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Abstract In welding processes, the selection of optimal

process parameter settings is very important to achieve best

weld qualities. In this work, neuro-multi-objective evolu-

tionary algorithms (EAs) are proposed to optimize the

process parameters in friction stir welding process. Artifi-

cial neural network (ANN) models are developed for the

simulation of the correlation between process parameters

and mechanical properties of the weld using back-propa-

gation algorithm. The weld qualities of the weld joint, such

as ultimate tensile strength, yield stress, elongation, bend-

ing angle and hardness of the nugget zone, are considered.

In order to optimize those quality characteristics, two

multi-objective EAs that are non-dominated sorting genetic

algorithm II and differential evolution for multi-objective

are coupled with the developed ANN models. In the end,

multi-criteria decision-making method which is technique

for order preference by similarity to the ideal solution is

applied on the Pareto front to extract the best solutions.

Comparisons are conducted between results obtained from

the proposed techniques, and confirmation experiments are

performed to verify the simulated results.

Keywords Friction stir welding � Artificial neural
network � NSGA-II � DEMO � TOPSIS

1 Introduction

Weld quality plays a major role in evaluating product

performance in manufacturing environments. The quality

of welded materials can be evaluated by means of many

characteristics such as ultimate tensile strength (UTS),

yield stress (YS), % elongation (% Elng) and hardness.

FSW is a great solid-state joining process that was intro-

duced in 1991 by [1]. FSW is usually applied for welding

aluminum, magnesium and other soft metals. The basic

concept of FSW is simple. A rotating tool composed of a

shoulder and a pin in the end is inserted into workpiece and

moved along the weld line [2]. While traveling along the

workpiece, the tool deforms the joint material plastically

and mixes it to perform a strong weld joint [3]. Welding

characteristics are controlled by a number of process

parameters such as plunging depth, tool rotation speed, tool

geometry, shoulder diameter, pin diameter, tool pin length,

dwell time and welding speed. The advantage of FSW over

the other fusion welding processes is that the welding

process does not involve material melting, which produces

less weld cracks and defects. Moreover, it does not need

shielding gas, electrodes or filling material and outputs less

distortion in the welded joints [2, 3].

In FSW process, the optimal parameter settings are

difficult to determine due to the large number of process

parameters, and the relationships among them are nonlin-

ear, highly complex and interdependent. Due to the facts

that existing mathematical models suffer from inefficiency

in describing the nonlinear characteristics of FSW process,

the intelligent systems like ANNs come into picture. ANNs

are powerful tools to correlate properties existing between

the input and output parameters of FSW process when

compared with other techniques of modeling like regres-

sion analysis, analytical and numerical techniques. For
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modeling of weld quality, different types of ANNs can be

used, namely back-propagation neural network (BPNN)

and radial basis functions (RBFs). Boldsaikhan et al. [4]

used back-propagation algorithm to train ANN model to

classify the feedback forces frequency patterns in FSW

process to use them for wormhole defects detection. Lak-

shminarayanan and Balasubramanian [5] compared ANN

modeling with response surface methodology for predic-

tion of ultimate tensile strength for FSW of Al alloy with

the conclusion of ANN being better. Buffa et al. [6]

developed ANN model using back-propagation training

algorithm and combined it with a finite element model

(FEM) for FSW of Ti–6Al–4 V alloy. The model was to

estimate microhardness and microstructure of the weld.

Okuyucu et al. [7] used ANN model to predict the

mechanical properties of FS welded Al plates. Fratini et al.

[8] used ANN and FEM models for prediction of average

grain size of FS welded Al alloys. Ghetiya and Patel [9]

developed ANN model for the estimation of tensile

strength of Al alloy in FSW process. Asadi et al. [10]

successfully developed a BPNN for diagnosing both grain

size and hardness in a AZ91/SiC nanocomposite with

accurate estimation. In their other work, Akbari et al. [11]

explained the implementation of ANN and EAs for esti-

mating and optimizing the properties of FS welded plates.

From the literature, it is found that various researchers have

successfully used ANN models to correlate the input and

output relationship in FSW process.

