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Abstract The Elman neural network has good dynamic

properties and strong global stability, being most widely used

to deal with nonlinear, dynamic, and complex data. However,

as an optimization of the backpropagation (BP) neural net-

work, theElmanmodel inevitably inherits someof its inherent

deficiencies, influencing the recognition precision and oper-

ating efficiency. Many improvements have been proposed to

resolve these problems, but it has proved difficult to balance

the many relevant features such as storage space, algorithm

efficiency, recognition precision, etc. Also, it is difficult to

obtain a permanent solution from a temporary solution

simultaneously. To address this, a genetic algorithm (GA) can

be introduced into the Elman algorithm to optimize the con-

nection weights and thresholds, which can prevent the neural

network from becoming trapped in localminima and improve

the training speed and success rate. The structure of the hidden

layer can also be optimized using the GA, which can solve the

difficult problem of determining the number of neurons.Most

previous studies on such evolutionary Elman algorithms

optimized the connection weights or network structure

individually,which represents a slight deficiency.Wepropose

herein a novel optimized GA–Elman neural network algo-

rithm where the connection weights are real-encoded, while

the neurons of the hidden layer also adopt real-coding butwith

the addition of binary control genes. In this new algorithm, the

connection weights and the number of hidden neurons are

optimized using hybrid encoding and evolution simultane-

ously, greatly improving the performance of the resulting

novel GA–Elman algorithm. The results of three experiments

show that this new GA–Elman model is superior to the tra-

ditional model in terms of all calculated indexes.

Keywords Elman neural network � Genetic algorithm �
Simultaneous evolution � GA–Elman optimized algorithm

1 Introduction

The recurrent Elman neural network, proposed by J.L.

Elman in 1990, is a typical feedback-type network model,

being an optimization of the backpropagation (BP) neural

network. Elman proposed the addition of a context layer as

a delay operator to the hidden layer of a BP neural network,

achieving a memory function and enabling the model to

adapt to a time-varying system, as well as offering strong

global stability. The Elman model has been widely applied

in many application fields for more than 20 years [1–3],

greatly assisting with the solution of complex problems.

However, the gradually expanding application scope of the

method has revealed the deficiencies of this model. Indeed,

the Elman network seems imperfect in terms of the prop-

erties of the sample and the structure of the neural network.

The Elman model is considered to represent an optimiza-

tion of the BP structure, enjoying its advantages but

inevitably also inheriting some of its inherent deficiencies
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[4], e.g., becoming easily trapped in local minima (which

can cause overfitting of the neural network, and even

training failure), a fixing learning rate (which limits the

convergence speed and requires lots of training time),

difficult determination of the number of hidden neurons

(requiring lots of time by trial and error), etc., which can

influence the operating efficiency and recognition precision

of the Elman model.

All of the above problems have attracted attention from

scholars, and various improved algorithms have been pro-

posed, including use of a fuzzy strategy to adjust the learning

rate [5], use of a normalized risk-aversion error criterion to

avoid local minima [6], optimization of the hidden neurons

using a genetic algorithm [7, 8], etc. These improvements

can improve the performance to some degree, but it has

proved difficult to balance the many relevant features, such

as storage space, algorithm efficiency, and recognition pre-

cision, and some of these improved algorithms have a

‘‘stopgap’’ flavor, as they do not achieve ideal results and still

require further improvement. The genetic algorithm (GA)

[9, 10] has been introduced and used to optimize the Elman

algorithm, being an evolutionary computation method that

does not require problem-specific knowledge and being

superior in terms of robustness and solution of nonlinear,

parallel, and complex problems.

In this approach, the genetic algorithm is used to opti-

mize the connection weights or structure of the Elman

neural network [11, 12]. Such optimization of the con-

nection weights and thresholds can improve the learning

efficiency and avoid trapping in local minima. The number

of hidden neurons can also be optimized, addressing the

issue that the structure of the hidden layer is difficult to

determine and reducing the time required to construct the

network. In recent years, genetic algorithms have been

used to optimize Elman neural networks in many fields,

attracting great attention from many scholars with sub-

stantial progress being made [13–15]. Rohitash proposed

an evolutionary Elman network model for prediction of

chaotic time sequences [16]. Nate used an evolving Elman

neural network to study decision-making [17]. Ding pro-

posed an evolutionary Elman classification algorithm with

improved network performance through use of optimized

weights [18]. However, most past studies of such evolu-

tionary Elman neural network algorithms have optimized

the connection weights or network structure individually,

achieving good results in terms of improved network per-

formance but being slightly deficient overall.

