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Abstract In the present study, two three-layer feed-for-

ward artificial neural networks (ANNs) and multiple linear

regression (MLR) models were developed for modeling the

effects of material and process parameters on the powder

particle size characteristics generated during high-energy

ball milling of Al and B4C powders. The investigated

process parameters included aluminum particle size, B4C

size and its content as well as milling time. The median

particle size (D50) and the extent of size distribution (D90–

D10) were considered as target values for modeling. The

developed ANN and MLR models could reasonably predict

the experimentally determined characteristics of powders

during mechanical milling.

Keywords Al–B4C nano-composite powders � Mechanical

milling � Artificial neural networks � Multiple linear

regression

1 Introduction

Aluminum matrix composites (AMCs) reinforced with

ceramic particles have potential for many industrial

applications where weight saving is of primary concern.

These composites offer improved properties such as

increased strength, higher elastic modulus, higher service

temperature and improved wear resistance as compared to

the un-reinforced alloy. Recently, nano-composites have

attracted most attention for their unique properties [1].

High-energy mechanical milling is a solid-state powder

processing technique involving repeated welding, fractur-

ing and re-welding of powder particles in a high-energy

ball mill. Synthesizing of metal matrix nano-composites by

this process has attracted a great interest due to its ability in

distributing nano-sized reinforcement particles within the

matrix alloy without the typical drawbacks of other pro-

cessing methods. The capability of mechanical milling in

synthesizing a variety of metal matrix nano-composites

such as Mg/SiC [2], Cu/Al2O3 [3, 4], Zn/Al2O3 [5], Fe/TiC

[6], Ni/AlN [7] and various aluminum matrix nano-com-

posites [8–11] has been demonstrated.

The mechanical properties of AMCs are largely affected

by the size and distribution of the second-phase particles.

During the milling process, ductile powders undergo

plastic deformation resulting in a gradual change in their

morphology and size. Many parameters such as miller type,

ball-to-powder weight ratio, characteristics of the balls,

milling atmosphere, process control agent and temperature

influence the powder particle size during milling. When

composite powders are subjected to this process, their size

is also affected by the type, volume fraction and size of the

reinforcing particles.

Artificial neural networks (ANNs) as predictive models

have attracted a great interest due to their ability for pattern
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recognition. In data treatment, ANNs are capable for

learning what happens in the process without actually

modeling the physical and chemical laws that govern the

system. These networks have been developed in such a

manner that they can simulate the biological nervous sys-

tems and recognize diverse patterns and produce responses

which are correct or nearly correct from partially incorrect

or incomplete stimuli. The networks consist of a number of

computational units known as neurons, connected to each

other via weight factors. These factors are not constant and

are updated during training stage. The process of weight

factor updating continues until the network converges to

the desired values presented to the network at the start of

training stage. Generally speaking, each neuron produces a

linear combination of the product of each input and its

relevant weigh factor. Then, this linear combination

undergoes a nonlinear mapping, and finally, the resultant

output distributes to the neighboring layer. The success in

obtaining a reliable and robust network depends strongly

on the choice of process variables involved, as well as on

the available set of data and the domain used for training

purposes. ANN models have been developed to model

different correlations and phenomena in steels [12–14],

aluminum alloys [15, 16] and Ni-base superalloys [17, 18]

as well as mechanical alloying [19, 20].

Multiple linear regression (MLR) is another statistical

technique that attempts to model a group of random vari-

ables by creating a mathematical relationship between

them. The model creates a relationship between two or

more explanatory variables and a response variable in the

form of a straight line (linear) that best approximates all the

individual data points. The goal of MLR is to determine

how the descriptive variables influence the response

variable.

In the present study, mechanical milling was used for

preparation of Al–B4C nano-composite powder mixtures

and the effect of the size and content of starting powders

(Al and B4C) as well as the milling time on the size dis-

tribution of the resultant powders was studied by laser

particle size analyzing. These results were utilized in

developing two different statistical methodologies based on

ANN and MLR models. By using the initial size and

content of Al and B4C powders as well as the milling time

as input parameters, these models could predict the median

particle size (D50) and the extent of size distribution (D90–

D10) of the milled powders.

