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Abstract Multidimensional networks, networks with

multiple kinds of relations, widely exist in various fields in

the real world, such as sociology, chemistry, biology and

economics. One fundamental task of network analysis is to

explore network structure, including assortative structure

(i.e., community structure), disassortative structure (e.g.,

bipartite structure) and mixture structure, that is, to find

structural regularities in networks. There are two aspects of

structural regularity exploration: (1) group partition—how

to partition nodes of networks into different groups, and (2)

group number—how many groups in networks. Most

existing structural regularity exploration methods for

multidimensional networks need to pre-assume the struc-

ture type (e.g., the community structure) and to give the

group number of networks, among which the structure type

is a guide to group partition. However, the structure type

and group number are usually unavailable in advance. To

explore structural regularities in multidimensional

networks well without pre-assuming which type of struc-

ture they have, we propose a novel feature aggregation

method based on a mixture model and Bayesian theory,

called the multidimensional Bayesian mixture (MBM)

model. To automatically determine the group number of

multidimensional networks, we further extend the MBM

model using Bayesian nonparametric theory to a new

model, called the multidimensional Bayesian nonparamet-

ric mixture (MBNPM) model. Experiments conducted on a

number of synthetic and real multidimensional networks

show that the MBM model outperforms other related

models on most networks and the MBNPM model is

comparable to the MBM model.

Keywords Multidimensional networks � Network
structure � Structural regularity exploration � Mixture

model � Bayesian nonparametric theory

1 Introduction

In recent years, with the rapid development of social net-

working sites (e.g., Twitter, Facebook, Flickr and You-

Tube), people are available to a large number of real-world

networks. Network analysis has attracted considerable

attention from more and more researchers in various fields,

including sociology [1], biology [2], ecology [3] and

engineering [4]. A network can be denoted as a set of nodes

with connections between them. Most existing research

focuses on a monodimensional network, that is, a network

is composed of a single type of relationship (i.e., dimen-

sion). However, in many real-world networks, there are

also many multidimensional networks where more than

one type of relationship (i.e., dimension) exist between

nodes. For example, in a social network, various types of
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relationships such as friend, colleague, schoolmate,

romance, neighbor and family may coexist between people.

One fundamental task of network analysis is to explore

network structure, that is, to find structural regularities in

networks, including assortative structure, disassortative

structure [5] and mixture structure [6]. The task of struc-

tural regularity exploration is to determine how to partition

the nodes of networks into different groups (group parti-

tion) and how many groups in networks (group number). In

the last decades, a large number of methods have been

proposed for group partition or group number. Most of

them focus on monodimensional networks, but only a small

number of them focus on multidimensional networks. The

main reason may lie in that methods for monodimensional

networks are not applied to multidimensional networks

directly.

A great challenge for structural regularity exploration in

a multidimensional network is how to aggregate informa-

tion of each dimension of the network. Recently, several

methods have been proposed for community detection in

multidimensional networks. For example, Zhu and Li

proposed a unified network transferred from multiplex

networks for community detection [7]. Tang and Liu pro-

posed a two-phase strategy for community detection in

multidimensional networks, called the principal modularity

maximization (PMM) [8]. Boden et al. introduced a mul-

tilayer coherent subgraph (MLCS) model and a best-first

search algorithm MiMAG to mine coherent subgraphs in

multilayer graphs [9]. Mucha et al. presented an extended

modularity framework to detect the community structure of

arbitrary multiplex networks [10]. All these methods

encounter a dilemma that they have to pre-assume the

structure type (e.g., the community structure), but this

information is, however, usually unavailable before the

structures have been found successfully. Recently, several

statistical inference-based models concentrate on network

analysis and the parameters of models can be used for

structure exploration. DuBois presented a generative

method for modeling multidimensional networks [11].

Sinkkonen presented an infinite mixture model for multi-

relational networks [12]. Xu et al. proposed a multi-rela-

tional Gaussian process model to learn multi-relational

networks [13]. Although these models have the ability of

handling multidimensional networks, they usually perform

poorly on many real-world networks for structural regu-

larity exploration.

