

ZR : �DFmax=12; 0� DFmax‘=12

h i
;

SP : 0; �DFmax=6; 0;
DFmax=3

h i
;

MP : 0; DFmax=2; DFmax

h i
;

LP : DFmax=3; DFmax; 1
h i

In a similar fashion the outputs signified in membership

function, outlines of those functions are uncovered in

Fig. 3. As a result, all three features of the triangular

membership function DXfuz are considered as shown above.

3.3.5 Knowledge-based decision logic using PSO

In this proposed methodology, a PSO method is estab-

lished to seek out the finest answer of the multi-objective

issue of inserting DG units. PSO is among the

optimization technique and matches to evolutionary cal-

culation methods. The technique is found via a model of

basic social representations. The aspects of the approach

are as trails:

1. On the basis of researches on swarms comparable to

bird flocking and fish schooling, the procedure is

created.

2. Here, the computation time is tiny that entails few

recollections. In line with the research outcomes for

flocking, birds are searching foodstuff by way of

flocking.

An optimization method on the basis of above concept

is labeled as trails: Specifically, definite objective function

is enhanced bird flocking. Every agent to this point rec-

ognizes its finest value (pbest) and its XY function. In

addition, every agent knows the finest value at this point

among pbests in the group (gbest). For individual agent

attempts are made to alter its location utilizing the sub-

sequent data:

– existing locations (x,y),

– existing velocities (vx,vy),

– Distance among the existing spot, pbest and gbest.

This alteration is characterized by the velocity concept.

Each agent velocity is altered by the subsequent expression

[30].

vmþ1
i ¼ wvmi þ c1 a � bi � smi

� �
þ c2 a � d � smi

� �

ð14Þ

In (14), vmi is the agent velocity i at iteration m, the

weighting factors are c1 and c2, the weighting function is w,

ski is the existing location of agent i at iteration m, ‘‘a’’ is

the random number, which is between 0 and 1, d is the

gbest, which is the best of the group and bi is the pbesti,

which is the best of agent i. The above expression in (14) is

used to get a certain velocity. This velocity steadily

becomes close to ‘‘b’’ and ‘‘d.’’ The present point is altered

by (15).

LN MN SN ZR SP MP LP

−ΔFmax
−ΔFmax / 2 −ΔFmax / 6 ΔFmax / 6 ΔFmax / 2

ΔFmax

Fig. 3 Triangular membership

function
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smþ1
i ¼ smi þ vmþ1

i ð15Þ

3.3.6 Defuzzification

Extreme corrective act DYmax of state parameters outlines

the scope of map scale at every iteration, which handovers

the produced signal into the equivalent universe of dis-

sertation. The maximum alteration of values is computed

by,

DFmax1

DYmax

¼ dF1

dY1
ð16Þ

DYmax ¼ dF1

dY1

� ��1

DFmax1 ð17Þ

With maximum power mismatch of the system, F1 is the

power equilibrium equation at node and Y1 is the magnitude

at node 1 or voltage angle. Lastly for each and every node of

the system, the defuzzifier changes output signals DYfuz into
crisp values DY . The state vector is restructured, and the

centroid-of-area defuzzification approach is modified,

Yiþ1 ¼ Yi þ DY ð18Þ

where ‘‘i’’ indicates the number of iterations.

3.4 Location of DG by loss sensitivity analysis

Loss sensitivity analysis [31] is employed to get the

position of DG in the distribution networks, which can

predict the nodes that have a larger reduction of losses.

Hence, these sensitive nodes are the nodes for DG

placement that reduces the search space for the upcoming

optimization action. A line connecting buses k - 1 and k

with impedance Rk þ jXk connected to a load

PLk;eff þ jQLk;eff . If PLk;Eff is the net supply of active power

beyond the bus k, the sensitivity factor [31] is calculated

using (19).

oPLoss;k

oPLk;eff
¼ 2PLk;EffRk

V2
k

ð19Þ

By using (19), loss sensitivity factors are calculated by

load flow and these values are organized in descending

order for any distribution network. By using this sensitivity

factor, the nodes to be considered for DG installation are

noted. The objective functions and the location of DG are

utilized in the optimization, which is explained below.

