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Abstract In the developed world, heart diseases are the

major cause of death among adults. Often, the sufferers of

heart disease are not aware of their condition until a

catastrophic medical event occurs. Therefore, early online

detection and continuous monitoring of abnormal heart

rhythms shall reduce this occurrence. There are four main

types of arrhythmia: ventricular arrhythmia, supraventric-

ular arrhythmia, premature beats and asynchronous

arrhythmia. In this study, an algorithm for automatic

detection of atrial premature contraction, supraventricular

tachyarrhythmias, fusion of ventricular and normal beat

(FUSION), isolated QRS-like artifact (ARFCT), ST

change, T-wave change, premature or ectopic supraven-

tricular beat and normal beat (NORMAL) using a contin-

uous neural network (CoNN) is presented. This kind of

continuous classifier offers an online detection of classical

arrhythmia observed in electrocardiographic (EKG) sig-

nals. Typically, due to its complexity and recursive nature

of arrhythmia classification algorithms, they are difficult to

be implemented in real time. In this work, automatic signal

classification was attained by implementing a parallel

CoNN algorithm using fixed point arithmetic on a field-

programmable gate array (FPGA). First, the classification

algorithm using a floating-point MATLAB implementation

was developed and validated. This procedure served as a

benchmark for the fixed point FPGA implementation on a

Xilinx Zinq board. The performance of the classification

algorithm was evaluated by using a fivefold cross-valida-

tion method, achieving a 93.80% accuracy and a sensitivity

(TPR) average of 98% when performing the classification

of the entire set of EKG signal samples.

Keywords Signal classification � FPGA � Continuous
neural networks � EKG arrhythmias � Parallel neural
networks

1 Introduction

In North America and Europe, between 50 and 100 sudden

unexpected cardiac failure deaths occur every year per a

population of 100,000. This condition is even worse in

Latin America. Heart diseases that lead to cardiac failure

remain as the most important cause of death accounting for

more than 17 million deaths per year [23]. These diseases

produce abnormalities in the heart beat rhythm, or

arrhythmias, which are caused by irregular (faster or

slower) electrical impulses that coordinate the heart’s

normal operation [26]. Most of these abnormalities are not

dangerous, but if they remain untreated, more complex

arrhythmias may appear yielding to life threatening events.

Correct characterization of these atypical behaviors is

important when trying to achieve the accurate classification

of normal and abnormal heart activity. This fact is truly

important considering the effect of correct and opportune

diagnosis on the patient survival. Indeed, several studies

have proven that significant progress has been made in the

prevention of deaths resulting from the correct prediction

of severe heart arrhythmias [15]. Since the nineteenth
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century, electrocardiograph devices have allowed the

recording of both regular and unusual electrocardiographic

signals [10]. The constant evolution of clinical electro-

physiology has provided detailed descriptions of the nor-

mal heart beat and some different types of abnormalities.

The emergence of modern technologies has transformed

the way that physicians handle treatment and prevention of

heart diseases. Therefore, automatic classification of EKG

signals has received great attention given that the early

detection of heart diseases can prolong life and enhance the

life quality through appropriate treatment. Therefore, in

recent years, there have been numerous research efforts

analyzing the EKG signals by automatic signal processing

algorithms. Indeed, there is a large number of publications

documenting methods to classify certain arrhythmia in

EKG signals [2, 20, 21, 31].

All these studies have used the fact that the state of

cardiac health is generally reflected in the shape of the

EKG waveform and heart beat rate. Indeed, it has been

recognized that this waveform may contain important

pointers to the nature of diseases afflicting the heart. The

nature of the biological signals produced in the EKG

waveform may impact the EKG at random times. Despite

the variations of EKG waveform among different individ-

uals, the signal alterations across patients often appear

similar with the same type of arrhythmias. However, these

variations may not show up all the time, but they can

manifest at some specific period of time, thus appearing

asynchronously.

These characteristics motivate the development of

automatic waveform classifications to recognize the

appearance of EKG abnormalities with high accuracy. This

offers a reliable and affordable method to perform con-

tinuous mass screenings for cardiac abnormalities. The aim

of this method is to obtain a set of characteristic shapes

from the waveform that discriminate effectively one par-

ticular abnormal signal from another. Signal parameters,

such as amplitude and phase, as well as signal shapes are

typical characteristics used by the classification algorithms.

Over the years, several methods have been proposed to

improve the accuracy and sensitivity of waveform classi-

fication strategies. These methods have included wavelet

coefficient [7], autoregressive modeling [11] , radial base

functions neural networks [19], self-organizing map, rough

sets, fuzzy c-means clustering techniques [25] and many

others [32]. These methods are implemented on personal

computers but not on embedded hardware.

Software implementation uses the flexibility and full

(float number) precision of powerful microprocessors with

complex architecture algorithms; however, they are not

portable. These computer algorithms have the disadvantage

of being slower and with higher computational costs

associated with operating system execution [21].

On the other hand, hardware implementation is limited

in flexibility and usually offers lower precision, but has the

advantage of processing data in parallel (as in field pro-

gramming gate arrays or FPGA for short), making possible

the implementation of complex algorithms in real time. In

addition, they can be small and low power consuming,

allowing them to be easily worn on the body.