In order to explore structural regularities in multidi-

mensional networks well without pre-assuming which type

of structure they have, in this paper, we propose a novel

feature aggregation method based on a mixture model and

Bayesian theory, called the multidimensional Bayesian

mixture (MBM) model. To get the MBM model, we first

extend the Newman’s mixture model (NMM) [5], a model

for structural regularity exploration in monodimensional

networks, for multidimensional networks, called the mul-

tidimensional Newman’s mixture model (MNM), and then

extend the MNM model using Bayesian theory. Further-

more, to automatically determine the group number of

multidimensional networks, we further extend the MBM

model using Bayesian nonparametric theory [14] to a new

model, called the multidimensional Bayesian nonparamet-

ric mixture (MBNPM) model. Experiments conducted on a

number of synthetic and real multidimensional networks

show that the MBM model outperforms other related

models on most networks and the MBNPM model is

comparable to the MBM model. As far as we known, the

MBNPM model is one of the earliest models that can

determine not only the group partition and but also group

number of multidimensional networks.

The remainder of this paper is organized as follows.

Section 2 briefly presents related work on the subject.

Section 3 presents the MBM model and a Markov chain

Monte Carlo (MCMC) method for approximate inference.

Section 4 presents the MBNPM model and a MCMC

method for approximate inference. Experiments are pre-

sented in Sect. 5. Section 6 draws conclusions.

2 Related work

2.1 Community detection in multidimensional

networks

Community detection in multidimensional networks needs

to aggregate the information of all dimensions. According

to the information aggregation way, existing methods for

community detection in multidimensional networks may

fall into two categories: network aggregation and feature

aggregation. The network aggregation methods first

aggregate all dimensions into a unified network and then

employ existing community detection methods on the

unified network. Battiston et al. [15] presented a simple

unified network in which two nodes are connected if there

exists at least one connection between the nodes in all

simplex networks. The method is easy to understand, but it

clearly loses most of the multiplex information. Tang et al.

[16] described another simple united network, called the

network integration, via calculating the average interac-

tions among nodes in multidimensional networks. The

limitation of this method is that it treats each dimension as

being equivalent, which may lose the difference of

dimensions. Aiming at solving this limitation, Zhu and Li
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[7] proposed a new unified network which takes both the

importance of simplex networks and node similarity into

consideration. Berlingerio et al. [17] presented a mapping

function considering the node neighbors to transform a

multidimensional network into a monodimensional one.

Wu et al. [18] proposed a co-ranking framework that makes

full use of the mutual influence between relations and

nodes to transform multi-relational networks to single-re-

lational networks. The feature aggregation methods first

extract features or clusters from each dimension and then

aggregate them for structure detection. Tang and Liu [8]

proposed a principal modularity maximization method to

handle community detection in multidimensional networks

via a two-phase strategy, where the first phase extracts the

structural features from each dimension and the second

phase concatenates these features to detect the represen-

tative communities. Boden et al. [9] first introduced a

multilayer coherent subgraph model to cluster nodes of

densely connected in a subset of the graph layers and then

used a best-first search algorithm to select the most inter-

esting, non-redundant final clusters. The focus of the

method is to identify meaningful groups rather than to

provide a group partition for all nodes. Mucha et al. [10]

defined interslice connections as connections across dif-

ferent dimensions and extended the modularity to simul-

taneously model interslice connections and intraslice

connections for community detection in a multiscale or

multiplex network. This method aims at providing a par-

tition for each dimension of the network rather than for the

multidimensional network. Carchiolo et al. [19] further

presented a method to improve efficiency of the extended

modularity. However, both the network aggregation and

feature aggregation methods focus on handling a network

with community structure.

2.2 Statistical inference-based models for structural

regularity exploration

Several statistical inference-based models have been pro-

posed for handling networks, which may fall into two

categories: (1) models special for structural regularity

exploration and (2) models designed for network analysis.

The models in the first category concentrate on exploring

structural regularities in monodimensional networks.