In this study, a novel strategy based on combined opti-

mization of the connection weights and structure of the

Elman neural network is proposed, i.e., based on hybrid

encoding and evolution simultaneously. The connection

weights are real-coded with direct expressions to overcome

the disadvantages of binary code, whereas the number of

neurons in the hidden layer also adopts real-coding but

with the addition of binary control genes. Genetic algo-

rithms and neural networks are important bionic intelligent

computing methods. Here, the GA is applied to optimize

the connection weights and structure of the Elman neural

network simultaneously, leading to a novel optimized GA–

Elman algorithm. To verify its performance, three experi-

ments were carried out: experiment I using a real agricul-

tural pest forecasting dataset, to test the operating

efficiency of the algorithm; experiment II using a wave-

form dataset, to test its overall performance; experiment III

using an iris dataset, to test its generalizability. The data-

sets for experiments II and III are from the University of

California Irvine (UCI) standard set. Comparison of the

results of each experiment confirms the superiority of the

proposed optimized GA–Elman algorithm.

The rest of this paper is organized as follows: In Sect. 2,

a brief introduction to the Elman neural network and the

genetic algorithm is given; Sect. 3 first describes the con-

cept of the proposed GA–Elman algorithm, then the con-

struction of the individual optimization algorithms; Sect. 4

describes the construction of the simultaneous optimization

algorithm, and details the steps of the novel proposed

algorithm; Sect. 5 presents the three experiments used to

test the effectiveness of each algorithm; Sect. 6 discusses

the results and presents the conclusions of this work.

2 Elman model and genetic algorithm

2.1 Elman algorithm

In the recurrent Elman neural network, one type of feed-

back neural network, the context layer based on the hidden

layer of the BP model is added; it can be regarded as a

delay operator and introduces a memory function. It

enables the network to adapt to dynamic, time-varying

characteristics and ensures global stability. As shown in

Fig. 1, the structure of the Elman network model can be

described as follows:

The topological structure of the Elman network model

usually contains four layers: An input layer, whose neurons

are generally linear, passes the signal to the hidden layer,

where the signal is translated or dilated via an activation

function. Next is the context layer, which can remember the

previousmoment values of the hidden layer’s output; it can be

regarded as a one-step delay operator and thus provides a

feedback function. Finally, the output layer outputs the results.

The Elman network is based on the structure of the BP

network model, but the delay and storage function of the

context layer join the output of the hidden layer automat-

ically to its input. How this joining occurs is sensitive to

the historical data of the neural network itself, so this

450 Neural Comput & Applic (2019) 31:449–459

123



internal feedback mechanism can improve the ability of the

network to deal with dynamic information. Based on such

mapping of the dynamics to a stored internal state, the

system has the ability to adapt to time-varying

characteristics.

Supposing that the system has n inputs and m outputs,

the hidden layer has r neurons, the same number as in the

context layer. The connection weight from the input to

hidden layer is denoted as w1, that from the context to

hidden layer is denoted as w2, and that from the hidden to

output layer is denoted as w3. The input of the network

system is xðk � 1Þ, the output of the hidden layer is

expressed as uðkÞ, ucðkÞ represents the output of the context
layer, and yðkÞ represents the output of the network system.

Therefore,

uðkÞ ¼ f ðw2ucðkÞ þ w1ðxðk � 1ÞÞÞ; ð1Þ

where

ucðkÞ ¼ uðk � 1Þ; ð2Þ

f represents the transfer function of the hidden layer,

commonly an S-type function,

f ðxÞ ¼ 1þ e�xð Þ�1; ð3Þ

and g represents the transfer function of the output layer,

often a linear function,

yðkÞ ¼ gðw3uðkÞÞ: ð4Þ

In the Elman neural network, the weights of the BP

algorithm are revised so that the network errors are as

follows:

E ¼
Xm

k¼1

ðtk � ykÞ2; ð5Þ

where tk is the target output vector.

2.2 Genetic algorithm

The GA is a search algorithm, with highly parallel, ran-

domized, and self-adaptive character, developed by refer-

ence to natural selection and the mechanism of evolution. It

uses group search techniques based on a population that

represents a set of problem solutions. A series of genetic

manipulations, such as selection, crossover, mutation, etc.,

are applied to the current population, thus generating a

next-generation population and gradually evolving the

population to a state that includes the approximate optimal

solution. The genetic algorithm starts from a population

which may include the problem’s potential solution. The

population is made up of a certain number of individuals

expressed using gene encoding, where each individual is a

chromosome representing a single entity.