2 Materials and methods

In this study, different amounts (5 and 10 wt%) of B4C

particles with different sizes (90, 700, and 1200 nm) were

mixed with Al 6061 alloy powder particles having two

different average sizes (21 and 71 lm) and milled in an

attrition mill (Union Process, model 1-s). The milling was

performed at 320 rpm with ball-to-powder weight ratio of

20 under argon atmosphere. The size distribution of powders

was quantified by a laser particle size analyzer (Cilas-1064).

Powder samples were designated by AlxCy (Z %) in which

X, Y and Z indicate aluminum particle size (lm), B4C

particle size (nm) and B4C percent (wt%), respectively.

3 Construction of models and processing of data

3.1 Neural networks, architecture and learning

It has been mathematically proven that a three-layer net-

work can map any function to any required accuracy [21].

In the present study, we considered the mechanical milling

process parameters as the input values and the median

particle size (D50) together with the extent of the particle

size data (D90–D10) of the milled powders as the output

values. The networks consisted of 5 input nodes (one for

each input value and one for the bias, where the bias value

was considered to be -1), a number of hidden nodes and an

output node representing D50 or D90–D10. Figure 1 illus-

trates schematically a three-layer neural network and its

various parts. The number of nodes in the hidden layer

depends on the complexity of the problem, and we con-

sidered this number as 2n ? 1, where n is the number of

neurons in the input layer. Therefore, the network archi-

tecture used in this study is 5-11-1 (5 nodes in the input

layer, 11 nodes in the hidden layer and 1 node in the output

layer).

Both the input and output values were first normalized

within the range of 0 and 1 as follows:

xN ¼ x� xmin

xmax � xmin

ð1Þ

where xN is the normalized value of x which has maximum

and minimum values given by xmax and xmin, respectively.

A unipolar sigmoid function was selected as the acti-

vation function in each layer as follows:

f ðyiÞ ¼
1

1þ expð�0:5yiÞ
ð2Þ

where yi is defined as

yi ¼
X

j

wijxj þ hi ð3Þ

where x is the normalized input value, hi is the threshold

for its input neuron and i and j represent the neuron and

input numbers, respectively.

A set of input/output patterns, amounting about 70% of

the available experimental data, was randomly chosen for
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training the networks, and the rest of the data were used to

test the efficiency of the networks. The error backpropa-

gation algorithm was used to train the networks, and

momentum term was used in updating weights to improve

the convergence rate. The training algorithm can be sum-

marized as follows:

Step 1 Selection of the learning constant and momentum

coefficient. In this stage, the learning constantg and momen-

tum coefficient,awere selected to be 0.5 and 0.9, respectively.
Step 2 Initializing the weight factors. In this work, random

numbers between 0 and 1 were taken as the initial values for

the weight factors. Therefore, the value of the hi in Eq. (3)

would be equal to the product of a relevant weight factor and -

1, and this value could be considered as a weight factor.

Step 3 Computation of outputs of all neurons based on

Eqs. (2) and (3), layer by layer.

Step 4 Calculation of root-mean-square error based on

the following equation:

Erms ¼
1

2PK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

p¼1

XK

k¼1
dpk � opk
� �2

r
ð4Þ

where P is the number of input patterns, K is the number of

output neurons (being equal to 1 in this work), dpk is the

desired output value, and opk is the output value produced

by the network.

Step 5 Termination criterion: If Erms reaches a desired

value, which is considered to be 0.2 in this work, the

training algorithm is considered to be terminated.