Newman and Leicht [5] first introduced a general definition

of network structure—a set of nodes that have similar

patterns of connection to others, and presented a proba-

bilistic mixture model to explore structural regularities in

complex networks. Shen et al. [20] proposed a stochastic

block-based model to show clear information on structural

regularities in complex networks. Based on the Shen’s

model, Chai et al. [6] first proposed a popularity–

productivity stochastic block model for general structure

detection via introducing popularity and productivity two

random variables and then extended it to identify structural

regularities in text-associated networks. Chen et al. [21]

presented a signed probabilistic mixture model to identify

network structure in signed networks, where the model can

identify assortative structure in a signed network with only

positive links and identify disassortative structure in a

signed network with only negative links. The main limi-

tations of these models lie in that they cannot handle

multidimensional networks in a direct way and need to pre-

specify the group number. The models in the second cat-

egory concentrate on network analysis, and the parameters

of models can be used to explore structure and link pre-

diction. DuBois and Smyth [11] presented a generative

method for modeling dyadic events which can be treated as

multidimensional networks as each event is denoted by a

triplet (sender, recipient, type). Khoshneshin and Street

[22] proposed a graphical model which use latent feature

networks (LFN) as a framework for multi-relational net-

work analysis. The two network analysis models also suffer

from a limitation that specifying the group number is

necessary. To allow a model to automatically determine the

group number, researchers recently tried Bayesian non-

parametric models. Kemp et al. [23] proposed an infinite

relational model to learn systems of concepts in relational

datasets, where object-feature data can be profitably

viewed as a relation between two sets of entities. Sinkko-

nen et al. [12] presented a simple infinite model for general

multi-relational data, where co-occurrences within a single

categorical variable can be viewed as multiple relations

between two sets of entities. Xu et al. [13] proposed a

multi-relational Gaussian process model to learn multi-re-

lational data. Although these models have the ability of

handling multidimensional networks, they usually perform

poorly on many real-world networks for structural regu-

larity exploration.

3 Multidimensional Bayesian mixture (MBM)
model

Generally, a multidimensional network with D dimensions

and N nodes can be represented as A ¼ fAð1Þ; . . .;AðdÞ;

. . .;AðDÞg. For the dth dimension, A
ðdÞ
ij ¼ 1; ð1� i; j�NÞ if

there is a link from node i to node j and 0 otherwise. And

we use L
ðdÞ
i to denote the out links of node i in the dth

dimension (i.e., a set of neighbor edges of node i in an

undirected network). In this section, we first extend the

NMM model to the MNM model for handling multidi-

mensional networks and then derive the MBM model from
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the MNM model using Bayesian theory. For convenience,

we only introduce them on directed networks in detail.

3.1 Multidimensional Newman’s mixture (MNM)

model

A directed monodimensional network with K groups (K is a

predefined number) can be generated by the NMM model

with two parameters uij 2 EU and hkj, where pk denotes the
probability of a node in group k (k 2 f1; 2; . . .;Kg) and hkj
denotes the probability of a link from a node in group k

connecting to node j, subjected to the normalization con-

straint
PN

j¼1 hkj ¼ 1. The vector hk represents the charac-

teristic of nodes in group k linking to other nodes.

According to hk, nodes connecting to other nodes in similar

patterns are grouped together. A network is generated in

the following way: For each node i and its links Li, (1) node

i falls into a group zi with probability pzi and (2) each link

Aij 2 Li selects node j with probability hzij. The probability
of a network A with N nodes can be written as

pðA; zjp; hÞ ¼ pðA; zjhÞ � pðzjpÞ ¼
YN

i¼1

pzi �
YLi

j¼1

hAij

zij

 !

ð1Þ

where zi 2 f1; . . .;Kg is a hidden variable that needs to be

inferred. The logarithm of Eq. (1) is as follows:

ln pðA; zjp; hÞ ¼
XN

i¼1

ln pzi þ
XLi

j¼1

Aij ln hzij

 !

ð2Þ

Because of hidden variables zi; i ¼ 1; . . .;N, parameters

pk and 1� i; j� n cannot be estimated using likelihood

maximization estimation. An expectation–maximization

(EM) [24] algorithm is proposed to estimate them. In the E

step, the expectation of Eq. (2) is:

L
�
¼
X

i;k

qik ln pk þ ln
X

j

Aij ln hkj

" #

ð3Þ

with

qik ¼
pk
Q

j h
Aij

kj
P

k pk
Q

j h
Aij

kj

; ð4Þ

where qik denotes the probability of node i belonging to

group k. In the M step, the parameters p and h can be re-

estimated by optimizing Eq. (3) as

pk ¼
P

i qik

N
; ð5Þ

hkj ¼
P

i AijqikP
j

P
i Aijqik

; ð6Þ

The hkj represents the link preference or feature of a

group connecting nodes. In a community structure,

nodes with more links connect the nodes of the same

group, leading to a group with larger hkj to choose nodes

within the group than other nodes; in a bipartite struc-

ture, nodes with more links connect across groups,

leading to a group with larger hkj to choose nodes in the

contrary group; in a mixture structure of community

structure and bipartite structure, some groups with larger

hkj to choose nodes within the group and other groups

with larger hkj to choose nodes in the contrary group. So

we use

M ¼

h11 . . . hk1 . . . hK1
. . . . . . . . .
h1j . . . hkj . . . hKj
. . . . . . . . .
h1N . . . hkN . . . hKN

2

6
6
6
6
4

3

7
7
7
7
5

as the network structural features.

The above model has extracted structural features from a

monodimensional network. For multidimensional net-

works, we follow the PMM model [8] to aggregate the

structural features of all dimensions as follows

M ¼ ½Mð1Þ; . . .;MðdÞ; . . .;MðDÞ�; ð7Þ

and perform k-means on the M to get the final node

partition.

In the NMM model, node i may not fall into group k

because of upi in Eq. (4) and will be wrongly assigned to

another group. Specially, when qi1 ¼ � � � ¼ qiK ¼ 0, node

i may not fall into any group, which results in that the

NMM model fails to handle this network. To avoid this

problem, we extend the MNM model using Bayesian

theory.

3.2 Multidimensional Bayesian mixture (MBM)

model

In a Bayesian setting, the model parameters will them-

selves be random variables, and prior distributions will be

placed over the variables. Currently, the predominant

choice is the use of conjugate priors. The conjugate prior

for parameters p and hk is the Dirichlet distribution

p � DirichletðaÞ; ð8Þ
hk � DirichletðbÞ; ð9Þ

where a and b are the Dirichlet hyperparameters.

The generative process for a network is summarized as

follows:
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1. Draw p from DirichletðaÞ;
2. For each group k in K groups;

Draw hk from DirichletðbÞ;
3. For each new node i:

(a) Draw a latent group zi from p;
(b) For each link in Li:

Draw an end node j from hzi .
Then, the probability of a network A with N nodes is

(refer to Eq. 1):

pðA; zja; bÞ ¼ pðA; zjp; hÞpðpjaÞPðhjbÞ ð10Þ

Due to the conjugacy between the Dirichlet and Multi-

nomial distributions, Eq. (10) can be simplified as:

pðA; zja; bÞ ¼ pðAjz; bÞpðzjaÞ ð11Þ

with

pðzjaÞ ¼
Z

pðzjpÞpðpjaÞdp ð12Þ

pðAjz; bÞ ¼
Z

pðAjz; hÞpðhjbÞdh: ð13Þ

3.3 Inference

The latent variable z of the Bayesian model (Eq. 11) cannot

be exactly inferred, but can be approximately inferred by a

wide variety of approximate inference algorithms such as

Laplace approximation, variational approximation and

Markov chain Monte Carlo (MCMC). In this study, we

follow Palla et al.’s work [25] to use MCMC for parameter

estimation, which follows an iterative procedure to achieve

posterior inference over the latent variable z by the Gibbs

and slice sampling. The sampler iterates as follows:

3.3.1 Sampling z

Gibbs sampling [26] is used to obtain samples of z. For

each node i, given the group assignment for all other nodes,

the group probability of the omitted node i choosing group

k is as follows:

pðzi ¼ kjzi;AÞ /
YLi

j¼1

m
j
k;i þ b

mk;i þ Nbþ j� 1
� nk þ a
N þ Ka

ð14Þ

where nk denotes the number of nodes belongs to group

k, mk;i denotes the number of out links from nodes that

belong to k except node i and m
j
k;i denotes the number of

out links from nodes that belong to k except node i to

node j. The probability pij 2 EP that has the same

meaning of qik(see Eq. 4) avoids the zero problem as
m

j

k;i
þb

mk;iþNbþj�1
[

m
j

k;i

mk;iþðN�1Þbþj�1
� 0.

3.3.2 Hyperparameters

We use slice sampling [27] for hyperparameters a and b
and limit them in (0, 1).