The process of the genetic algorithm is depicted in

Fig. 2, where Gen is the genetic operator, Pc is the selec-

tion probability, Pe is the crossover probability, and Pm is

the mutation rate.

The basic steps of the genetic algorithm are as follows:

Step 1 Create an initial population as a random string

Step 2 Calculate the fitness of each individual

Step 3 Using genetic probabilities, use the duplication,

exchange, and mutation operations to generate a new

population

Step 4 Repeat steps 2 and 3, until given termination

conditions are satisfied, and select the best individuals from

the genetic algorithm population

This is an iterative process. In each iteration, a set of

candidate solutions are retained, then sorted according to

their merit. Some solutions are then selected based on

Fig. 1 Topological structure of Elman network model

Fig. 2 Flowchart of genetic algorithm
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certain indicators. The genetic operators are used to carry

out operations, then a new generation of candidate solu-

tions is generated. This process is iterated until given

convergence indexes are met.

3 GA–Elman optimized algorithm

Genetic algorithms can be applied to search nondifferen-

tiable, multimode, and large problem spaces, not requiring

information on the gradient of the error function, which is a

unique advantage if such information is difficult to obtain.

When the GA is used to optimize the connection weights of

the neural network, one should insert a penalty term into

the error function, which does not depend on whether it is

differentiable. This can reduce the complexity of the neural

network and improve its generalizability, having great

potential for optimization of the connection weights of the

Elman neural network. In terms of optimizing the network

structure, the GA can explore different optimized topolo-

gies, addressing the problem of the difficult determination

of the number of hidden neurons.

3.1 Construction of the GA–Elman algorithm

The Elman neural network algorithm optimized using the

GA is denoted as the GA–Elman algorithm. The main

problem in constructing such a genetically optimized

algorithm is to determine the encoding method and design

the genetic operators. Different optimization problems

require different encoding schemes and genetic operators

based on understanding of the considered problem, all of

them being key to successful application of the genetic

algorithm. The main steps of the GA–Elman algorithm are

chromosome encoding, fitness function definition, and

genetic operator construction. The corresponding

flowchart is shown in Fig. 3.

The significance of this optimized GA–Elman algorithm

is that, because of its optimized connection weights and

thresholds, the network can offer improved training con-

vergence, reduced runtime, and improved operating effi-

ciency, while use of the optimized number of hidden

neurons determines the optimal structure of the network

model and reduces the time required for trials to construct

the network architecture. For the Elman neural network,

the hidden layer is determined, and the context is also

determined. Such use of the GA to optimize the Elman

neural network can be viewed as resulting in a self-adap-

tive system with automatically adjusted connection weights

and structure, without the requirement for human inter-

vention. Finally, the new algorithm also realizes organic

integration.

In this study, the connection weights and structure

(number of hidden neurons) are first optimized sepa-

rately using two kinds of individual optimization algo-

rithm; then, on the basis of these individual optimization

algorithms, the novel optimized GA–Elman algorithm is

established, in which the connection weights and

structure are optimized simultaneously. The optimiza-

tion approach of this novel GA–Elman algorithm

therefore adopts hybrid encoding and evolution

simultaneously.

3.2 Individual optimization of connection weights

using genetic algorithm

In the traditional Elman network model, learning of con-

nection weights is commonly based on the gradient descent

method, which can easily fall into local minima, thus

leading to training failure or overfitting. Using the genetic

algorithm to optimize the connection weights is an adaptive

global training method; namely, the genetic algorithm

replaces the traditional learning algorithm to overcome this

deficiency.