Nowadays, FPGAs have increased their speed and cir-

cuit density making them suitable for signal processing in

parallel. There are several reports describing the imple-

mentation of EKG parameter detection using FPGA devi-

ces [8]. Some of them have focused on the detection of

certain sections of the EKG waveform [29], and others on

the detection of abnormalities in the EKG wave [12], but

most of them undergo preprocessing of the signal rather

than working with the raw EKG [9]. Therefore, EKG sig-

nals classification demands some additional computer

processes that may increase the computational complexity

of the classifier. Furthermore, most of the waveform clas-

sifiers consider a time windowing process which limits the

generalization capacity of signal classifiers because

selecting the window size is still a major problem in

designing pattern classifiers. Indeed, if the window size is

not selected accurately, the classification accuracy can

decrease significant even if the classifier methodology

could be correct.

Classification problems occur when an object needs to

be assigned into a predefined group or class based on a

number of observed attributes related to that object. Arti-

ficial neural networks (NNs) provide an effective method

to perform classification on continuous EKG signals. NN

solutions are desirable because of their ability to self-ad-

justed as new information is provided to the system and

their ability to approximate complex nonlinear functions.

In the last decade, continuous neural network (CoNN),

usually called differential NN, has emerged as a powerful

tool to extend the classification capacities of systems that

need this level of adaptability. Notice that continuous

classification algorithms are not usual in the literature [4].

CoNN is a new type of NN described by a set of ordinary

differential equations (ODEs). These ODEs are used to

represent the set of signals monitored by the EKG ampli-

fier. Generally, NN requires preliminary training stages.

For instance, in conventional gradient descendant type,

weight adaptation sensitivity of unknown systems is

required during the so-called online training process [16].

This condition ensures the correct classification of signals

into the different classes. By virtue of its parallel distri-

bution, NN is generally robust, tolerant under the presence

of faults and external noise, able to generalize well and

capable of solving nonlinear problems [5].

In this paper, the implementation of CoNN as a real-

time classifier for EKG signals is presented. The classifier
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used the raw EKG signal that prevents losing information if

some preliminary signal treatments are applied. Therefore,

CoNN uses the EKG signal as input and a characteristic

sigmoid function was selected as target that corresponds to

signals where arrhythmia may appear. Therefore, a class of

associative memory was constructed with the same CoNN

structure but fixed weights obtained after applying a

supervised training. An alternative option to use CoNN as

signal classifier is to use the same EKG signal as the pat-

tern that should be classified; therefore, a special class of

continuous autoencoder system can be designed. To the

authors knowledge, this is one of the first attempts to use

EKG signal as it is to enforce the classification of

arrhythmia presence. Moreover, the class of CoNN con-

sidered in this paper has not been used as signal classifier.

The complete scheme for training as well as the classifi-

cation was developed by applying the Lyapunov stability

theory. This classifier based on a CoNN was also tested

with both the software and hardware implementations to

compare the results when working at full arithmetic pre-

cision and at lower precision. In particular, the hardware

CoNN implementation was developed in a commercial

FPGA Xilinx Zinq Board that also represented a contri-

bution considering the previous attempts to implement

CoNN in embedded systems.

In summary, the contributions of this paper are:

• The development of an automatic classifier for 8

different electrocardiography arrhythmia based on

CoNN.

• A soft real-time implementation of the classifier on a

field programming gate array.

• Detailed description on how to implement the training,

generalization and validation processes for the pattern

classifier based on CoNN.

1.1 Paper structure

The paper is organized as follows: Section 2 presents the

mathematical support for the proposed classification algo-

rithm which is based on the application of the CoNN

implemented as a nonparametric identifier. Section 3 gives

details on the EKG database used to test and validate the

CoNN-based classifier. The fivefold cross-validation algo-

rithm was considered to justify the application of the

classification algorithm. Section 4 presents a comparison

between the software and hardware CoNN implementa-

tions. Section 5 describes aspects of the FPGA evaluation

board implementing the parallel CoNN signal classifier

(VHDL code). Section 6 presents the results of the vali-

dation process of the CoNN classifier. Finally, the perfor-

mance of the proposed classification CoNN on an FPGA

compared to other methods applied to the same database is

described in Sect. 7.

2 CoNN as a classifier for EKG arrhythmia

Figure 1 shows a general analytic scheme of the CoNN-

based classifier considered in this study. The first part

performs a training algorithm associating the EKG signal

with a predefined trajectory used to represent the specific

class (among the N possible ones) where that particular

EKG signal belongs. In a second stage, a set of N CoNN

was fixed with weights obtained after training. This parallel

structure, usually known as classifier ensemble, was used to

evaluate/test the classifier performance. The selection of

what signals were used in the training and testing phases

was done according to the rules established in the k-fold

cross-validation method [27]. The blocks labeled as LMSE

describe the least mean square error calculus that are

determined for the set of nine CoNN with fixed weights.

These LMSE values are compared to select the minimum

one (clearly this minimum value is attainable). This value

defines the class where the tested signal belongs. This

structure looks like a variation of the so-called associative

memory concept [14].

2.1 CoNN online identifier

EKG signals are represented here as u 2 Rm. These signals

are assumed to be continuous with respect to time.