3.5 ABC algorithm

On ‘‘artificial bee colony (ABC)’’ [32], a three-set the

artificial bees are labeled: engaged bees, onlookers and

scouts. Engaged bee manipulates a food source. With the

onlooker bees, the employed bees share information, which

might be ready in the hive and observing the events of the

employed bees. With probability proportional to the first

rate of food origin, the onlooker bees then pick a food

source. Then, the bad ones in the best food origins appeal

to more bees. Randomly in the neighborhood of the hive,

scout bees hunt for brand new food origins. When a food’s

origin is caught by a scout or onlooker bee, it turns into

engaged. The whole of the engaged bees associated with it

is giving way to give up the place, when a food supply has

been completely subjugated and could emerge as scouts

once more. Hence, the job of ‘‘exploiting’’ is conducted by

the engaged and viewer bees, whereas scout bees conduct

the job of ‘‘exploration.’’ The operations in scout bee are

carried out by means of using a Cuckoo search algorithm

(CS), which facilitate the work of the scout bee segment

extra effective. In the proposed algorithm, the nectar

quantity of a food origin corresponds to the competence of

the related result and a food supply agrees to a possible

resemble to the optimization difficulties. Inside ABC, the

opposite half are viewers and the first half of the colony

comprise engaging bees. The digit of employed bees and

the quantity of food origins (SN) are same in the view that

it is presumed that there will be only one engaged bee for

every food origin. For this cause, the number of results can

also be identical to the number of onlooker bees into

consideration. With a group of randomly produced food

sources, the ABC algorithm initiates. The fundamental

steps of ABC are given below.

– Initialization of sources of food.

– Individual employed bee begins to operate with a

source of food.

– Individual onlooker bees elects a source of food,

affording of the nectar data united by the employer.

– Define scout bees, which find sources of food in an

arbitrary way.

Check whether the termination situation is happening.

Else, go to the second step.

The complete explanation for every phase is specified

below.

Initialization This is starting phase of the ABC algorithm.

The SN primary solutions are arbitrarily produced D-di-

mensional real vectors.

FSi ¼ ðFSi;1; FSi;2; . . .Si;Dg ð20Þ

FSi signify the ith source, that is attained by

FSi;d ¼ FSmin
d þ r � ðFSmax

d � FSmin
d Þ ð21Þ

In (21) r is an arbitrary constant value in the scope 0; 1½ �,
and FSmin

d and FSmax
d are lower and upper bounds for

dimension d correspondingly where d ¼ 1. . .D.
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Employed bee phase In this segment, with a solution every

employed bee is connected. For discovering a novel solu-

tion, she applies an arbitrary alteration on the solution,

which implements the function of hunt in the neighbor-

hood. Using a different expression, the fresh solution is vi
produced from FSi.

Sid ¼ FSid þ r0 � ðFSi;d � FSk;dÞ ð22Þ

where d is arbitrarily designated in {1… D}, k is arbitrarily

designated in {1… SN} such that,k 6¼ 1, and r0 is a constant
arbitrary number in the scope [-1, 1]. As soon as si is

attained, it is assessed and likened. If the fitness of si is

healthier than xi, the bee disremembers the old solution and

memorizes the novel one. Else, keeps functioning on xi.

Onlooker bee phase In this section, when all their local

searches have been finished by employed bees, from their

food source they share with onlookers about the data of

nectar, then in a probabilistic method to each of whom will

then decide on a food origin. The probability Pbi through

which an onlooker bee selects food origin xi will be

obtained by:

Pbi ¼
fi

PSN
i¼1 fi

ð23Þ

where fi gives fitness value of xi. Surely, onlooker bees are

inclined to pick the sources from the food with bigger

nectar quantity. When the onlooker has designated a food

supply xi, the behavior of a local search on xi is done on the

basis of (23). With previous circumstance, if the altered

resolution has a healthier fitness, the fresh solution will

substitute xi.