Multi-objective optimization (MOO) problems are

common in engineering environment. Classical approaches

for solving MOO like weighted sum and weighted metric

methods combined with single-objective EAs were applied

[12], but they suffer from many difficulties. They convert

the MOO problem into single-objective problem. More-

over, they need good knowledge about the problem and the

good distribution of solutions may not be guaranteed. To

overcome those difficulties, multi-objective EAs (MOEAs)

have been developed [13]. Many successful MOEAs have

been proposed by various researchers such as elitist non-

dominated sorting genetic algorithm (NSGA-II) [14],

multi-objective particle swarm optimization (MOPSO) [15]

and differential evolution for multi-objective (DEMO)

[16]. Those MOEAs share the desire of finding uniformly

distributed Pareto optimal front of the problem. The dif-

ference between those algorithms is in the criteria of which

the non-dominated solutions can be chosen and how to

maintain exploration and exploitation in the problem

search space. EAs were applied successfully in FSW pro-

cess. Shojaeefard et al. [17] used BPNN to model FSW

process and MOPSO to get optimum mechanical proper-

ties. Two inputs, namely rotational speed and welding

speed, and two outputs which are tensile strength and

hardness of the welded joint were considered for the

optimization problem. To determine the best compromised

solution, technique for order preference by similarity to the

ideal solution (TOPSIS) was applied. Tutum and Hattel

[18] developed thermo-mechanical model of FSW process

and applied NSGA-II for optimization of residual stresses

in the welded joint and production efficiency. Shojaeefard

et al. [19] used BPNN for modeling FSW of AA5083

aluminum alloy. The considered inputs were the rotational

and welding speeds, and the outputs were welding force,

peak temperature and heat-affected zone width. For the

optimization purpose, NSGA-II was applied and TOPSIS

to find the best compromised solution. From the literature,

it is observed that DEMO has not been tested yet for

optimization of manufacturing or welding processes,

although it has great potential. Moreover, numbers of

inputs and outputs parameters considered in FSW opti-

mization problem are less. Therefore, it is necessary to

apply DEMO and compare results with those obtained from

other algorithms like NSGA-II. Also, it is essential to

consider more numbers of input and output parameters

within the optimization process to ensure the best weld

quality.

In this work, experimental study for FSW process is

conducted using Taguchi and full factorial design of

experiments. Then, the contribution of various FSW pro-

cess parameters in determination of weld qualities is

investigated. Consequently, ANN models are developed

using back-propagation training algorithm for modeling the

FSW process. Thereafter, two multi-objective optimization

methods, namely NSGA-II and DEMO for optimization of

FSW process, are employed. The objective is to find the

optimal process parameter settings corresponding to max-

imum weld quality and to compare the performance of

NSGA-II and DEMO. Finally, TOPSIS is used to find best

compromise solutions to the process and confirmation

experiment is conducted accordingly.

2 Experimental details

2.1 Experimental approach and results

In the current work, 6-mm-thick aluminum plates (1100 Al

alloy) are used for experiments. The plates are prepared

into rectangular pieces of 200 9 100 mm for joining pur-

pose of butt joints by FSW process. It is important to select

an appropriate FSW tool material which should be difficult

to wear out and can withstand the vertical pressure and

torque applied to it. For the present work, stainless steel

(SS-310) is used as tool material because of its excellent

high-temperature properties. A vertical milling machine is

used to carry out the welding operations with the specifi-

cations of: spindle speed: 12 steps (50–1500 rpm),
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table feed: 8 steps (22–555 mm/min), main motor power:

5.5 kW, table motor power: 0.75 kW.

The parameters used in the present work are plunge

depth (PD), tool rotational speed (RPM), welding speed

(WS), tool geometry [TG—straight cylindrical (SC),

tapered cylindrical (TC), square (SQ), threaded (THD)],

shoulder diameter (SD), pin diameter (PnD), tool pin length

(TPL) and dwell time (DT). A total of 59 experiments are

conducted by varying eight input parameters. The first

experimental set has been designed by utilizing Taguchi’s

L32 orthogonal array in which plunge depth is varied in two

levels because of the small working range and four levels

for the rest of the parameters. The other experimental set

has been designed based on full factorial design of experi-

ments where TG, RPM and PnD are varied in three levels.