Fig. 3 Flowchart of GA–Elman

algorithm
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3.2.1 Basic steps

In this section, GA is only used to optimize the connection

weights of the Elman neural network, using the following

basic steps:

Step 1 Randomly generate an initial population PðtÞ, the
upper limit of individual is Ps, in which each individual

corresponds to a weight distribution, using a real-coded

scheme to encode each weight and threshold, and construct

strips of encoded chain;

Step 2 Use appropriate decoding methods to decode the

encoding of step 1, where each encoded chain corresponds

to an Elman neural network with specific connection

weights and thresholds;

Step 3 Use the training data to train the population of

Elman neural networks obtained in step 2, and calculate

the error function to determine the fitness of each indi-

vidual (the bigger the error, the lower the fitness);

Step 4 Select some individuals with the highest fitness

values to retain in the next generation directly;

Step 5 Use crossover operations, according to the roul-

ette method, to select two individuals from PðtÞ to cross,

obtaining two new individuals to add to the next generation

P0ðtÞ, CrossoverðPðtÞÞ ¼ P0ðtÞ, according to the crossover

probability Pc;

Step 6 Carry out the mutation operation,

MutateðP0ðtÞÞ ¼ P00ðtÞ, according to the mutation proba-

bility Pm, and change the value at a random location (insert

a random number);

Step 7 Calculate the fitness of each individual in the

population P00ðtÞ according to the error function;

Step 8 Set t ¼ t þ 1. If t[Ps, go onto step 9; otherwise

return to step 4;

Step 9 Set G ¼ Gþ 1. If G ¼ Gmax, the algorithm ter-

minates; otherwise return to step 3.

3.2.2 Set parameters

The main aspects of the optimization algorithm are as

follows:

3.2.2.1 Encoding scheme In the GA–Elman design pro-

cess, the greatest challenge is how to design a proper

encoding scheme for effective presentation of the network

connection weights. We assume herein an Elman neural

network with n inputs, m outputs, and r hidden neurons. The

connection weights are encoded by real-coding, with each

value represented by a real number; this has the advantage of

perceptual intuition and overcomes the disadvantages of

binary encoding. This encoding scheme, for the conditions of

the given network structure, has encoding length of

L ¼ n� r þ r � mþ r þ m ¼ r � ðnþ mþ 1Þ þ m: ð6Þ

3.2.2.2 Definition of the fitness function The GA is used

to optimize the connection weights of the Elman network

model; once its structure has been determined, generally

speaking, the greater the error, the lower its fitness. In this

paper, the training error is adopted to determine the chro-

mosome fitness, i.e., corresponding to each neural network.

The fitness function is defined as

F ¼ C � e; ð7Þ

where C is a constant and e is the network training error.

Generally, for each individual, the greater the error, the

lower its fitness.

3.2.2.3 Genetic operators Three different kinds of

genetic operator, viz. selection, crossover, and mutation,

were set as follows:

When applying the selection operator based on the

‘‘roulette’’ selection method, each individual enters the

next generation with probability equal to its fitness divided

by the fitness of the entire population. Therefore, the higher

the fitness value, the greater the probability that an indi-

vidual will go into the next generation. This maintains the

diversity of the population while applying the condition of

‘‘survival of the fittest.’’

The crossover operator applies the single-point cross-

over method, according to which part of the parental genes

are exchanged or restructured according to a given

probability.

For the mutation operator, real-encoded Gaussian

mutation is adopted.

The results of the genetic algorithm and Elman algo-

rithm are highly sensitive to the parameters used during the

training process. The result depends on the initial status of

the network model. The Elman algorithm is very effective

for local search, and the genetic algorithm for global

search. Thus, the connection weights evolve as follows:

(1) The genetic algorithm is used to optimize the dis-

tribution of initial connection weights, identifying an

appropriate search space within the entire solution space.

(2) In this small solution space, the Elman algorithm is

used to search for a relatively optimal solution, then

iterated.

Generally, the operating efficiency of such a mixed

training method will be better than when using either the

genetic algorithm or Elman training method alone.

3.3 Individual optimization of the structure using

genetic algorithm

A simple neural network structure for a given problem has

few connections and neurons, limiting its processing ability

and making it unsuitable for processing of complex non-

linear data. However, inclusion of too many connections
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and neurons will result in noise during training, limiting the

generalizability of the network. In previous engineering

applications, a trial-and-error method was generally

applied to design the neural network structure, relying too

heavily on subjective experience and requiring a lot of

time. Many other methods can be applied, including the

add-structure method, cut-structure method, etc., but they

still cannot improve significantly beyond the ‘‘blind

climbing’’ approach.

The topological structure of the Elman neural network

includes connection routes and node transition functions.