Therefore, the EKG signals classifier can be represented as

d

dt
x j tð Þ ¼ A½ �>x j tð Þ þ W

0;j
1

h i>
W1ðx j tð ÞÞ

þ W
0;j
2

h i>
W2ðx j tð ÞÞu j

i tð Þ þ n xðtÞ; tð Þ

x 0ð Þfixed and bounded

ð1Þ

where A 2 Rn;W0
1 2 Rl1 ;W0

2 2 Rl2 are constant matrices

used to approximate the EKG signals. The scalar x 2 R

defines a specific class characteristic to a particular EKG

signal represented by u. The functions W1 2 Rl1 and W2 2
Rl2�m define the set of activation functions used to design the

NN structure. When the CoNN is used to classify the EKG

signal using a reference function, to categorize the specific

classwhere the EKG signal belongs, the class xwas proposed

to satisfy the structure of a sigmoid function, that is

x jðtÞ ¼ a j

1þ e�c jt
ð2Þ

where a j is the positive constant that characterizes the class

and c j is the positive constant to adjust the transition rate of

the sigmoid function. This function represents the pattern
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to be approximated by the CoNN. Therefore, if the signal

u
j
i belongs to the class j, then the corresponding signal x j is

characterized by both parameters, a j and c j. Clearly, if the

type of arrhythmia changes during the training process, this

couple of parameters also changes. For example, for

ARFCT a1 ¼ 1:5, APC signals were characterized with

a2 ¼ 2:5; FUSION beats a3 ¼ 3, for normal EKG signals,

a4 ¼ 4:5; SVT used a5 ¼ 5:0: For ST change, a6 ¼ 6:0,

SVPB a7 ¼ 7:5, T-wave change a8 ¼ 9:0, and finally, PVC

signals were characterized with a9 ¼ 10:0.

An alternative option is using x j ¼ N�1
i

PNi

i¼1 u
j
i where

Ni is the number of EKG signals within each class (normal,

APC, PVC and SVT). This particular form of applying

CoNN is a variation of an autoencoder.

The term n x; tð Þ : Rnþ1 ! Rn defines the approximation

error of EKG signal associated with the finite number of

activation functions used in the network structure. By

assumption, the set of approximation errors represented by

n satisfies the following definition: jnj � n0 þ n1jxj with n0

and n1 positive scalars. Clearly, by including the term n0,
there is the possibility of including discontinuous func-

tions. Therefore, uniqueness of solution must be under-

stood in the sense of Filipov proposed in his seminal book.

If n0 ¼ 0 , then the uniqueness and existence of solution for

the state x can be justified by the regular technique based

on the application of the Lipchitz condition.

There are several theoretical results that justify the

existence of finite constant matrices W
0;j
1 ; W0;j

2 such that

EKG signals can be presented as the NN structures pre-

sented in (1).

If different variations of EKG signals, represented by

u ¼ u j, are considered, then different sets of matrices W
0;j
i

must exist, one per class of arrhythmia. Therefore, any

feasible signal classifier must be capable of identifying the

set of parameters W
0;j
1 ; W0;j

2 when u j is appearing as part of

the EKG signal. The signal classifier proposed in this study

is based on a set of parallel nonparametric identifier with

similar structure to the approximation proposed in (1). This

Fig. 1 CoNN process for the

classification of EKG

arrhythmias

366 Neural Comput & Applic (2019) 31:363–375

123



condition is proposed to use the extended and well-estab-

lished continuous parameter identification theory.

The set of CoNN used to perform the online signal

classification satisfies the structure of the nonparametric

identifier proposed in [28], that is

d

dt
x̂ j tð Þ ¼ A½ �>x̂ j tð Þ þ W

j
1 tð Þ

� �>
W1ðx̂ j tð ÞÞ

þ W
j
2 tð Þ

� �>
W2ðx̂ j tð ÞÞu j tð Þ

x̂ j 0ð Þfixed and bounded

ð3Þ

where W
j
1 2 Rl1 ;W j

2 2 Rl2 . The vector x̂ j 2 R defines the

state of class signal associated with the classifier. The set of

time-varying weights, i.e., the matrices W
j
1 and W

j
2 , con-

tains the adaptive parameters that are adjusted to produce

the self-adaptive classification of the EKG signals in dif-

ferent classes. W1 2 Rl1 and W2 2 Rl2�m define the set of

activation functions used for the NN structure [28]. In this

study, the activation functions were selected as sigmoid

ones. That means that each component of these two vec-

torial functions was selected in that form. Usually, the

correct adjustment of CoNN weights ðW j
i ; i ¼ 1; 2Þ provide

the signal classification capacity. According to the results

developed in [28], the so-called weight updating (learning)

law is described by the following set of matrix differential

equations

_W j
i tð Þ ¼ �k

j
i P

jD j tð ÞW|

i ðx̂ tð ÞÞ � 2�1k
j
i
~W j
i tð Þ; i ¼ 1; 2

ð4Þ

The time-varying vectors D j 2 Rn; D j ¼ x j � x̂ j are the

identification errors used during the training procedure.

The parameters, k
j
i i ¼ 1; 2, are the constant parameters

used to adjust the learning rates. The time-varying terms

~W j
i represent the deviation from the time-varying weights

W
j
i and W

0;j
i : The last constant parameters are obtained by

a sequence off-line which is described in the next section.

Matrix Pj is the positive definite solution of the Riccati

equations defined by

2PAþ PjR jP j þ Qj ¼ 0

Rj ¼ W
0;j
1 ðK j

2Þ
�1½W0;j

1 �> þW
0;j
2 ðK j

4Þ
�1½W0;j

2 �>

þ K j
1 þ K j

3

Qj ¼ ð�f j1 þ kmaxð2K j
2Þl1ÞInxn þ Q

j
0

ð5Þ

Here K j
k 2 Rn�n; k ¼ 1; ::; 4 are positive definite matrices.