The parameter settings are shown in Table 1. In case of

tapered cylindrical tool, a taper angle of 10� is considered,
and in threaded tool, 1-mm pitch is deemed.

Once the welding is over, specimens are prepared to

measure weld quality characteristics. The tensile specimens

are tackled as per the American Society for Testing of

Materials (ASTM E8) guidelines. The tensile, bending and

hardness specimens are shown in Fig. 1a–c, respectively.

Tensile tests are carried out in a digitally controlled closed-

loop servo hydraulic dynamic testing machine (Make:

INSTRON, Model 8801). The capacity of the testing

machine is 10 tons (100 KN). Experimental weld qualities

corresponding to eachwelding parameter settingsmentioned

in Table 1 are given in Table 2. For bending test, root and

face bend tests are carried out to achieve accurate bending

angle. The hardness values are measured by using Vicker’s

microhardness indentation machine (Make: Omni Tech) at

500 g load for 10 s. The various output responses considered

for optimization are ultimate tensile strength (UTS in MPa),

yield strength (YS inMPa), ductility (%Elng), bending angle

(BA in �) and nugget zone hardness (HRD in HV).

2.2 Effect of process parameters on the weld

qualities

In order to analyze the significance and the contribution of

each parameter to the weld qualities, ANOVA is carried

out. The percentage influence of the considered process

variables on the measured outputs is shown in Table 3. It is

found that measured weld characteristics are significantly

influenced by RPM, TG and PnD. As RPM is responsible

for overall material mixing in surface level as well as in

thickness direction of the workpiece, it is the most influ-

encing factor for UTS having 29.67% weightage. TG and

PnD are responsible for the material mixing along the

workpiece thickness direction, and these are the next

influencing factors having 21.85 and 21.07% influence,

respectively.