Scout bee phase Within the scout bee of ABC, if the first-

class of a solution is not enhanced after a fixed digit of

the trials, the food source is thought to be unrestricted,

and the scout equivalent engaged bee is converted.

Arbitrarily, a food’s origin is generated by the scout by

means of utilizing (23). To enhance up the optimum

performance of a Scout bee section, Cuckoo optimization

is utilized here.

3.6 Framework for optimal DG rating by Cuckoo

search optimization technique

The Cuckoo search is an algorithm [33] by utilizing some

species of a bird family known as Cuckoo that is stimulated

on the basis of their exact lifestyles variety and violent

replica process. They lay their eggs in the nests and the

hatching probability of their eggs are raised after putting

off the prevailing eggs. Then again, one of vital host birds

is capable of contesting this parasites conduct of Cuckoos

and building their nests in new places or tossing out the

exposed alien eggs.

The three idealized rules for Cuckoo search are

1. At a time each Cuckoo lays a single egg and dumps the

egg at arbitrarily chosen nest.

2. A fraction of nests comprising the best eggs that are

carried out for the succeeding generation.

3. The quantity of host nests that can be accessible is

constant, and the egg placed via aCuckoo is published via

the host bird with a probability pa e [0, 1]. If this occurs,
the host bird can discard the eggs or abandon the nest, and

fresh nest shall be developed elsewhere. The fraction pa

of ‘‘n’’ nest is substituted by way of fresh nest.

In Cuckoo search optimization, let the distributed gener-

ations beDGi. The value of host nest is defined asDGi (i = 1,

2… N). The host nest represents different DG sizes. The

objective function corresponds to DGi, and the population of

DGs is derived as DGi. The population generation of DGs is

factored from L’evy Flight. The L’evy Flight process exe-

cutes the Cuckoo until the DG population reaches maximum

Fig. 4 33-node RDN
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Table 1 Results of 33-node RDN

Parameters Excluding

DG (normal

load)

Including DG

Type of load

Normal (100%) Medium (75%) Light (50%)

Single

DG unit

Double

DG units

Triple DG

units

Single DG

unit

Double

DG units

Triple

DG

units

Single DG

unit

Double

DG units

Triple

DG units

Real power

loss (kW)

202.52 103.95 85.91 71.16 57.48 47.85 41.25 26.08 21.32 18.96

Reactive

power loss

(kVAr)

135.10 74.71 58.61 48.42 41.29 31.85 27.99 18.91 14.45 13.30

Minimum

voltage

(p.u.)

0.9132 (18) 0.9514

(18)

0.9680

(33)

0.9756

(33)

0.9628

(18)

0.9719

(33)

0.9741

(18)

0.9799

(18)

0.9824

(18)

0.9835

(18)

DG location

(node

number)

– 6 13, 30 13, 25, 30 6 13, 30 13, 25,

30

6 13, 30 13, 25,

30

DG size

(MW)

– 2.58 0.84, 1.14 0.78, 0.84,

1.12

1.85 0.55, 0.75 0.45,

0.65,

0.94

1.54 0.34, 0.55 0.28,

0.49,

0.74

DG type – Type 1

Power factor – Unity

VSI (sensitive

node) by

proposed

method

0.83411

(18)

0.9053

(18)

0.9371

(33)

0.9409

(33)

0.9282

(18)

0.9449

(33)

0.9488

(18)

0.9605

(18)

0.9645

(18)

0.9673

(18)

VSI (sensitive

node) by

[27]

0.6981 (18) 0.8215

(18)

0.8789

(33)

0.8853

(33)

0.8615

(18)

0.8928

(33)