The parameter m
j
k denotes the number of out links from

nodes falling into group k to node j. It plays a similar role

as hkj in NMM. So we use

M ¼

m1
1 . . . m1

k . . . m1
K

. . . . . .
m

j
1 . . . m

j
k . . . m

j
K

. . . . . . . . .
mN

1 . . . mN
k . . . mN

K

2

6
6
6
6
4

3

7
7
7
7
5

as network structural features.

Algorithm 1 shows the procedure in full. For each

dimension, the initial group of each node is randomly

assigned, and the data are sampled after the log-likelihood

reaches a stationary state. While 20–30 iterations often

appear sufficient for convergence, we run 2000 iterations

for all networks in the following experiments. For each

dimension, the sample with highest log-likelihood corre-

sponds exactly to the expected ‘‘true’’ structural feature.
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The MBM model can also be extended to handle undi-

rected networks like the NMM model. The difference

between directed networks and undirected networks just

lies in that any link between two nodes is symmetrical in

undirected networks while not symmetrical in directed

networks. Therefore, in an undirected network, when node

i in zi connects to another node j, node j in zj also connects

to node i. Again, we use uzij
to denote the probability that a

node in group zi choosing to connect to node j. Aij 2 Li is

generated according to the multinomial distribution

MultinomialðhzijhzjiÞ, where hzijhzji denotes the probability

of an edge between node i and j, given nodes i and j in

groups T
ðtÞ
ij and zj, respectively. This probability is nor-

malized by the constraint
PN

i¼1

PN
j¼1 uzij

uzji
¼

PN
i¼1 uzji

h i
�
PN

j¼1 uzij

h i
¼ 1. Since both zi and zj vary

from 1 to K,
PN

i¼1 uzji
¼
PN

j¼1 uzij
. Thus,

PN
j¼1 uzij

¼ 1

exactly the same as in the directed case. The remainder of

the generative process follows as before.

4 Multidimensional Bayesian nonparametric
mixture (MBNPM) model

To allow the MBM model to determine the group number,

we use a common Bayesian nonparametric method, called

the Chinese restaurant process (CRP), for nonparametric

distribution of latent groups. The CRP, a vivid metaphor

for building a partition of nodes, assigns a new node (i.e., a

new customer entering the restaurant) to a new group (i.e.,

table) or the existing groups (tables) with a probability

below

pðzi ¼ kjz1; . . .; zi�1Þ ¼
a

i� 1þ a
k is a new group

nk

i� 1þ a
nk [ 0

8
<

:
;

ð15Þ

where nk denotes the number of customers already assigned

to table k and a is a hyperparameter. The characteristics of

the CRP are as follows: (1) nodes tend to fall into popular

groups and make the popular groups more popular, and (2)

new nodes always have a chance to fall into new groups.

These characteristics allow the group number K to

approach infinity, but only a finite number of groups are

used to generate the observed network.

In MBNPM, the generative process for a network is

summarized as follows:

1. Draw p from CRPðaÞ;
Draw a latent group zi from CRPðaÞ;

2. For each group k in 1 groups;

Draw hk from DirichletðbÞ;
3. For each new node i:

(a) Draw a latent group zi from p;
(b) For each link in Li:

Draw an end node j from hzi .
Then, the probability of a network A (refer to Eq. 11) is:

pðA; z;Kja; bÞ ¼ pðAjz; bÞpCRPðz;KjaÞ: ð16Þ

The hyperparameter a, the priori probability of p,
impacts on the number of groups. Although the group

number is potentially infinite, the CRP gives an extremely

uneven distribution over groups and ensures that the

number of groups K is much smaller than the number of

nodes N with an appropriate small value a. The hyperpa-

rameter b, the prior probabilities of h, describes the degree
distribution of a node within groups.

In the process of inference, the group probability of the

omitted node i choosing group k is changed as (refer to

Eq. 14):

pðzi ¼ kjzi;AÞ /
YLi

j¼1

m
j
k;i þ b

mk;i þ Nbþ j� 1
� Fðnk; aÞ
N þ Ka

ð17Þ

where Fðnk; aÞ ¼ nk, if nk [ 0; otherwise Fð0; aÞ ¼ a,
meaning that a new group is generated.