Step 6 Updating the weights along the negative gradient

of Erms. In this step, initially the weights on the output layer

are calculated, and then, the result is propagated backwards

through the network, layer by layer according to the fol-

lowing equations:

w
ðnÞ
ij ð0Þ ¼ w

ðnÞ
ij ð�1Þ ð5Þ

w
ðnÞ
ij ðt þ 1Þ ¼ w

ðnÞ
ij ðtÞ þ gdðnÞi f ðn�1ÞðyiÞ þ aðwðnÞ

ij ðtÞ

� w
ðnÞ
ij ðt � 1ÞÞ

ð6Þ

where t is the number of weight updates and dðnÞi is the error

gradient of the ith neuron on the nth layer. Equations 7 and

8 are used for the output and hidden layers, respectively;

dðnÞi ¼ ðdi � oiÞ f 0ðyiÞ ð7Þ

dðnÞi ¼ f 0ðyiÞ
Xnþ1

j¼1

wijðnþ1Þ ð8Þ

where f 0ðyiÞ is the first derivative of the function f ðyiÞ.
Step 7 Repeating the procedure mentioned above by

going to step 3.

3.2 Multiple linear regression analysis

When there are an arbitrary number of explanatory vari-

ables, the linear regression model takes the following form:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk ð9Þ

where y represents the response or independent variable and

x1, x2,…xk represent explanatory or dependent variables. b0,
… bk are constants which are estimated by ‘‘fitting’’ the

equation to the data using least-square approach. In the

present study, the median size of powder particles (D50) and

the extent of size distribution (D90–D10) have been taken as

response variables, whereas milling time, B4C content and

B4C size are explanatory variables. Therefore, the relation

between the median size and size distribution of powder

particles with different material and processing variables can

be represented by the following equations:

D50 ¼ b0 þ b1C þ b2S þ bkt ð10Þ

D90 � D10 ¼ b00 þ b01C þ b02S þ b0kt ð11Þ

where C, S and t represent B4C content, B4C size and

milling time values, respectively.

4 Results and discussion

4.1 Particle size evolution in relation with ANNs

analysis

The cumulative size distribution plots for Al71, Al71 C1200

(5%) and Al71 C1200 (10%) powder samples after different

milling times as measured by laser particle size analyzer

Fig. 1 Schematic illustration of

the neural network structure

showing the input nodes, hidden

units and the output node
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Fig. 2 Cumulative size

distribution curves obtained

after different milling times for

a Al 71, b Al71C1200 (5%) and

c Al71C1200 (10%) powder

samples
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are shown in Fig. 2. It can be seen that the increased

milling time from 2 to 4 h resulted in generation of coarser

particles attributable to cold welding and agglomeration of

powders. However, for longer milling times the decreased

size of powders indicates that fragmentation has been the

predominant mechanism.

The variation in the volume percent of different particle

sizes during milling of Al71C1200 (5%) sample is shown in

Fig. 3 and represents two different behaviors for fine and

coarse particles.

It can be seen that during the first 4 h of milling, the

volume percent of coarse particles increases, while for the

finer particles (i.e., d B 15 lm), the adverse trend is

observed. However, for longer milling times a progressive

decrease in the volume percent of coarse particles together

with increased quantity of fine particles occurs. These

results confirm that during the first 4 h of milling, the finer

particles are welded to each other, resulting in diminishing

a portion of particles in the small size bands. At the same

time, flattening of the larger particles together with con-

tribution of cold welded agglomerates entered from smaller

size bands results in increased volume percent of particles

Fig. 3 Variation in the volume percent of different particle sizes

during milling of Al71C1200 (5%) sample

Fig. 4 Variation of a, b the median size (D50) and c, d the extent of the size distribution (D90–D10) of different batches of powder mixtures

containing various contents of the same sized B4C particles with milling time as compared to those of the ANN generated data
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in the larger size bands. However, after 4 h of milling, the

easier fracturing of the larger flattened powders results in

decreased percent of particles in the large size bands.

Consequently, these broken small sized particles contribute

to the increased volume fraction of finer particles.