The constant �f j1 represents the upper bound for the

approximation error obtained as a consequence of fixing

the number of weights in the CoNN structure. The matrices

W
0;j
1 and W

0;j
2 are the initial conditions of weights used in

the first signal within each class j. The matrix, Q
j
0, is a

positive definite matrix used to provide the asymptotic

stability to the classifier structure. In fact, it must be

selected (over a large set of possible values) just to ensure

the existence of the solution for the Riccati equations.

These results give the theoretical support to ensure that the

CoNN algorithm may be used to classify the EKG signals.

The classifier considers the evolution of the individual

performance indices

J j t ¼ lTkð Þ :¼
Zt¼lTk

t¼ l�1ð ÞTk

D jðtÞ
�� ��2dt;

1� l�N

ð6Þ

Therefore, the class j�ðnÞ selected by the classifier is

determined by j�ðnÞ ¼ j such that Jj�ðt ¼ TÞ ¼

min
j
J j t ¼ Tð Þ is attained at each t ¼ nTk where Tk is the

size of the signal window to be analyzed and T is the total

time of the signal considered to be studied. The selection of

the period of time Tk is not a simple task because this value

defines the number of samples that should be taken into

account to obtain the classification. Some results can be

consulted in the literature regarding how to select the best

window size for different pattern recognition methods.

Nevertheless, their application on the problem considered

in this study is still a matter of investigation.

2.2 Off-line training of the CoNN

Learning laws proposed in (4) require the term ~W j
i tð Þ which

depends on W
0;j
i . These constant values must be adjusted by

preliminary off-line matrix identification algorithms. These

algorithms use the least mean square method. To solve this

part of the training procedure, a set of several EKG signals

were selected to obtain W
0;j
i : Details of the matrix least

mean square can be found in [1] where the convergence

analysis as well as the identification algorithm is described.

The training process was completely developed on a

personal computer implementing MATLAB 2014b. As

usual in the k-fold cross-validation method, the number of

folders was fixed to 5 to analyze the collected EKG signals

that were used in this part of the off-line training method.

Two different numerical representations were evaluated:

the first one used float variables (full precision) to represent

all the weights, and the second one used 16-bit fixed point

variables. This strategy was used for both the off-line and

online training algorithms. We used off-line training pro-

duced weights to set the classifier connection matrix. On

the other hand, the continuous training process proposed in

(4) yields to the online classification of EKG signals.

As mentioned before, the weights W
0;j
i contain the cor-

responding specific characteristic for each EKG class cor-

responding to normal and abnormal signals. To get the
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weights that represent each class, 37 of the 74 samples of

the ARFCT, 37 of the 75 samples of the APC, 37 of the 100

samples of the FUSION, 37 of the 100 samples of the

NORMAL, 37 of the 75 samples of the SVT, 37 of the 100

samples of the STCH, 37 of the 100 samples of the SVPB,

37 of the 100 samples of the TCH and 37 of the 75 PVC

were used in the off-line training process.

2.3 Validation of CoNN classification process

In order to validate the capacity of the CoNN to classify the

EKG signals, the regular k-fold cross-validation (k-cv)

method was implemented. Since the k-cv process is not an

exhaustive cross-validation method, the data were split into

(80/20) training and validation samples with some prede-

fined ratio. Validation samples were used to estimate the

prediction error. In the k-cv method, a set of sample Sn is

uniformly and randomly partitioned into k-fold with similar

sizes q ¼ fq1; :::; qkg:
Let Si ¼ Snnqi be the complement data set of qi. Then,

all the samples belonging to Si are used as training data.

This particular cross-validation procedure is repeated

k times (the number of folds), with each of the k subsam-

ples used exactly once as the validation data. The complete

set of k results obtained from the folds is averaged to

produce a single estimation.

Indeed, the cross-validation algorithm G �ð Þ induces a

classifier from Si; defined by wi ¼ G Sið Þ; where the pre-

diction error based on qi is estimated. So the general pre-

diction error �̂k Sn; qð Þ based on the classifier w ¼ G Snð Þ that
uses the entire set of samples is estimated as follows [27]

�̂k Sn; qð Þ ¼ 1

n

X
i¼1

k X
x;cð Þ2qi

1 c;wi xð Þð Þ

where n is multiple of k, 1 i; jð Þ ¼ 1 if i 6¼ j and zero

otherwise. This error is the average of errors committed by

wi in their corresponding partitions qi: In particular, the so-

called fivefold cross-validation was used to perform the

validation procedure of the signal classifier proposed in this

study. An additional general validation measure was per-

formed by using a modified version of signal-to-noise-plus-

distortion ratio (SNDR). This measure was following the

next mathematical structure for each class

Qj ¼ 20 log J j t ¼ lTð Þ
� ��1

Zt¼lTk

t¼ l�1ð ÞTk

D jðtÞ
�� ��2dt;

0
B@

1
CA ð7Þ

SNDR introduces a normalized method to characterize the

classification accuracy. This measure can be considered an

amplitude independent quality measure. So, their results

can be trusted more than the one presented in (6).

3 Database description

To test the CoNN classification capabilities, the MIT-BIH

Arrhythmia database and the European ST-T database were

elected as information sources. Due to their availability and

full detailed description of each beat, both databases are

recommended in the American National Standard for

Testing and reporting performance results of cardiac

rhythm and ST segment. The MIT-BIH Arrhythmia data-

base is described in [13, 24], and the European ST-T

database is described in [13, 30]. Both databases have been

used on several occasions by different research groups

[6, 22] which allows their results for the comparison of the

performances of the proposed classification algorithm

based on CoNN.