Algorithm 2 shows the procedure in full. The initial-

ization of K can be any positive integer. For the aggregated

structural features M, we adopt the density peaks (DP)-

based method [28] instead of K-means to automatically

determine the group number and group partition.
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5 Experiments

To investigate the effectiveness of the MBM and MBNPM

models for structural regularity exploration in multidi-

mensional networks, we compare them with other state-of-

the-art methods on nine synthetic and real multidimen-

sional networks, including a synthetic network and a real

network with community structure, a synthetic network

with tripartite structure, a real network with bipartite

structure, and a synthetic network and four real networks

with mixture structure. The nine networks are all multidi-

mensional networks with gold standard structures we can

collect from other studies. The detailed information of

these networks is shown in Table 1.

To test the performance of the MBM and MBNPM

models, we compare them with seven models for multidi-

mensional networks, including three network aggregation

methods (i.e., the Unify-Infomap (UI), Unify-OSLOM

(UO) and Unify-Louvain (UL) proposed by [7]), a feature

aggregation method (i.e., the PMM proposed by [8]), two

statistical inference-based models (i.e., the Marginal Pro-

duct Mixture Model (MPMM) proposed by [11] and the

simple relational component model (SRCM) proposed by

[12]) and MNM. The source code of the PMM model has

been released by the authors. We use the released source

codes in this study and implement UI, UO, UL, MPMM,

SRCM and MNM models by ourselves. For the PMM,

MNM, MPMM and MBM models that require a pre-

specified group number, we adopt the gold standard. As the

PMM, MNM and MBM may converge to local optima, we

run each model ten times and take the solution giving the

highest evaluation.

The performance of all models is measured by the

normalized mutual information (NMI) [29], which is

widely used for evaluating the structure detection:

PnmiðG;G0Þ ¼ 2MIðG;G0Þ
HðGÞ þ HðG0Þ ; ð18Þ

where G ¼ ðG1;G2; . . .;GKÞ are defined groups in a net-

work, G0 ¼ ðG0
1;G

0
2; . . .;G

0
KÞ are groups detected by an

Neural Comput & Applic (2018) 29:413–424 419

123



algorithm, HðGÞ and HðG0Þ are the entropies of G and G0

and MIðG;G0Þ is the mutual information between them. A

high Pnmi means a good detection. Specially, Pnmi = 1

means a perfect detection.

Before the comparison, we analyze the convergence of

the Bayesian mixture model and nonparametric Bayesian

mixture model on a monodimensional network. Figure 1

illustrates examples of the two models on the Syn-com four

dimensions shown in Fig. 2a–d (described in the following

section). As can be seen, the two models converge to a

stationary state within a few iterations on all networks,

which means they can quickly explore the structural fea-

tures. Compared with the nonparametric Bayesian mixture

model, the Bayesian mixture model shows more stable log-

likelihoods on the corresponding four dimensions, which

means it explores clearer structural features with pre-

specified group numbers. In addition, both the two models

show more stable log-likelihoods in the former one

dimension than the latter three dimensions as it is com-

posed of clearer structure.

5.1 Multidimensional networks with assortative

structure

Syn-com and Ckm, two multidimensional networks with

community structure, are used to test the capability of our

models on assortative structure detection. The Syn-com is a

common undirected synthetic dataset for community

detection in multidimensional networks [7, 8]. The network

has three groups, with each having 50, 100 and 200 nodes,

respectively. It is composed of four dimensions. For each

dimension, edgeswithin groups are randomly generatedwith

an interaction probability and noise edges randomly con-

necting two nodes are generated with low probability. As

shown in Fig. 2a–d, each dimension demonstrates partial

communities and four dimensions demonstrate the

whole communities. Ckm [30] is a real undirected

multidimensional network concerning the impact of 246

physicians adoption of a new drug. The network contains

three dimensions which are generated according to three

sociometric questions for each doctor: To whom did he most

often turn for advice and information? With whom did he

most often discuss his cases in the course of an ordinary

week? Who were the friends, among his colleagues, whom

he saw most often socially? All physicians come from four

towns in Illinois: Peoria, Bloomington, Quincy and Gales-

burg, which form a community structure. It is a sparse

multidimensional network without any edge noise. Table 2

shows thePnmi resultswhen applying ninemodels on the nine

networks, where the numbers in bold are the bestPnmis on the

networks. As can be seen, on the Sym-com network, both

MBM and MBNPMmodels achieve a perfect Pnmi of 1, that

is all nodes are partitioned into the correct groups, which are

the same as the MNM model and outperform other models;