0.9012

(18)

0.9224

(18)

0.9307

(18)

0.9372

(18)

VSI (sensitive

node) by

[28]

0.6867 (18) 0.8080

(18)

0.8645

(33)

0.8707

(33)

0.8474

(18)

0.8782

(33)

0.8868

(18)

0.9083

(18)

0.9165

(18)

0.9229

(18)

Cost of

energy loss

($/kWh)

106,444.512 54,636.12 45,154.296 3,7990.368 30,211.488 25,149.96 21,681 13,707.648 11,205.792 9965.376

Cost of DG

($/h)

– 51.85 39.85 55.05 37.25 20.25 41.05 31.05 18.05 30.45

Fig. 5 Voltage profile of

33-node RDN
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generation. After populating themaximumDGs, the Cuckoo

checks all the DGs to evaluate its quality and fitness Fi. The

selected DGs are capable for network management, and the

remainingDGs are discarded. The fitness function is sharp as

the voltage profile-to-power loss ratio. The fitness function is

inversely proportional to the power loss. The fitness function

Fi can be computed as.

Fi ¼ max
VP

PL

� �
ð24Þ

Fig. 6 VSI of 33-node RDN

Fig. 7 69-node RDN
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where VP is the voltage profile and PL is the power loss.

The L’evy Flight can be computed using the following

equation

DGtþ1 ¼ DGt þ xEt ð25Þ

where DGt represents the size of DG chosen for opti-

mization, x represents how far-off the DG positions in

the grid, Et represents the L’evy distribution. The L’evy

distribution is valued at stages 1\ lB 3, where ‘‘l’’

represents L’evy distribution. After the fitness

computation, a DG is randomly decided and related to

the fitness function. If the randomly chosen DG value is

sophisticated, the chosen DG is kept as the answer else

it is exchanged with the new DG value. For picking out

the superlative place for DG, a fraction Pa is computed.

By that fraction, the paramount DG is positioned in the

grid. The most suitable DG placement is established

based on the voltage profiles and path loss. Utilizing

(26) available in [34], the power loss will also be

computed.

Table 2 Results of 69-node RDN

Parameters Excluding

DG (normal

load)

Including DG

Type of load

Normal (100%) Medium (75%) Light (50%)

Single DG

unit

Double

DG units

Triple DG

units

Single DG

unit

Double

DG units

Triple DG

units

Single DG

unit

Double

DG units

Triple

DG units

Real power

loss (kW)

224.94 83.21 71.70 68.10 47.19 40.85 39.54 25.77 19.45 17.98

Reactive

power

loss

(kVAr)

102.19 40.62 35.81 34.02 23.19 19.99 19.85 12.56 9.69 8.90

Minimum

voltage

(p.u.)

0.9091 (65) 0.9683

(27)

0.9795

(65)

0.9848

(65)

0.9756

(27)

0.9781

(65)

0.9851

(65)

0.9759

(65)

0.9818

(65)

0.9930

(65)

DG

location

(node

number)

– 61 18, 61 18, 61, 63 61 18, 61 18, 61, 63 61 18, 61 18, 61,

63

DG size

(MW)

– 1.87 0.51, 1.80 0.52, 1.45,

0.29

1.43 0.52, 1.15 0.42, 1.05,

0.29

0.53 0.25, 0.65 0.25,

0.85,

0.15

DG type – Type 1

Power

factor

– Unity

VSI

(sensitive

node) by

proposed

method

0.8278 (65) 0.9381

(27)

0.9596

(65)

0.9605

(65)

0.9519

(27)

0.9568

(65)

0.9705

(65)

0.9521

(65)

0.9632

(65)

0.9870

(65)

VSI

(sensitive

node) by

[27]

0.6853 (65) 0.8793

(27)

0.9258

(65)

0.9268

(65)

0.9055

(27)

0.9170

(65)

0.9439

(65)

0.9076

(65)

0.9291

(65)