The MIT-BIH Arrhythmia database contains 48 half-

hour records of ambulatory EKG recordings obtained from

47 subjects. The EKG data were digitized at 360 samples

per second per channel with an 11-bit resolution over a 10

mV range. Two or more cardiologists independently made

annotations on each record. Disagreements were resolved

to obtain the computer-readable reference annotations for

each beat (approximately 110,000 annotations in all)

included with the database.

The European ST-T database consists of 90 annotated

excerpts of ambulatory ECG recordings from 79 subjects.

Each record is two hours in duration, sampled at 250

samples per second with 12-bit resolution over a nominal

20 mV input range. Annotations were made by two car-

diologists that worked independently to annotate each

record beat by beat.

To test the proposed algorithm, eight types of arrhyth-

mia (ARFCT, APC, FUSION, SVT, STCH, SVPB, TCH

and PVC) and normal EKG rhythm samples were taken

from both databases. For training and validation, only the

fragments of signals that contain the arrhythmia episodes

and normal EKG were considered. These signals are fil-

tered by the regular analog filters sequence. No additional

digital filters applied over the EKG signals.

In order to evaluate the classification capacities of the

algorithm presented in this study, a set of evaluation tests

was proposed. A set of 799 signals was prepared artificially

according to the following procedure: consider a first signal

Si from a class Ci and a second one Sj from a class Cj; the

hybrid signal Sij was generated as the convex combination of

Sij ¼ kSi þ ð1� kSjÞ:Then, these signals were tested on the

parallel arrangement of trained CoNN. For this particular

analysis, k ¼ 0:8 meaning that 80% of a signal belong to a

class Ci was combined with a 20% of a single belonging to a

class Cj. A second round of analysis considered the analysis

of borderline signals using k ¼ 0:7: After the total evalua-

tion of classification process, the CoNN-based classifier
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achieved a 93.8% of correct classification for both data-

bases. This result shows the detectability capacity of the

classifier proposed in this study.

To test the classification capabilities of the proposed

identifier, the negative prediction value (NPV), positive

prediction value (PPV), true positive rate (TPR) and

specificity (SPC), where calculated in order to obtain the

confusion matrix of the classifier. These values are calcu-

lated according to the following equations:

NPVð%Þ ¼ TrueNegatives

ðTruePositivesþ TrueNegativesÞ � 100

PPVð%Þ ¼ TruePositives

ðFalsePositivesþ TruePositivesÞ � 100

TPRð%Þ ¼ TruePositives

ðTruePositivesþ FalseNegativeÞ � 100

SPCð%Þ ¼ TrueNegatives

ðTrueNegativesþ FalsePositiveÞ � 100

ð8Þ

where true positives are the total number of signals that

were correctly classified in the corresponding class, true

negatives are the total number of signals that were not in

the class evaluated and they were clearly not classified in it,

false negatives are the total number of signals belonging to

the class evaluated, but they were considered as part of a

different class, and false positives correspond to the num-

ber of signals that belong to a different class, but they were

included in the evaluated class. The confusion matrix

allows a more detailed analysis of classification capacities

for the CoNN-based signal classifier.

We developed the study for all the databases described

in the manuscript. We only explained the description of

one single example just to avoid unnecessary repetition of

the same method. However, all the databases were ana-

lyzed in the same way.

4 Fixed point implementation of the classifier

The CoNN algorithm was initially developed in full pre-

cision (based on floating-point variables). A second anal-

ysis used the same model but was implemented in lower

precision (16-bit fixed point variables). Table 1 shows the

nature of weight signals employed for both the full and

lower precision. The notation h�,-1,-2i means signed

float represented by -1 integer digits with fixed number -2

of fractional ciphers.

Each CoNN was evaluated numerically during the

training phase using the following set of parameters k1 ¼

0:5; k2 ¼ 0:7;A ¼ �2:2;P1 ¼ P2 ¼ P3 ¼ P4 ¼ P5 ¼ P6 ¼
P7 ¼ P8 ¼ P9 ¼ 3:3, and the weights were initialized with

the following values W1ð0Þ ¼ 0:01 and W2ð0Þ ¼ 0:01: The

same set of parameters was used in either evaluation: in the

personal computer or the embedded system. For all the

experiments, the analysis time T was selected as 2.16 s.

The lower-precision representations presented in

Table 1 were chosen to keep the off-line classification

quality obtained when the float representation was con-

sidered. One may notice that this table shows the actual

simplification obtained when the classifier is imple-

mented in an embedded system instead of the personal

computer. Therefore, it is expect to obtain an efficient

pattern classifier based on CoNN not only from the

effectiveness of classification but the computational cost

also. Different lower-precision representations were

chosen in order to satisfy the classification purposes

described above.