Table 1 Full experimental input parameter settings

Exp. no. PD RPM WS TG SD PnD TPL DT

1 0.09 600 63 SC 20 5 5.2 10

2 0.09 600 98 TC 25 6 5.4 15

3 0.09 600 132 THD 30 7 5.6 20

4 0.09 600 200 SQ 35 8 5.8 25

5 0.09 815 63 SC 25 6 5.6 20

6 0.09 815 98 TC 20 5 5.8 25

7 0.09 815 132 THD 35 8 5.2 10

8 0.09 815 200 SQ 30 7 5.4 15

9 0.09 1100 63 TC 30 8 5.2 15

10 0.09 1100 98 SC 35 7 5.4 10

11 0.09 1100 132 SQ 20 6 5.6 25

12 0.09 1100 200 THD 25 5 5.8 20

13 0.09 1500 63 TC 35 7 5.6 25

14 0.09 1500 98 SC 30 8 5.8 20

15 0.09 1500 132 SQ 25 5 5.2 15

16 0.09 1500 200 THD 20 6 5.4 10

17 0.15 600 63 SQ 20 8 5.4 20

18 0.15 600 98 THD 25 7 5.2 25

19 0.15 600 132 TC 30 6 5.8 10

20 0.15 600 200 SC 35 5 5.6 15

21 0.15 815 63 SQ 25 7 5.8 10

22 0.15 815 98 THD 20 8 5.6 15

23 0.15 815 132 TC 35 5 5.4 20

24 0.15 815 200 SC 30 6 5.2 25

25 0.15 1100 63 THD 30 5 5.4 25

26 0.15 1100 98 SQ 35 6 5.2 20

27 0.15 1100 132 SC 20 7 5.8 15

28 0.15 1100 200 TC 25 8 5.6 10

29 0.15 1500 63 THD 35 6 5.8 15

30 0.15 1500 98 SQ 30 5 5.6 10

31 0.15 1500 132 SC 25 8 5.4 25

32 0.15 1500 200 TC 20 7 5.2 20

33 0.09 600 98 SC 25 5 5.7 15

34 0.09 1100 98 SC 25 5 5.7 15

35 0.09 1100 98 SQ 25 6 5.7 15

36 0.09 600 98 SQ 25 5 5.7 15

37 0.09 1100 98 SC 25 6 5.7 15

38 0.09 1100 98 SC 25 7 5.7 15

39 0.09 600 98 TC 25 6 5.7 15

40 0.09 815 98 SC 25 7 5.7 15

41 0.09 815 98 TC 25 7 5.7 15

42 0.09 600 98 SC 25 6 5.7 15

43 0.09 815 98 TC 25 5 5.7 15

44 0.09 1100 98 TC 25 5 5.7 15

45 0.09 600 98 SC 25 7 5.7 15

46 0.09 815 98 TC 25 6 5.7 15

47 0.09 815 98 SC 25 5 5.7 15

48 0.09 600 98 TC 25 7 5.7 15
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Bending angle is measured at the time of visible crack

initiation. All the good joints are bent up to an angle of

140� without any crack. Nevertheless, PnD is the most

crucial for both BA and % Elng having significances of

28.63 and 38.65%, respectively. RPM and TG are seen to

be the next most contributing factors on BA and % Elng. It

is also found that PD, TPL and WS do not have significant

effect on the weld qualities. Finally, we recommend that

RPM, TG and PnD are considered to be the most prominent

parameters that affecting weld qualities in FSW process.

3 Prediction of weld quality using BPNN models

ANN modeling can be conducted using experimental data.

A detailed description of the principles of multilayer neural

networks and back-propagation training algorithm can be

referred to the relevant technical book [20]. A schematic

diagram of the proposed ANN model architecture is shown

in Fig. 2. The network is made up of three layers, namely

input layer, hidden layer and output layer. For present

work, each neuron of a layer is connected to all the neurons

in the other layers. The input neurons receive information

from an external with appropriate bias, which is then

multiplied by the interconnection weights between it and

the hidden layer. The summation of all products is modi-

fied by an activation function in the hidden layer, which is

here the log sigmoid activation function. The outputs of the

hidden neurons are multiplied then with the connection

weights between hidden and output neurons. After that, the

summation of all products is modified by an activation

function in the output layer, which is also the log sigmoid

activation function. These modified values of the output

layer are considered as the output of the ANN model.

In this work, a source code for a multi-neurons, single

hidden-layer ANN model has been developed for corre-

lating the FSW process parameters to the weld quality

parameters. The training of the ANN models is performed

in a supervised manner using batch mode of training and

back-propagation algorithm. The training process is done

using 40 randomly selected input–output data pairs from

the total 59 experiments. The remaining 19 pairs are

divided into validation set of 9 and testing set of 10. The

purpose of validation is to prevent over training. By

monitoring the training and validation errors, training

process should stop when the best matching between these

errors is reached. Initial weight values are chosen randomly

between ±0.9. All the input and output data are normalized

between 0.1 and 0.9. The objective of the training process

is to minimize the mean square error (MSE) by updating

the network parameters through the gradient descent

method.

MSE ið Þ ¼ 1

2PN

XP

p¼1

XN

k¼1

O
p
Ok ið Þ � T

p
k

� �2
; ð1Þ

where MSE ið Þ is the MSE at the ith iteration, P is the total

number of training patterns, N is the number of neurons in

the output layer, O
p
Ok ið Þ is the output of kth output neuron

for the pth pattern at the ith iteration and T
p
k is the desired

kth output for the pth pattern. The performance of a neural

network depends on number of hidden neurons (NHN),

learning rate (g) and momentum coefficient (a). Therefore,
several combinations should be tried out to choose an

optimal combination. The considered outputs are UTS, YS,

% Elng, BA and HRD. The number of hidden neurons, g
and a values are optimized by varying within a range of