Use of a good topology can solve a problem successfully

without redundant nodes and connections. The structure of

the neural network is designed for each search problem,

and the ability for generalization and recognition precision

are evaluated based on given criteria to identify the best

Elman neural network structure from the architecture

space. The structure of the evolutionary Elman neural

network mainly depends on the structural encoding and

operator design, as the encoding scheme directly affects the

operator design. In this case, the structure of the Elman

neural network mainly depends on the number of neurons

in the hidden layer.

3.3.1 Basic steps

The basic steps of the GA used to optimize the structure of

the Elman neural network are as follows:

Step 1 Randomly generate N structures, each encoded

by real-coding, and add a binary control gene;

Step 2 Use different initial weights to train the N

individuals;

Step 3 According to the training results and evolution

strategy, determine the fitness of each individual;

Step 4 Select some individuals with the highest fitness

values and directly retain them for the next generation;

Step 5 Apply the crossover and mutation operators on

the current population, to generate the next population;

Step 6 Repeat steps 2–5 until an individual of the cur-

rent population meets the requirements.

The main difficulty with this algorithm is the encoding

of the structure. In practical applications, the number of

neurons in the input and output layers is given. Therefore,

determining the number of neurons in the hidden layer has

become the focus of study. Herein, it is supposed that the

Elman network model has one hidden layer, and that the

number of input and output neurons is known.

3.3.2 Set parameters

The main issues involved in this optimization algorithm are

as follows:

3.3.2.1 Encoding scheme Based on the complexity of the

problem, the original binary coding is obviously not suit-

able. Herein, real-coding is adopted, and a binary control

gene is added to the hidden neurons, generated using a

random function. When the value of this control gene is 0,

the corresponding neuron of the hidden layer has no effect

on the output layer; however, when the value of the control

gene is 1, the neuron does have an effect. This encoding

approach must determine a maximum number r of hidden

neurons. Supposing that the Elman network model has one

hidden layer, n inputs, and m outputs, its encoding length is

L ¼ r þ r � mþ n� r þ r þ m ¼ r � ðnþ mþ 2Þ þ m:

ð8Þ

In the Elman network model, the context layer corre-

sponds to the hidden layer, so its encoding scheme is the

same as for the hidden layer.

3.3.2.2 Genetic operators When applying the mutation

operator, the real-codedvalueundergoes ‘‘Gaussian’’mutation,

where the binary coding is subject to bit-flipping mutation.

The remaining parameters are set as in Sect. 3.2.

4 Novel GA–Elman algorithm

On the basis of the considerations described above, we

attempted to optimize the connection weights and structure

simultaneously to construct a novel GA–Elman algorithm.

The connection weights of the Elman neural network were

evolved on the premise that its structure had been deter-

mined. During the optimization algorithm, the design of the

structure is critical. A neural network with a good structure

can effectively solve the given problem. Herein, an auto-

matic design optimization approach is proposed, based on

the idea that, when the structure is completely optimized,

the connection weights will also be optimized; namely, the

connection weights and structure are optimized simulta-

neously. This represents the core of the new algorithm.

The proposed evolutionary optimization training process

is essentially a hybrid simultaneous training process, whose

effect is superior to either the genetic algorithm or Elman

training alone. The decision regarding when to switch

between the two algorithms is just like designing the

topological structure of a network model, depending on the

given dataset and parameter values.

4.1 Basic steps of optimized algorithm

In this section, the GA is used to optimize the structure and

connection weights simultaneously, using the following

basic steps:
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Step 1 Encode the structure and connection weights as

described above to construct different encoded chains;

Step 2 Decode the encoded chains from step 1 to obtain

N different neural networks;

Step 3 Predefine the learning parameters based on the

given training samples;

Step 4 Determine whether there is a neural network that

meets the precision requirements. If so, go to step 10;

otherwise, go to step 5;

Step 5 Calculate the fitness of each individual according

to the error function and training results;

Step 6 Sort the individuals according to their fitness

value, and select some individuals with the highest fitness

values to retain for the next generation directly;

Step 7 Apply the crossover and mutation operators

described above to the current population to add to the next

generation;

Step 8 Determine whether the size of the population has

reached the upper limit. If yes, go to step 9; otherwise go to

step 5;

Step 9 Determine whether the number of iterations of

the genetic algorithm has reached the preset limit. If yes,

go to step 10; otherwise, go to step 4;

Step 10 Identify the optimal initial Elman neural net-

work and use the preset parameters to continue training;

Step 11 If the precision meets the requirement in terms of

the error function, or the number of iterations of the Elman

algorithmhas reached thepreset limit, the algorithm terminates.