0.9761

(65)

VSI

(sensitive

node) by

[28]

0.6842 (65) 0.8779

(27)

0.9244

(65)

0.9253

(65)

0.9042

(27)

0.9158

(65)

0.9429

(65)

0.9065

(65)

0.9278

(65)

0.9749

(65)

Cost of

energy

loss ($/

kWh)

118,228.464 43,735.176 37,685.52 36,035.136 24,803.064 21,470.76 20,782.224 13,544.712 10,222.92 9450.288

Cost of DG

($/h)

– 37.65 46.45 45.45 28.85 33.65 35.45 10.85 18.25 25.25
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PL ¼
XN

K¼1

XN

l¼1

aklðPkPl þ QkQlÞ þ bklðQkPl � PkQlÞ½ �

ð26Þ

where akl ¼ rkl
VkVl

cosðdk � dl);bkl ¼ rkl
VkVl

sinðdk � dl) are the

complex voltages at bus i and j.

rkl ? jxkl = Zkl—ij-th element of [Zbus] impedance

matrix.

Pkand Qk—net real and reactive power injection in bus k

Pl and Ql—net real and reactive power injection in bus l

Vk and dk—voltage magnitude and angle at bus k

Vl and dl—voltage magnitude and angle at bus l

N—number of buses

The voltage profile Vp can be defined as in (27)

Vp ¼
Xn

i¼1

ViLiWfi ð27Þ

where Vi represents the voltage magnitude of the bus i, load

at bus i is represented by Li, and the weighting factor of

load bus is Wfi. The weighting factor of load bus is.

Xn

i¼1

Wfi ¼ 1 ð28Þ

On the basis of voltage profile and power loss, the DG is

sized optimally so that the grid network is managed

Fig. 8 Voltage profile of

69-node RDN

Fig. 9 VSI of 69-node RDN
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efficiently. The pseudocode of Cuckoo search for optimal

sizing of DG is shown below.

The above proposed work by utilizing ABC–CS presents

a new deterministic methodology, which determines the

optimal size for DG placement. This technique is easy to be

applied.

Different types of DG have been introduced in [14]. The

cost parameters have been presented in [21].

4 Simulation results and discussions

The proposed technique of the optimal size multi-DG

placement using ABC–CS is applied in the Matlab plat-

form. The technique is verified in the typical 33-node and

69-node RDNs, 85-node and 119-node MDNs.

4.1 33-node RDN

Initially, it is applied to 33-node RDN having 12.66 kV

and 100 MVA as base values. In Fig. 4, the single line

illustration of the system is shown. In [35], the system data

are available having net reactive and real power loads of

2.3 MVAr and 3.7 MW, respectively.

Table 1 shows the detailed outcomes of excluding DG

unit (base case) and including DG unit(s) (single DG unit,

double DG units and triple DG units) in terms of real

power loss, minimum voltage (p.u.), location and size of

each DG unit, most sensitive node and its VSI value,

price of energy loss and price of DG for 33-node RDN

for light load (50%), medium load (75%) and normal load

(100%).

Fig. 10 85-node MDN
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The voltage shape of 33-node RDN excluding and

including placement of DG unit(s) (one DG, two DGs

and three DGs) is shown in Fig. 5 for normal load

(100%).

The plot of VSI vs node of 33-node RDN before and

after placement of DG unit(s) (single DG unit, double DG

units and triple DG units) is shown in Fig. 6 for normal

load (100%) using proposed method and methods available

in [28, 29].

4.2 69-node RDN

Now it is applied to 69-node RDN having 12.66 kV and

100 MVA as base values as shown in Fig. 7. The system

data are available in [35] having net reactive and real

power loads of 2.69 MVAr and 3.80 MW, respectively.

Table 2 shows the results of excluding DG unit (base

case) and including DG unit(s) (single DG unit, double

DG units and triple DG units) in terms of active power

loss, minimum voltage (p.u.), location and size of each

DG unit, most sensitive node and its VSI value, price of

energy loss and price of DG for 69-node RDN for three

different loads light (50%), medium (75%) and normal

(100%).