The results of laser particle size analysis representing

the variation of the median size (D50) and the extent of the

size distribution (D90–D10) of different batches of powder

mixtures with milling time are compared with those of the

ANNs generated data in Fig. 4a–d. These plots exhibit

good agreement between the experimental and ANN

results.

The increased median size and width of size distribu-

tion, during the first 4 h of milling for all the investigated

powder batches, as shown in these plots are attributable to

flattening and cold welding of particles. However, for

longer milling times, the fracture of larger particles as well

as the agglomeration of the smaller ones is the predominant

mechanisms and results in decreased D50 and attainment of

narrower size distributions. Finally, the decreased slopes of

D50 versus milling time after 12 h of milling are

attributable to attainment of equilibrium between fracturing

and welding.

These results were confirmed by scanning electron

microscopy of milled powders in our previous report [22]

and are also in agreement with those reported by Arik [23]

for an Al–Al4C3 system.

As shown in Fig. 5, addition of B4C to Al powders

resulted in decreased size of powder mixtures at least for

the first 8 h of milling. This effect is intensified when a

higher amount of B4C particles is added to Al powders.

Consequently, addition of 10 wt% of B4C particles to Al

resulted in finer powder particles as compared to 5% B4C

addition. In most of the cases, the same trend is observed

for the width of the size distribution. These results are in

agreement with other reports [9] and suggest that the

presence of hard ceramic particles accelerate the milling

process. Therefore, the required milling time for attainment

of the equilibrium condition, i.e., formation of fine

equiaxed particles, is shortened. The results presented in

Fig. 2 confirm that at any identical milling time, the

presence of 10 wt% of B4C particles resulted in reduced

Fig. 5 Variation of a, b the median size (D50) and c, d the extent of the size distribution (D90–D10) of different batches of powder mixtures

containing 5% of different sized B4C particles with milling time as compared to those of the ANN generated data
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size of Al powders. These results can be attributed to the

following facts:

1. The as-received B4C particles are finer than the initial

Al powder particles; therefore, the increased B4C

content in the mixture contributes to decreased size of

the powder mixture during milling.

2. As will be discussed later, a part of fine B4C particles

may be embedded into the Al powders during milling,

resulting in their decreased fracture toughness and

increased fracturing. This effect is intensified for a

higher B4C content in the powder mixture

Figure 5 also shows a reasonably good agreement

between the ANN predictions with the results of LPS

analysis for the median size and the extent of powder size

distribution (D90–D10) of particles during co-milling of 5%

of different sized B4C particles with fine and coarse Al

powders. These plots indicate that when Al powders with

an initial size of 21 lm were co-milled with B4C particles,

the smaller size of added B4C particle resulted in genera-

tion of finer powders at most of the milling intervals.

However, the adverse results were obtained when the

coarser (71 lm) aluminum powder particles were used.

These results are attributed to the embedding of fine B4C

particles in the coarser aluminum powder particles. In fact

the fine B4C particles can penetrate more easily into the

coarser Al powders leading to decreased volume fraction of

free B4C particles within the powder mixture resulting in

increased overall particle size distribution.

As was mentioned before, the ANNs predicted plots

shown in Figs. 4 and 5 reveal a reasonably good agreement

between the experimentally measured and predicted D50

and (D90–D10) values. It can be seen that during mechan-

ical milling, the initial size and content of starting Al and

B4C powders together with several events such as flatten-

ing, cold welding, fracturing and agglomeration of Al

powders together with embedding of nano-sized B4C par-

ticles in Al powders influence the size and size distribution

width of the powder mixtures. However, the effects of all

these parameters can be reasonably predicted by the ANNs

model. The performance of the neural networks is best

judged from Fig. 6, in which large correlation coefficients

([0.95) resulted when all the experimentally obtained data

for D50 and D90–D10 after 4 h of milling were randomly

divided into two series of training and test data and were

plotted against their corresponding ANN predicted values.