5–30 and 0.05–0.95, respectively. This process is carried

out separately for each output. After training, the network

Table 1 continued

Exp. no. PD RPM WS TG SD PnD TPL DT

49 0.09 815 98 SC 25 6 5.7 15

50 0.09 1100 98 TC 25 7 5.7 15

51 0.09 600 98 TC 25 5 5.7 15

52 0.09 815 98 SQ 25 5 5.7 15

53 0.09 1100 98 SQ 25 5 5.7 15

54 0.09 600 98 SQ 25 6 5.7 15

55 0.09 815 98 SQ 25 6 5.7 15

56 0.09 1100 98 TC 25 6 5.7 15

57 0.09 600 98 SQ 25 7 5.7 15

58 0.09 815 98 SQ 25 7 5.7 15

59 0.09 1100 98 SQ 25 7 5.7 15

SC straight cylindrical, TC tapered cylindrical, SQ square, THD

Threaded tool

Fig. 1 a Tensile, b bending and c microhardness specimens (dimen-

sions are in mm)
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Table 2 Experimental results

corresponding to various

welding conditions in Table 1

Exp. no. UTS YS % Elng BA HRD Exp. no. UTS YS % Elng BA HRD

1 112.08 70.52 9.26 55 51.01 31 2.48 1.69 0.70 5 47.26

2 99.75 58.69 8.72 45 47.77 32 25.50 66.97 1.30 5 46.65

3 116.90 65.65 8.86 60 52.11 33 113.88 59.66 10.66 140 57.80

4 120.28 62.57 21.68 140 47.06 34 121.47 69.51 13.24 140 55.29

5 120.54 62.62 14.66 140 46.23 35 142.23 105.84 16.36 140 62.76

6 114.11 74.58 5.82 140 50.39 36 130.68 80.36 14.92 140 58.55

7 117.19 69.81 7.54 66 51.78 37 129.94 77.85 15.46 140 50.94

8 133.20 63.24 14.60 140 53.82 38 116.66 63.19 14.52 140 53.32

9 94.38 58.61 3.96 45 49.17 39 128.30 79.91 14.94 140 56.13

10 63.28 53.41 3.00 50 47.75 40 125.51 73.05 15.08 140 53.27

11 136.90 72.35 14.8 140 51.24 41 133.89 86.82 15.18 140 49.93

12 112.74 64.25 9.82 10 46.55 42 124.28 70.59 12.71 140 54.57

13 16.01 14.59 0.86 5 49.79 43 129.62 78.97 13.96 140 53.27

14 1.93 1.76 0.76 5 47.26 44 133.05 85.24 15.40 140 50.93

15 138.51 64.47 23.78 140 55.91 45 127.48 75.07 14.01 140 57.31

16 91.72 61.29 4.14 21 46.33 46 132.04 83.37 15.58 140 50.32

17 102.86 69.54 5.60 15 54.29 47 118.50 66.57 12.05 140 56.37

18 94.34 62.74 5.68 25 50.24 48 131.60 84.17 14.34 140 57.93

19 131.00 69.52 17.50 140 52.33 49 125.78 74.71 13.88 140 58.40

20 50.52 49.85 4.34 15 52.23 50 128.52 78.80 14.46 140 55.38

21 64.26 51.72 4.68 10 51.61 51 127.67 75.73 10.26 140 56.11

22 85.09 70.43 3.34 15 52.84 52 133.60 85.65 15.20 140 57.47

23 122.07 57.25 19.28 140 48.61 53 139.73 89.25 16.15 140 58.10

24 117.29 60.76 17.04 140 51.20 54 131.31 84.10 15.06 140 56.09

25 123.68 63.14 10.00 40 48.56 55 135.91 90.74 15.86 140 57.61

26 132.64 63.24 18.26 140 54.29 56 136.22 87.13 16.15 140 53.56

27 91.78 63.54 4.00 10 54.11 57 132.21 87.59 14.62 140 57.64

28 61.52 54.70 1.94 10 51.65 58 135.10 89.25 15.50 140 59.17

29 124.12 63.69 17.46 53 46.83 59 130.53 93.41 15.24 140 54.07

30 126.77 64.09 19.36 140 53.19

Table 3 Percentage contribution on weld quality parameters for each

input parameter

Percentage influence of input parameters on weld quality

UTS YS % Elng BA HRD

Input parameters

PD 0.09 0.09 0.28 4.53 6.13

RPM 29.67 26.34 16.33 15.89 6.82

WS 1.29 3.28 2.23 5.04 9.88

TG 21.85 19.26 20.89 12.18 23.58

SD 1.75 6.34 3.56 11.04 4.78

PnD 21.07 16.63 38.65 28.63 3.64

TPL 2.40 5.10 2.88 2.86 11.09

DT 6.15 7.88 1.20 1.26 10.08

Fig. 2 The proposed ANN architecture
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testing data set is used to test the network performance.