The significance of the proposed algorithm is the opti-

mization of the connection weights and thresholds to

improve the convergence performance, such as training

speed, and thus decrease the training time and thereby

improve the operating efficiency of the neural network.

This enables the design of an optimal structure with the

optimal number of neurons in the hidden layer, thereby

improving its problem-solving ability.

4.2 Set parameters

The proposed algorithm is based on the assumption of a

single hidden layer, with given number of input and output

neurons. Therefore, the evolution of the neural network

structure reduces to optimization of the number of neurons.

The encoding problem and genetic operators were

addressed in Sects. 3.2 and 3.3.

5 Experiments

5.1 Experimental design

To verify the performance of the proposed algorithm, three

experiments were carried out and their results compared.

Experiment I tested the efficiency of the optimized network

model using pest forecasting data from actual agricultural

production [19]. Experiment II tested the overall perfor-

mance of each algorithm using data from the waveform

generator of the UCI standard dataset [20]. Experiment III

tested the generalizability of the optimized algorithm using

data from the iris dataset of the UCI standard dataset [21].

5.1.1 Algorithm notations

1. The traditional Elman neural network is denoted as

‘‘Elman’’;

2. The algorithm using the GA only to optimize the

connection weights is denoted as ‘‘GA–Elman W’’;

3. The algorithm using the GA only to optimize the

structure is denoted as ‘‘GA–Elman S’’;

4. The algorithm using the GA to optimize the connection

weights and structure simultaneously is denoted as

‘‘GA–Elman W ? S’’.

5.1.2 Data preprocessing

Preprocessing to normalize or standardize the original data

can eliminate incomparability due to different data index

distributions or numerical differences in the source, which

can ensure the quality of the data used. Standardized pre-

processing was applied here to obtain data with distribution

Nð0; 1Þ, using the formula

x0ij ¼ xij � xj
� �

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xij � xj
� �2

s
: ð9Þ

5.1.3 Parameter setting

The evolutionary algorithms used real coding. The chro-

mosome’s length indicates the total number of network

models. The parameters were set as follows:

Population size S = 30; Crossover probability Pc = 0.9;

Mutation rate Pm = 0.01;

Genetic algorithm iterations: 500 generations; Target

error: mean square error (MSE) of 1 9 10-5; Elman iter-

ations: 2000;

Elman learning algorithm: traingdx (gradient-descent

learning algorithm for adaptive learning rate);

Use elitism strategy (four fittest individuals passed to

next generation directly);

Apply linear scaling (first the original fitness is linearly

scaled, then the selection operation is applied);

The environment used to run the experiments was

equipped with a Duo 2.60-GHz E7300 CPU with 1.99 GB

of RAM.
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5.1.4 Evaluation criteria

For experiments II and III, the algorithm was evaluated

based on the following five aspects: successful training

rate, runtime, sum of squared errors (SSE), convergence

steps, and recognition accuracy. The successful training

rate is the fraction of successful trainings among a certain

number of attempts (50 in this case). The number of con-

vergence steps is the number of steps required for con-

vergence, averaged over 50 training runs. The runtime is

the average runtime of each algorithm. The SSE is the

difference of the sum of squared error between the recog-

nized and actual value, which can be used to measure the

closeness of the forecast and actual value. The recognition

accuracy is the number ratio of correctly recognized sam-

ples to all testing samples. For given recognition accuracy,

smaller sum of squared errors corresponds to higher

recognition precision.

5.2 Experiment I

The primary purpose of this experiment is to test the

operating efficiency of each algorithm and thereby reveal

the effect of optimization. The dataset was used to train the

four algorithms described above, eight times each.

The data for this experiment came from actual agri-

culture production, representing agricultural pest fore-

casting data for wheat midge occurrence based on

meteorological factors. These data extend from 1941 to

2000, representing a 60-year sample, with 14 meteoro-

logical factors as variables. Therefore, in this experiment,

the Elman neural network has 14 inputs, representing the

14 features, and 1 output, representing the wheat midge

occurrence degree.

5.2.1 Experimental test

For the traditional Elman and GA–Elman W algorithms,

the number of hidden neurons was set by trial and error,

requiring 2 to 9 attempts with a total of 8. The GA–El-

man S algorithm sets an upper limit (supposed to be 15).

The GA–Elman W ? S algorithm also sets an upper limit,

and optimizing the structure optimizes the connection

weights simultaneously.