A simplified version of the algorithms used to eval-

uate both the training and validation processes as well as

the implementation in the FPGA device is defined as

follows:

Table 1 CoNN input values for software and hardware

Inputs Floating P Fixed P

Sample Double h±i
W1 ARFCT Double h±,16.14 i
W2 ARFCT Double h±,16.13 i
W1 APC Double h±,16.14 i
W2 APC Double h±,16.13 i
W1 FUSION Double h±,16.14 i
W2 FUSION Double h±,16.13 i
W1 NORMAL Double h±,16.13 i
W2 NORMAL Double h±,16.12 i
W1 SVT Double h±,16.13 i
W2 SVT Double h±,16.12 i
W1 STCH Double h±,16.12 i
W2 STCH Double h±,16.11 i
W1 SVPB Double h±,16.12 i
W2 SVPB Double h±,16.9 i
W1 SVPB Double h±,16.11i
W2 SVPB Double h±,16.7 i
W1 TCH Double h±,16.11i
W2 TCH Double h±,16.5 i
W1 PVC Double h±,16.11i
W2 PVC Double h±,16.4i

The meaning of P ¼ h�I:F[ represents the number of positive/

negative () digits used to represent the integer (I) and floating

(F) sections of numbers used in the FPGA evaluation of the classifier

proposed in this study
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Algorithm 1: Training process
Data: Load the database sample and the X trajectory
Result: Training weights W j

1 (t) and W j
2 (t) for each class j

Initialization: Set the values for A, K1, K2, P and initial values for W1 and W2;
for 1 ≤ j ≤ Number of classes do

for 1 ≤ i ≤ Xj
Tr,i do

• Generate the values of parameters in the activation functions σj
i and φj

i for sample Sj
Tr,i

• Using the class information xj
i (t) assigned to Sj

Tr,i, determine Δj
i (t) = xj

i (t) − x̂j
i (t)

• Solve the learning laws for W j
1,i(t) and W j

2,i(t) based on Δj
i (t)

• Solve the estimation of dynamic class x̂j
i+1

end
Save the values of W j

1 (t) and W j
2 (t)

end

Algorithm 2: Validation process
Data: Load the database sample and final weights W j

1 (t) and W j
2 (t) for each class j

Result: Classification efficiency for each class j
Initialization: Set the values for A, K1, K2, P and values for W j

1 and W j
2 obtained after the training process;

Separate the set of signals in the database accordingly to the rules of the k-fold cross validation. For each stage in the
method, execute the following procedure: for 1 ≤ i ≤ Xj

Tr,i do
for 1 ≤ j ≤ Number of classes do

• Generate the values of parameters in the activation functions σj
i and φj

i for sample Sj
Tr,i

• Using the EKG register information uj
i (t) assigned to Sj

Tr,i, determine x̂j
i (t)

• Evaluate Δj
i (t) integrated in a time window form T − h to T where h is the length of EKG register

end
Select the minimum value of Δj

i (t) with respect to j Assign the class accordingly to the specific class j
corresponding to the minimum value calculated above

end

EKG signals were repeatedly tested in the classifier

presented in (3). The training process used the set of

signals according to the distribution presented in the

fivefold cross-validation method available in MATLAB.

The weights obtained in each training sequence was

recorded and used in the next trial. With the whole set of

EKG signals considered as training patterns, the final set

of weights was used to perform the validation stage.

These final trained weights were specified according to

the class of abnormality of each EKG signal. One may

notice that after the training process, the EKG signals

belonging to the training set were reproduced by the

detector with an accuracy of 99% Fig. 2. The signals

showed in this figure are just one example of how the

CoNN implemented during the training process can track

the EKG signals.

Two sets of training processes were executed: the first

one used the set of weights produced when full precision

numbers were used to execute the training process, while

the second one applied the set of weights represented by

fixed numbers.

These two sets of training processes were simulated on a

personal computer. Both training processes reproduced the

EKG signals with the same quality (Fig. 3). The similar

performance of both types of classifiers (with full and low

precision numbers) justifies the possibility of implementing

the signal classifier in an embedded system with fixed point

precision, such as the FPGA system.

The mean square error of each CoNN was evaluated for

each class of arrhythmia, and the same evaluation was done

to compare the performances between the identifiers running

on either floating or fixed point representations. Similar

performances were confirmed using the mean square error

information. Also, a transient period not longer than 0.5 s

was produced in all the training evaluations.

5 FPGA implementation

To implement the signal classifier in the embedded FPGA

system, a fixed point representation of both the detector

state and the identification error was developed. Table 2
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shows the values employed to implement the low precision

representation of the detector. The second column in this

table demonstrates that all variables executed in MATLAB

were used as floating-point variables. Nevertheless, the

third column demonstrates how the variable representation

was simplified to a signed (±) fixed point variable with the

16 bits to represent the integer part and variable number of

bits (showed in the third column of the same table after the

dot symbol). This analysis was necessary to attain the

FPGA implementation.

The implementation of the classification algorithm in

the FPGA system obeyed the following algorithm:

The detector implemented in the FPGA system was

compared online with a similar CoNN structure imple-

mented on a personal computer with double representation

of numbers. This comparison was feasible considering the

online Ethernet monitoring system of the Xilinx Zedboard

FPGA development board.