The optimum ANN architecture, learning rate and

momentum coefficient corresponding to the five ANN

models are shown in Table 4. The ANN predicted values

and percentage errors in the outputs (UTS, YS, % Elng, BA

and HRD) are shown in Table 5. From the ANN models, it

is observed that the average errors in prediction of joint

properties are within ±10%. So the developed model can

be used effectively for prediction of weld quality in FSW

process.

4 Multi-objective optimization

Since multi-objective optimization problems usually

consist of two or more objectives, it is not possible to

optimize the entire objectives in a simultaneous way. To

solve those problems, the concept of ‘‘non-dominance’’ is

used. Non-dominated solutions are the solutions which are

not dominated by any other solution in the solution space.

The set of optimal non-dominated solution is called

‘‘Pareto optimal front.’’ In other words, it is the best set of

solutions which can be obtained from the multi-objective

optimization problem. In order to optimize FSW process

parameters, two multi-objective EAs are applied. Each of

those suggested methods is composed of two stages:

generation of Pareto front by NSGA-II and DEMO, and

then to obtain best compromise solutions from Pareto

front, TOPSIS which is a multi-attributes decision-making

technique proposed by Hwang and Yoon [21] is

implemented.

4.1 Elitist non-dominated sorting genetic algorithm

(NSGA-II)

NSGA-II is a multi-objective optimization algorithm pro-

posed by Deb et al. [14]. NSGA-II incorporates the pow-

erful procedure of non-dominated sorting and crowding

distance metric method to generate uniformly distributed

Pareto optimal front. Detailed description about the algo-

rithm is available in [13, 14]. A detailed flowchart of the

combination of pre-trained ANN models and NSGA-II is

shown in Fig. 3.

4.2 Differential evolution for multi-objective

DEMO is a multi-objective optimization algorithm pro-

posed by Robič and Filipič [16]. DEMO combines the

advantages of differential evolution (DE) with the mecha-

nisms of non-dominated sorting and crowding distance

Table 4 The best ANN

architecture and parameters for

all models

No. of hidden neurons Learning rate Momentum coefficient

UTS 15 0.8 0.3

YS 21 0.8 0.1

% Elng 18 0.9 0.5

BA 19 0.5 0.5

HRD 15 0.5 0.5

Table 5 The ANN predicted values and percentage errors in the outputs

UTS YS % Elng BA HRD

Actl. Predctd %

Error

Actl. Predctd %

Error

Actl. Predctd %

Error

Actl. Predctd %

Error

Actl. Predctd %

Error

1 128.5 133.48 -3.86 78.8 91.00 -15.5 14.46 15.59 -7.83 140 134.18 4.15 55.38 51.76 6.52

2 127.6 123.43 3.31 75.73 72.9 3.67 10.26 12.70 -23.87 140 117.09 16.36 56.11 55.95 0.28

3 133.6 138.75 -3.85 85.65 85.49 0.18 15.2 15.38 -1.21 140 143.90 -2.78 57.47 56.92 0.95

4 139.7 144.61 -3.49 89.25 94.26 -5.61 16.15 15.44 4.34 140 146.45 -4.61 58.1 58.17 -0.12

5 131.3 128.11 2.43 84.1 85.74 -1.96 15.06 15.24 -1.26 140 138.53 1.04 56.09 56.08 0.016

6 135.9 137.24 -0.98 90.74 92.11 -1.51 15.86 16.19 -2.09 140 144.04 -2.88 57.61 56.30 2.26

7 136.2 137.22 -0.73 87.13 92.33 -5.97 16.15 16.48 -2.06 140 149.78 -6.98 53.56 52.09 2.74

8 132.2 129.40 2.11 87.59 91.01 -3.90 14.62 13.68 6.36 140 126.47 9.66 57.64 55.03 4.52

9 135.1 137.02 -1.42 89.25 96.51 -8.13 15.5 15.13 2.36 140 134.44 3.97 59.17 55.10 6.86

10 130.5 139.25 -6.68 93.41 101.20 -8.34 15.24 15.40 -1.08 140 128.35 8.31 54.07 56.41 -4.32

Mean absolute

percentage errors

2.89 5.48 5.24 6.07 2.86
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metric to create a powerful MOO algorithm. DEMO can be

explained as following steps, and a complete flowchart for

Neuro-DEMO procedure is shown in Fig. 4.