Fig. 6 Plots of observed a, b D50 and b, c (D90–D10) versus ANNs predicted data. For a and c a set of experimental data used as training data and

for b and d a set of experimental data used as validation test data are plotted against their corresponding ANNs predicted values
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4.2 MLR analysis

According to the experimental data presented in Figs. 4

and 5, after 4 h of milling, the dependence of D50 and

(D90–D10) to the milling time is almost linear. Therefore,

we used that part of data in the MLR analysis.

The MLR method related the response values (D50 and

(D90–D10)) and process parameters such as milling time (t),

B4C size (S) and B4C content (C) via the following

equations:

D50ð21Þ ¼ 60� 0:3C þ 0:003S�3:76t R2 ¼ 0:93
� �

ð12Þ

D50ð71Þ ¼ 131� 1:1C�0:0152S�6:4t R2 ¼ 0:92
� �

ð13Þ

D90�D10ð21Þ ¼ 86� 0:42C þ 0:0066S�4:49t

R2 ¼ 0:90
� � ð14Þ

D90�D10ð71Þ ¼ 236� 0:0144C�0:04S�11:8t

R2 ¼ 0:91
� � ð15Þ

These equations clearly confirm some experimental

results as follows:

• In all the equations, the negative sign of (t) and

(C) indicates the decreased median particle size and the

extent of size distribution for increased milling time

and/or B4C content.

• For fine Al powders (Al21), the sign of B4C size (S) is

positive, whereas the negative sign for coarse Al

powder particles (Al71) confirms the embedding of B4C

particles in Al71 as was discussed before.

• The larger coefficient of (t) for Al71 as compared to that

of Al21 indicates more pronounced effect of milling

time in decreasing the size of coarser Al powders.

Figure 7a–d is the plots of MLR predicted median par-

ticle (D50) and width of particle size distribution (D90–D10)

versus milling time (t C 4 h). The experimental data

shown in these plots confirm the capability of MLR in

predicting the response values with a reasonable accuracy.

Fig. 7 Variation of a, b the median size (D50) and c, d the extent of the size distribution (D90–D10) of different batches of powder mixtures with

milling time (in excess of 4 h) as compared to those of the MLR generated data
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The validity of MLR was proven by means of plotting

the predicted D50 and (D90–D10) values calculated for

different batches of powder particles against their mea-

sured values as shown in Fig. 8a, b. The values of corre-

lation coefficient (R2) as calculated for these plots

(0.91–0.93) indicate reasonably good predictions. How-

ever, the higher R2 values ([0.95) obtained for ANN pre-

dictions (Fig. 6) indicate the superior capability of ANNs

in predicting the more accurate size characteristics of the

investigated powders

5 Conclusions

Statistical methodologies based on artificial neural net-

works (ANNs) and multiple linear regression (MLR) were

developed and used to predict the median particle size

(D50) and the extent of size distribution (D90–D10) of Al–

B4C nano-composite powders generated during co-milling

of different sized Al powders with various amounts of

different sized B4C particles.

By using the initial Al powder size, B4C size and its

content as well as milling time as input values, the

developed ANNs model was capable of predicting the D50

and (D90–D10) of powders and anticipating the different

influential parameters involved during milling. The good

performance of this model was confirmed by large corre-

lation coefficients ([0.95) achieved by plotting all the

experimentally obtained data for D50 and D90–D10 against

their corresponding ANN predicted values.

The MLR method resulted in four equations that could

predict D50 and (D90–D10) of Al ? B4C powder mixtures

containing coarse or fine Al powders. The input parameters

were milling time (t[ 4 h), B4C size and B4C content. The

signs and values of the coefficients in these equations well

confirmed some experimental observations. However, the

smaller correlation coefficient (0.91–0.93) obtained bymeans

of plotting theMLRpredictedD50 and (D90–D10) against their

measured values as compared to their ANNs counterparts

indicated the superior capability of ANNs in predicting the

more accurate size characteristics of the investigated powders
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