The voltage profile of 69-node RDN before and after

placement of DG unit(s) (single DG unit, double DG units

and triple DG units) is shown in Fig. 8 for normal load

(100%).

The plot of VSI vs node of 69-node RDN before and

after DG placement (single DG unit, double DG units and

triple DG units) is shown in Fig. 9 for normal load (100%)

using proposed method and methods available in [28, 29].

Table 3 Results of 85-node

MDN
Parameters Without DG With DG

Real power loss (kW) 286.52 91.25

Reactive power loss (kVAr) 180.52 75.45

Minimum voltage (p.u.) 0.87749 (54) 0.9325 (54)

Number of DGs – 3

DG location (node number) – 8, 58, 27

DG size (MW) – 2.2 (8), 1.53 (27), 0.16 (58)

DG type – Type 1

Power factor – 0.88

VSI (sensitive node) (proposed method) 0.80111 (54) 0.92181 (54)

VSI (sensitive node) [28] 0.69112 (54) 0.87481 (54)

VSI (sensitive node) [29] 0.68423 (54) 0.86591 (54)

Cost of energy loss ($/kWh) 150,594.912 47,961

Cost of DG ($/h) – 78.05

Fig. 11 Voltage profile of

85-node MDN
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Fig. 12 VSI of 85-node MDN
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4.3 85-node MDN

In [36], the total system data are given for 85-node MDN as

shown in Fig. 10, which consists of 85 nodes and 10

meshes. The base MVA is 100, and base kV is 11. The total

load of the system is 2.57 ? j2.62 MVA.

Table 3 shows the results for cases, i.e., excluding DG

and including three DG units in terms of active power

loss, minimum voltage (p.u.), location and size of each

DG, most sensitive node and its VSI value, price of

energy loss and price of DG for 85-node MDN for

normal load (100%).

The voltage profile of 85 node MDN before and after place-

ment 3 DG units is shown in Fig. 11 for normal load (100%).

The plot of proposed VSI vs node of 85-node MDN

before and after placement of three DG units is shown in

Fig. 12 for normal load (100%).

Table 4 Results of 119-node MDN

Parameters Without DG With DG

Real power loss (kW) 1029.8 675.87

Reactive power loss (kVAr) 786.6 555.54

Minimum voltage (p.u.) 0.8615 (51) 0.9530 (51)

Number of DGs – 3

DG location (node number) – 21, 51, 80

DG size (MW) – 1.3, 1.21, 1.02

DG type – Type 1

Power factor – 0.89

VSI (sensitive node) 0.7829 (51) 0.9021 (51)

VSI (sensitive node) [28] 0.6478 (51) 0.8614 (51)

VSI (sensitive node) [29] 0.6384 (51) 0.8485 (51)

Cost of energy loss ($/kWh) 541,262.88 355,237.272

Cost of DG ($/h) – 70.85

Fig. 14 Voltage profile of

119-node MDN

Fig. 15 VSI of 119-node MDN
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Table 5 Performance comparison for three DGs placement in 33-node and 69-node RDNs

Methods Bus system Real power loss (kW) Vmin (p.u.) & (node no.) DG size (MW) and (location) Relative CPU time

Proposed method 33 RDN 71.16 0.9756 (33) 0.780 (13),

0.840 (25),

1.12 (30)

1.00

69 RDN 68.10 0.9848 (65) 0.520 (18),

1.45 (61),

0.290 (63)

1.00

[20] 33 RDN 89.90 0.9705 (29) 0.6521 (14),

0.1984 (18),

1.0672 (32)

1.45

69 RDN 75.23 0.9808 (61) 0.2954 (27),

0.4476 (65),

1.3451 (61)