The CoNN identifier was implemented on a Xilinx

Zedboard development board. This board is based on the

ZynqTM-7000 AP SoC xc7z020-CLG484-1 processor. The

memory resources of this development board include a

512MB DDR3, 256Mb Quad-SPI Flash and a 4GB external

Fig. 2 Performance of the CoNN for ARFCT, FUSION, SVT, ST

change, SVPB, T-wave, PVC arrhythmias and normal EKG wave-

form, when classification sample is correct. The black line is the

desired output, the red line is the full precision NN output, and the

blue line is the low-precision NN output

Algorithm 3: Implementation process
Data: Load the database sample and final weights W j

1 (t) and W j
2 (t) for each class j

Result: Classification efficiency for each class j evaluated in embedded devices
• Initialization: Set the values for A, K1, K2, P and values for W j

1 and W j
2 and update them into the FPGA system by

using the targetupdater to setup the Zynq hardware;
• Select the code generation target (in the platform section, select the FPGA evaluation kit)
• Check the classifier design and convert it to fixed point equivalent numerical simulation
• Set the target interface (AXI-4 Lite interface)
• Build the project which can be executed into the FPGA system
• Transfer the transformed code into the target device (FPGA)
• Run the numerical simulation in external mode by transferring each signal into the FPGA device which is executing the

classifier with fixed weights
• Evaluate the classification process accordingly to the rules derived from the k-fold cross validation process
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SD card. The communication systems of this board include

the USB-JTAG programming, 10/100/1000 Ethernet, USB

OTG 2.0 and USB-UART.

The programming language used to implement the

16-bit fixed point representation of CoNN was VHDL. The

corresponding code was generated using the MATLAB

HDL Coder 3.5 and ISE Xilinx 14.4. An auxiliary AXI-4

interface was implemented to perform the Ethernet com-

munication between the computer and the development

board to follow online the time evolution of the CoNN-

based classifier. Table 3 shows the number of total registers

used to implement the identifier.

All the EKG signals from the database were evaluated

using the training algorithm in the FPGA system. They

were done according to the same distribution characterized

by the tenfold cross-validation algorithm. The identifier

evaluation for each EKG signal was simulated in the FPGA

system spending approximately 2.16s each.

6 Performance quality measurements

The full database was tested on the FPGA. Table 4 sum-

marizes the training results obtained from the FPGA sys-

tem. One would notice that a similar correct classification

percentage was achieved when float number precision was

used. This confirms the possibility of success when using

the detector in the selected, low-precision embedded

system.

In order to evaluate the classification capacities of the

algorithm implemented in the FPGA for this study, a set of

evaluation tests were proposed. A set of 300 signals was

prepared artificially according to the following procedure:

consider a first signal Si from a class Ci and a second one Sj
from a class Cj; the hybrid signal Sij was generated as the

convex combination of Sij ¼ kSi þ ð1� kSjÞ:Then, these
signals were tested on the parallel arrangement of trained

CoNN. In particular, for this particular analysis, k ¼ 0:7

meaning that 70% of a signal belong to a class Ciwas

combined with a 30% of a single belonging to a class Cj,

Fig. 3 Closer view of the

performance of the neural

network for APC (top, left-hand

side), STVA (top, right-hand

side), PVC (bottom, right-hand

side) arrhythmias and normal

EKG waveform (bottom, left-

hand side). On x-axis, samples

refers to the number of acquired

EKG measurements

Table 2 CoNN output values for software and hardware

Outputs Floating P Fixed P

Xe ARFCT Double h±,16.13i
Delta ARFCT Double h±,16.4i
Xe APC Double h±,16.13i
Delta APC Double h±,16.4i
Xe FUSION Double h±16.12i
Delta FUSION Double h±,16.4i
Xe NORMAL Double h±16.12i
Delta NORMAL Double h±,16.4i
Xe SVT Double h±16.11i
Delta SVT Double h±,16.4i
Xe STCH Double h±,16.11i
Delta STCH Double h±,16.4i
Xe SVPB Double h±,16.10i
Delta SVPB Double h±,16.4i
Xe TCH Double h±,16.10i
Delta TCH Double h±,16.4i
Xe PVC Double h±,16.10i
Delta PVC Double h±,16.4i

Table 3 Summary of registers used in the FPGA device

Type of register Used Total

Slice registers 471 10,6400

Slice LUTS 50284 53,200

Slice LUT–flip-flop pairs 50291 53,200
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the CoNN-based classifier implemented in the FPGA

achieved a 72.3% of correct classification for the database.

This result shows the detectability capacity of the classifier

proposed in this study.

Tables 5 contains the results of NPV, PPV, TPR and

SPC when the evaluation of classifier was executed over

the set of borderline signals considering that k ¼ 0:8:

According to the accuracy results as well as the predictive

analysis (with all results above 90%), the classifier pro-

posed in this study seems to be a reliable method to classify

certain characteristics in EEG signals.

Figure 4 depicts the comparison between the CoNN

identifier evaluated on a PC (Processor i7, 8 GB RAM and

64-bit operating system) and that on the Xilinx FPGA

Zedboard evaluation system. The signal classifier was

implemented as a composition of four parallel identifiers

with fixed set of weights. These weights were recovered

from the files recorded during the training process executed

on the PC system.

To perform a continuous evaluation of the CoNN

implement of parallel classifier, an artificial EKG signal

was developed. This signal, which was not in the database,

used partial information of signals obtained from the

database. The signal contained data from the EKG signals

in the following order: PVC, normal, APC and SVT.

The results of the classification system based on the

parallel structure of CoNN detector with fixed weights are

detailed in Fig. 4. The first signal showed at the top of the

figure demonstrates the signal constructed artificially. It is

clear that the error obtained in each classifier with fixed

weights is less when the corresponding part of the signal

contains the corresponding type of signal.

This part of the classifier evaluation was only tested in

the FPGA development board. The red arrow points to the

segments where the corresponding classifier represents the

corresponding type of arrhythmia. The blue lines show the

time when the artificial signal changes from one type of

arrhythmia to the other. This evaluation also details the

result of the continuous nature of the classifier proposed in

this study.