• Step 1. Create initial population P of random

individuals.

• Step 2. While stopping criteria are not satisfied, do:

• Create mutant vector Vtþ1
i ¼ xr1 þ F � xr2 � xr3ð Þ,

where N is the population size, i ¼ 1. . .N, xr1; xr2
and xr3 are randomly selected individual, F is real

constant factor 2 0� 2½ �.

• Evaluate the mutant vector.

• If the mutant vector dominates the parent, it

replaces the parent. If the parent dominates the

mutant vector, then the mutant vector is discarded.

Otherwise the mutant vector is added to the

population.

• Step 3. If the new population has more individuals than

parent population, truncate it.

The truncation procedure is composed of two steps: the

first one is sorting the extended population vectors with

non-dominated sorting method and then the evaluations of

the sorted vectors by means of crowding distance. This

procedure helps to preserve elitism and obtain uniformly

distributed Pareto optimal front.

4.3 Multi-objective optimization of FSW process

parameters

The optimization procedure starts by creating initial

population of solutions randomly inside the search space

of the experiment. Then, the population is fed to the pre-

trained ANN models. The response characteristics are

computed inside the ANN models and fed to NSGA-II

and DEMO algorithms. In each algorithm, various

operators are used to generate a new population. The

new population is again fed to the ANN models, and the

response characteristics are again computed and fed to

each algorithm. That process proceeds until the optimal

quality characteristics are obtained. The objective of that

optimization procedure is to maximize weld quality

characteristics, which is shown in the following

equations:

Max:f UTS, YS, Elong, BA, HRDð Þ ð2Þ

Fig. 3 Neuro-NSGA-II flowchart for optimization of FSW process
Fig. 4 Neuro-DEMO flowchart for optimization of FSW process
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Subjected to:

0:09� PD� 0:15mm:
600�RPM� 1500

63�WS� 200mm/s:
TG 2 SC,TC,SQ,THRDf g
20� SD� 35mm:
5� PnD� 8mm:
5:6�TPL� 5:8mm:
10�DT� 25s:

8
>>>>>>>>>><

>>>>>>>>>>:

ð3Þ

The parameters considered for NSGA-II computations

are 100 population size, tournament selection with

tournament size of 5, simulated binary crossover with 0.9

crossover rate and random mutation with 0.1 mutation rate.

Similar procedure is done with DEMO having 100 popu-

lation size and F factor as 0.9. The two algorithms are run

with 500, 1000, 1500 and 2000 iterations. After getting the

non-dominated solutions, TOPSIS is applied to obtain best

solution among them. Results show that DEMO can find

the optimal solutions within 500 iterations, whereas

NSGA-II needed 2000 iterations. The Pareto fronts in 2D

plains obtained from Neuro-NSGA-II and Neuro-DEMO

Fig. 5 Representative Pareto

fronts in 2D plains resulted

from: a–c Neuro-NSGA-II and

d–f Neuro-DEMO
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are schematized in Fig. 5. There are total twenty Pareto

fronts obtained from the two optimization techniques.

However, for representation purpose only six fronts are

shown. It is obvious from the figure that the optimal fronts

achieved by Neuro-DEMO framework outperform those

obtained from Neuro-NSGA-II paradigm in most cases by

means of good distribution of Pareto solutions and better

uniformity when the objectives are compared into 2D

plains. The minimum, mean and maximum values of the

overall Pareto solutions for both Neuro-NSGA-II and

Neuro-DEMO paradigm are written in Table 6. It is clear

from Table 6 that results produced by Neuro-DEMO are

more reliable than Neuro-NSGA-II results in the cases of

tensile properties. Nevertheless, both Neuro-DEMO and

Neuro-NSGA-II generated almost similar results when

comparing BA and HRD outcomes. Also, the Neuro-

DEMO technique is able to find more accurate results with

less than quarter computational time than Neuro-NSGA-II

paradigm. For those reasons, we can confidently recom-

mend the Neuro-DEMO framework to be more efficient

and reliable than the Neuro-NSGA-II for optimization of

FSW process parameters. Furthermore, the Neuro-DEMO

can be suggested for implementation when optimizing

other welding processes is under consideration.