1.78

IA [23] 33 RDN 81.05 0.9715 (18) 0.900 (6),

0.900 (12),

0.720 (31)

1.65

69 RDN 68.82 0.9779 (65) 1.700 (61),

0.510 (17),

0.340 (11)

1.97

[23] 33 RDN 72.79 0.9685 (33) 0.800 (13),

1.090 (24),

1.050 (30)

1.71

69 RDN 70.08 0.9798 (65) 1.81 (61),

0.510 (17),

0.720 (50)

1.99

[25] 33 RDN 72.89 0.9670 (33) 0.790 (13),

1.070 (24),

1.010 (30)

1.39

69 RDN 69.54 0.9771 (65) 0.510 (11),

0.380 (17),

1.670 (61)

1.80

[26] 33 RDN 71.4 0.9686 (33) 0.754 (14),

1.009 (24),

1.072(30)

1.60

69 RDN 71.5 0.9803 (61) 0.537 (17),

1.200 (61),

0.536 (64)

2.09

[26]

[SOS Studied]

33 RDN 77.0 0.9717 (33) 1.069 (6),

0.643 (14),

0.739 (31)

1.64

69 RDN 74.2 0.9776 (27) 1.200 (61),

0.498 (64),

0.833 (66)

2.12

[27] 33 RDN 71.45 0.9686 (33) 1.07142 (30),

1.09944 (24),

0.75398 (14)

1.64

69 RDN 69.42 0.9789 (65) 1.71912 (61),

0.38050 (18),

0.52670 (11)

2.12

The relative CPU time for 69 node RDN is shown in italics
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4.4 119-node MDN

Similarly, the method is also tested on the 119-node MDN.

This system has 15 tie switches and 118 sectionalizing

switches as shown in Fig. 13. The base values are 11 kV

and 100 MVA. The system data are available in [37]

having net load of 22.71 ? j17.01 MVA.

Table 4 shows the results for cases, i.e., excludingDGand

including three DG units in terms of active power loss,

minimum voltage (p.u.), location and size of each DG, most

sensitive node and its VSI value, price of energy loss and

price of DG for 119-node MDN for normal load (100%).

Before and after placement of three DG units the voltage

profile of 119 node MDN is shown in Fig. 14 for normal

load (100%).

Before and after placement of three DG units, the plot of

proposed VSI vs node of 119-node MDN is shown in

Fig. 15 for normal load (100%).

The suggested method is correlated with other existing

techniques [20, 23, 25–27] in terms of loss reduction and

minimum voltage as shown in Table 5 for normal load.

Table 5 shows that the proposed method gives a better

loss reduction as well as better improvement of minimum

voltage than the other methods for 33-node and 69-node

RDNs. The proposed method takes less CPU time com-

pared to the existing methods.

5 Conclusions

The proposed methodology grants the effective analysis

of voltage stability, making use of Fuzzy-PSO, and does

acceptably on distribution systems for simulation pur-

poses. The most optimal size of each DG unit is illus-

trated via ABC–CS. The location and size of each DG

unit are the principal reason in the planning and opera-

tion of energetic RDNs. The suggested implementation

grants a new deterministic way that selects the optimal

positions and rating for placement of each DG unit. The

proposed method proves that it can save massive quan-

tity of power and gain significant growth in voltage

stability. The proposed method has been executed on

33-node and 69-node RDNs [35] as well as on 85-node

[36] and 119-node MDNs [37]. The VSI value of MSN

obtained by the suggested method has also been corre-

lated with that obtained by [28, 29] using the suggested

load flow. After placement of DG unit(s), the VSI values

have been improved due to the reduction of losses. After

placement of three DG units in 33-node as well as

69-node RDNs, the losses obtained for both 33-node and

69-node RDNs have been compared to those obtained by

the methods [20, 23, 25–27]. This suggests that loss

reduction by the suggested procedure is appreciable in

contrast to these methods and voltage profile and simu-

lation time are also better than in these methods.
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