Each algorithm was tested eight times. The results for

the four algorithms are presented in Table 1.

5.2.2 Experimental results

According to the results in this table, the traditional Elman

algorithm was successful in only one of eight experiments,

suggesting that this dataset is not very suitable for direct

processing using the traditional Elman algorithm. Its fatal

weakness is being easily trapped in local minima. Use of

the GA with 500 generations was sufficient to take the GA–

Elman W algorithm out of local minima, increasing the

number of training successes. If the number of hidden

neurons is increased, the length of the genetic algorithm

encoding also increases, and the complexity of the genetic

algorithm rises, so a reasonable number of hidden neurons

in this test is six or seven.

The GA–Elman S algorithm obtained the optimal

number of neurons. In the subsequent learning of the

connection weights, the number of iterations required was

relatively larger, and the algorithm was still easily trapped

in local minima. Meanwhile, the GA–Elman W ? S

algorithm, after the GA optimization, soon converged to

the target error. These two optimized algorithms suggest

that the optimal number is five, six or seven, similar to the

number of classical trial-and-error attempts.

Table 1 Results of experiment I

Test

no.

Elman GA–Elman W GA–Elman S GA–Elman W ? S

Hidden

neurons

Convergence

steps

Hidden

neurons

Convergence

steps

Hidden

neurons

Convergence

steps

Hidden

neurons

Convergence

steps

1 2 Failed 2 Failed 5 1138 7 351

2 3 Failed 3 Failed 7 893 6 530

3 4 Failed 4 572 5 862 6 377

4 5 Failed 5 Failed 6 726 5 237

5 6 1762 6 330 8 Failed 3 1915

6 7 Failed 7 355 2 Failed 2 Failed

7 8 Failed 8 252 5 798 8 269

8 9 Failed 9 237 5 949 5 347
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According to the results of this experiment, the greatest

advantage of the GA–Elman W ? S optimized algorithm

is that it is adaptive to determine the optimal model.

5.3 Experiment II

The major aim of this experiment is to test the overall

performance and recognition ability of each algorithm. The

experiment was divided into two steps. The first step tested

the overall effect, whereas the second step evaluated each

algorithm based on the recognition precision for a single

sample. The data adopted for this experiment were from

the UCI standard dataset; we chose the waveform generator

dataset with 5000 samples and 40 features to describe the

data characteristic, namely data with 40 inputs and 1

output.

5.3.1 Overall performance of algorithms

In this experiment, the first 500 samples were selected as

training samples, then 100 samples were selected as sim-

ulation samples. The four algorithms were tested, and the

simulation results are presented in Table 2.

5.3.2 Recognition precision of algorithms

To further illustrate the recognition ability of each

algorithm, five samples were selected and the test and

actual values compared; the results are presented in

Table 3.

5.3.3 Experimental results

Tables 2 and 3 show that, based on all six evaluation cri-

teria, the GA–Elman W ? S algorithm was superior to the

other three algorithms. The traditional Elman algorithm

was worst except in terms of runtime. Compared with the

GA–Elman S, the GA–Elman W algorithm was slightly

better.

5.4 Experiment III

The main aim of this experiment was to test the general-

izability of each algorithm. The experimental data used

were the iris dataset from the UCI standard dataset. This

dataset has 150 samples with 4 features and 3 categories.

5.4.1 Experimental method

To test generalizability, the experiment data were divided

randomly into training and testing sample in ratio of 4:1.

The dataset was redivided randomly for each training

attempt, and we recorded the number of iterations, recog-

nition precision, runtime, etc. Each algorithm was run 20

times, and the average value of each index was calculated.

The results for each algorithm are presented in Table 4. For

the genetic algorithm training alone, the number of itera-

tions was 3000.