The four best solutions that are produced by the pro-

posed procedure are shown in Table 7. It is clear from the

table that predicted weld quality characteristics obtained

from DEMO are better comparing to those from NSGA-II,

and DEMO achieved the target solutions with less number

of iterations and less computational time. This is due to the

combination of the powerful DE search scheme with non-

dominated sorting method.

Table 6 Comparison of results

obtained from Neuro-NSGA-II

and Neuro-DEMO

Objectives

UTS (MPa) YS (MPa) %Elng BA (�) HRD

Neuro-NSGA-II

min 24.38 6.12 3.04 49.84 51.96

mean 139.53 77.77 17.66 137.51 60.99

max 158.50 113.20 25.78 156.83 64.77

Computational time 1566.532968 s

Neuro-DEMO

min 147.37 88.52 16.85 5.70 50.25

mean 156.90 107.57 24.57 130.80 56.59

max 159.60 114.62 21.36 156.68 63.41

Computational time 322.624759 s

Table 7 Four best solutions

obtained from the hybrid

NSGA-II and DEMO with

TOPSIS for five objectives

NSGA-II DEMO

Solutions 1 2 3 4 1 2 3 4

Input parameters

PD 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

RPM 928 897 1494 1494 1482 1500 1500 1500

WS 63 63 67 67 63 63 63 63

TG SQR THD THD SQR THD THD THD SQR

SD 35 34 26 26 35 34 35 35

PD 5.0 5.1 5.0 5.0 5.0 5.0 5.1 5.1

PnL 5.6 5.6 5.8 5.8 5.8 5.8 5.8 5.8

DT 10 10 11.1 10.9 10 10 10 10.2

Output

UTS 159.6 159.4 133.1 135.1 158.6 157.6 158.1 157.7

YS 91.4 92.1 113.5 111.8 108.8 110.2 108.4 103.2

% Elng 24.2 23.1 20.8 20.2 24.8 24.6 24.9 25.2

BA 156.0 154.8 149.6 151.5 154.1 153.6 153.9 153.6

HRD 63.1 62.9 64.6 64.6 63.9 63.1 63.8 63.9
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4.4 Confirmation experiment

One confirmation experiment is conducted to validate the

best DEMO predicted weld qualities. The optimum process

parameters settings corresponding to solution 1 of DEMO

are considered from Table 7 and rounded to near possible

parameters setting available in the FSW machine to con-

duct the experiment. The measured weld quality values are

145.38 MPa, 99.25 MPa, 19.98%, 140� and 64.1 HV for

UTS, YS, % Elng, BA and HRD, respectively. Mean

absolute percentage error is 7.4% which is a good agree-

ment between simulated and experimental weld charac-

teristics, indicating that Neuro-DEMO framework can be

suggested as an efficient and well-performed technique to

be used for modeling and MOO of FSW process. More-

over, it can be extended for implementation in other

welding processes.

5 Conclusion

In this work, FSW process optimization using Neuro-

NSGA-II and Neuro-DEMO has been investigated. ANN

models have been used to predict weld quality character-

istics before the optimization procedure. The optimization

problem has considered 8 inputs and 5 weld quality char-

acteristics that are the joint strength, yield stress, percent-

age elongation, bending angle and nugget zone hardness.

Results showed that Neuro-DEMO paradigm is able to find

the optimum parameter settings of FSW process efficiently

and robustly. Over and above, the predicted optimal weld

qualities obtained from Neuro-DEMO are more accurate

than Neuro-NSGA-II. Moreover, the confirmation experi-

ment has revealed that the proposed Neuro-DEMO

approach is a good tool for optimization of FSW process.

That approach can also be well utilized for optimization of

other welding processes.
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