The classifier proposed in this study also considers a

different type of evaluation. It is not unusual for an incorrect

signal to appear in the electrophysiological signal due to an

incorrect measuring technique. It is even possible for a

different bio-potential to appear when acquiring the EKG

signal. Therefore, the classifier was tested on the PC and the

FPGA with an electromyographic signal as the input.

In all the cases, the error grew to a point beyond a

predefined threshold (2.0), which indicated that the input

signal was not one of the expected waveforms. This kind of

evaluation is not typically done by other researchers.

Finally, a comparison between the results presented in this

study and others introduced in different previous studies is

presented. Only the arrhythmia classification implemented

on an FPGA is presented in Table 5. This comparison is

valid because the closeness between the classifier evaluated

on the PC and the FPGA has already been proven.

Even when other work do not consider the same type of

arrhythmias for classification purposes, most of them take

into account PVC as part of the classifier evaluation. The

parallel CoNN classifier evaluated on the FPGA showed a

better performance than previous results (Table 6). The

described algorithm attained a total correct classification of

97.62% for all the different signals included in the database.

In order to elucidate the training process efficiency, the

quality measurement introduced in Eq. (7) was evaluated.

This value was obtained during the training as well as after

the testing procedures. Table 7 shows these values obtained

in both phases of the classification process.

The training process took 300 s long, while the valida-

tion was 60 s long. This is a very long period for training

and validation. This is an opportunity for developing more

efficient numerical methods to solve the pattern classifi-

cation problem by the method proposed in this study. On

Table 4 Training and

validation results for float

number precision

ARFCT APC FUSION NORMAL SVT STCH SVPB TCH PVC

Samples 74 75 100 100 75 100 100 100 75

Training 15 15 20 20 15 20 20 20 15

TPR 100% 100% 98.96% 98.98% 97.26% 95.6% 92.31% 99% 100%

SPC 75% 100% 33.33% 100% 100% 66.67% 88.89% 25% 50%

PPV 98.59% 100% 97.95% 100% 100% 96.7% 98.82% 96.9% 98.64%

NPV 100% 100% 50% 66.67% 50% 60% 53.33% 50% 100%

Table 5 NPV, PPV, TPR and SPC results for the borderline signals

with k ¼ 0:8 I

A*70%_P*30% P*70%_S*30% S*70%_N 30% N 70%_A*30%

NPV 78.57% 75.71% 74.24% 84.5%

PPV 21.42% 24.28% 25.75% 15.49%

TPR 94.82% 96.36% 89.09% 96.77%

SPC 88.23% 85% 85% 84.61%

* A, APC

* P, PVC

* S, STV

* N, Normal
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the other hand, the processing time in the FPGA system

was 3.4 s which is closer to the actual period selected for

each signal.

7 Conclusions

From the clinical point of view, automatic online detection

of different types of EKG arrhythmia may contribute to

immediate and better treatment of different heart diseases.

This study proposes a method to perform EKG signal

classifications online based on the application of parallel

CoNN. This structure was first trained on a PC simulation

system to prepare a set of weights which were used to

design the particular CoNN used to detect multiple dif-

ferent arrhythmia waveforms in parallel.

The classifier was then implemented on an FPGA evalu-

ation board and was validated using the fivefold cross-vali-

dation method. The classification TPR attained by the

classifier developed in this study was the best (98.01%)

among a selected set of similar classifiers, also implemented

in FPGA, described previously in some similar studies. This

valuewas obtained as the average of the accuracy percentage

obtained for each class considered in this study.

Fig. 4 From the top to the bottom, a EKG artificial signal generated

from patterns containing arrhythmias and normal EKG waveform.

The second trace is the error for detection of PVC events. The third

trace is the error for detection of normal EKG rhythms. Next is the

error for detection of APC events, and final is the error trace for

detection of STV

Table 6 Comparison of several classifier performances on MIT-BIH

database

FPGA Type Accuracy (%)

Cvikl et al. [8] Virtex-II PVC 92.36

Chang et al. [7] Virtex- 4 PVC 94.73

Jiang et al. [18] Virtex-II VEB 98.1

SVEB 96.6

Jewajinda et al. [17] Virtex- 5 VEB 97.7

SVEB 96.5

Armato et al. [3] Virtex- 4 PVC 95.43

This study Zedboarda APC 98.6

SVT 94.6

PVC 97.3

N 99.99

VEB ventricular ectopic beats, SVEB supraventricular ectopic beats),

N Normal
a For the full description, refer to Sect. 5

Table 7 Signal-to-noise-plus-distortion ratio applied to the DNN

output

Trajectory floating Trajectory fixed Floating/fixed

ARFCT dB dB dB

APC 98.64dB 90dB 198dB

FUSION dB dB dB

Normal 136.93dB 117dB 178dB

SVT 111.3dB 88.4dB 167dB

STCH dB dB dB

SVPB dB dB dB

TCH dB dB dB

PVC 167.22dB 134.4dB 195dB
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The classification technique developed in this study can

be extended to different problems such as (a) electroen-

cephalographic signal analysis that can be executed online.

This application can be used in the implementation of brain

machine interfaces focused on assisting patients with

movement limitations, (b) electromyographic pattern clas-

sifications that can used as input information in the control

loop of active orthosis that can used in different sections of

the human body or (c) online voice pattern classifier that

can be used in security and medical devices among others.
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