5.4.2 Experimental results

Table 4 shows that, in the case of no trapping in local

minima, the convergence speed of the Elman network

Table 2 Comparison of performance of four algorithms

Network model Training success rate (%) Convergence steps Runtime (s) SSE Recognition accuracy (%)

Elman 80.0 1163 8.3 17.6860 78.0

GA–Elman W 94.0 500 ? 132 11.7 6.9317 93.0

GA–Elman S 84.0 500 ? 379 13.6 11.2566 90.0

GA–Elman W ? S 100 500 ? 86 6.7 2.2034 99.0

Table 3 Comparison of each

classifier’s accuracy
Neural network model Simulated and actual value SSE

1 0 1 2 0

Elman 1.2773 0.2576 1.8169 2.2617 0.4368 1.0699

GA–Elman W 0.7233 0.2883 1.3007 2.3178 -0.2649 0.4213

GA–Elman S 0.8437 -0.2571 0.7864 1.8162 0.7677 0.7593

GA–Elman W ? S 0.8187 0.1436 1.1027 1.9344 -0.2002 0.1084
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model is faster. Compared with the genetic algorithm and

other optimization algorithms, although not easily trapped

in local minima, several optimization algorithms are better

than the simple genetic algorithm in terms of both oper-

ating efficiency and recognition accuracy. Compared with

the algorithm in Ref. [18], in terms of recognition accuracy

and runtime, the GA–Elman W ? S algorithm was better.

All of these results suggest that the GA–Elman W ? S

algorithm exhibited greatly improved generalizability.

Note that it is meaningless to compare the number of

iterations of the genetic algorithm with the Elman neural

network, because they are not based on the same concept,

so runtime is listed instead.

5.5 Experiment analysis

The results of experiment I show that, if the Elman neural

network does not become trapped in local minima, its

convergence speed is very fast, but it is easily trapped,

resulting in training failure. The Elman neural network

inherits this deficiency from the BP algorithm, for which

trapping in local minima during training can lead to lots of

wasted time. The GA was then used to optimize the con-

nection weights in the GA–Elman W and GA–El-

man W ? S algorithms, enabling them to escape from

trapping in local minima, improving both the operating

efficiency and generalizability. Using the genetic algorithm

to optimize the structure, the GA–Elman S and GA–El-

man W ? S algorithms can determine the number of

neurons adaptively, reducing the time required compared

with the trial-and-error method, and also improving their

operating efficiency and generalizability.

The results of experiment II show that, by using the GA

to optimize the connection weights of the Elman network

model, its operating efficiency and recognition precision

can be significantly improved. By optimizing the weights,

the neural network is no longer easily trapped in local

minima, and its training efficiency and success rate are

improved. By optimizing the structure, the number of

hidden neurons can be determined adaptively. All of these

effects improve the operating efficiency and generaliz-

ability, and the recognition precision is also improved

sharply.

The results of experiment III further show that, in terms

of operating efficiency and generalizability, the GA–El-

man W ? S algorithm is best. Experiments I and III show

that the Elman neural network is not suitable for some

datasets. Although optimization algorithms can improve its

generalizability, it is not effective for all datasets.

6 Conclusions

Aiming to address various defects of the Elman neural

network, the GA was introduced in this work and a novel

optimization approach designed based on combined opti-

mization of the hidden neurons and connection weights,

with hybrid encoding and evolution simultaneously. The

genetic algorithm’s global search and Elman neural net-

work’s local search abilities resulted in more precise

adjustment of the hidden neurons and connection weights,

resulting in an optimal Elman neural network algorithm.

The results of three experiments show that this simulta-

neously optimized Elman neural network algorithm per-

formed best in terms of all calculated performance indexes.

Note that, in experiments II and III, one cannot simply

compare the convergence steps of the Elman versus other

optimization algorithms, as their iterations are not based on

a common concept. The cost of each genetic algorithm

iteration is different from the Elman neural network, so

runtime is listed instead.

Although the optimization using the genetic algorithm

will consume a certain amount of time during Elman neural

network training, the convergence is accelerated and the

training success rate and generalizability improved. This

can reduce the time required for repeated training attempts

based on the trial-and-error method, improving the oper-

ating efficiency and recognition precision. According to the

characteristics of the considered problem, we plan to

investigate use of other intelligent computation methods

Table 4 Comparison of results of algorithms

Network model Convergence steps Recognition accuracy (%) Runtime (s) Successful training

Elman 1757 88.83 9.3 14

Genetic algorithm 1869 90.17 16.7 17

GA–Elman W 500 ? 865 94.33 12.5 18

GA–Elman S 500 ? 1176 91.50 13.3 17

Reference [18] algorithm 500 ? 672 96.17 11.2 20

GA–Elman W ? S 500 ? 429 98.67 8.7 20
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[22, 23] to optimize the neural network, to obtain even

more superior models. We also expect the proposed algo-

rithm to be applicable in other fields, such as target

recognition [24], medical imaging [25], sliding control

[26, 27], etc. These topics will be the focus of our further

study.
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