on the Ckmnetwork, theMBMachieves aPnmi of 0.9385 and

the MBNPM achieves a Pnmi of 0.7568, which are inferior to

the UI model but outperform other models. We further

analyze the UI model which achieves a Pnmi of 0 and 0.9628

on the Syn-com and Ckm networks, respectively. The UI is a

model based on multilevel compression of random walks,

which is sensitive to network noise. The Syn-com is

accompanied with edge noise in each dimension and the

Ckm is a networkwithout any edge noise. So, it is reasonable

to us that the UImodel makes a tremendous difference on the

two networks. Overall, theMBMandMBNPMmodels show

comparable performance with other four models on the

multidimensional networks with assortative structure.

5.2 Multidimensional networks with disassortative

structure

Syn-tri and Elite, two multidimensional networks with

multipartite structure, are used to test the capability of our

models on disassortative structure detection. The Syn-tri is

Table 1 Detailed information of the nine networks used in our study

Name N D E K Directed Structure types Source

Syn-com 350 4 (17,858; 15,180; 10,728; 2716) 3 No Community Synthetic

Ckma 246 3 (898; 996; 846) 4 No Community Real

Syn-tri 150 4 (1274; 1258; 2056; 1288) 3 No Tripartite Synthetic

DutchEliteb 4747 4 (1090; 304; 104; 8260) 2 No Bipartite Real

Syn-mix 150 4 (1730; 1340; 1312; 1562) 5 No Mixture Synthetic

Lazegaa 71 3 (612; 855; 756) 2 Yes Mixture Real

Gd99b 234 4 (124; 102; 72; 308) 8 No Mixture Real

Bayb 125 2 (1969; 1938) 7 Yes Mixture Real

Emailc 4408 4 (154,1826; 137,104; 12,040; 12,504) 13 No Mixture Real

a http://moreno.ss.uci.edu/data.html
b http://vlado.fmf.uni-lj.si/pub/networks/data/
c http://www-poleia.lip6.fr/*jacoby/Research/research_en.html
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Fig. 1 The log-likelihood of the Bayesian mixture model and nonparametric Bayesian mixture model on the Syn-com four dimensions. a–
d Bayesian mixture model, e–h nonparametric Bayesian mixture model

Fig. 2 The adjency matrix of multidimensional networks. a–d Syn-com network, e–h Syn-tri network, i–l Syn-mix network
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an undirected synthetic multidimensional network with

tripartite structure to test the MBM model. The network

has 150 nodes, equally dividing to three groups. It is

composed of four dimensions, three of which demonstrates

a bipartite structure and one of which demonstrates a tri-

partite structure shown in Fig. 2e–h. Elite [31] is a real

undirected multidimensional network describing the rela-

tion between 3810 persons and 937 administrative bodies

in the Dutch government. The network contains four

dimensions characterizing four major relations: chairman,

vice-chairman, treasurer and lid/member. It is a bipartite

network with two groups: person and administrative body.

As shown in Table 2, on the Syn-tri network, both MBM

and MBNPM models achieve a perfect Pnmi of 1, which are

the same as the MNM model and outperform other models;

on the Elite network, the MBM achieves a Pnmi of 0.3467

and the MBNPM achieves a Pnmi of 0.1248, which are

higher than other models by at least 0.3144 and 0.0925,

respectively. The reason why the UI, UO, UL, PMM and

MPMM models are inferior to the MBM and MBNPM

models is that they have pre-assumed the community

structure on the two networks, whereas the MBM and

MBNPM models have not.

5.3 Multidimensional networks with mixture

structure

In addition to assortative structure anddisassortative structure,

other types of structures also exist in multidimensional net-

works. Syn-mix, Lazega [32], Gd99 [33], Bay [34] and Email

[35], five multidimensional networks with mixture structure,

are used to test the capability of our models on mixture

structure detection. The Syn-mix is an undirected synthetic

multidimensional network with a mixture of community

structure and bipartite structure. It contains 150 nodes, equally

dividing to five groups, two ofwhich form a bipartite structure

and other three of which form a community structure. The

network is composed of four dimensions as shown in Fig. 2i–

l. The Lazega is a real directed multidimensional network

collected from a study of corporate law partnership between

71 attorneys which was carried out in a Northeastern US

corporate law firm. The network is composed of three

dimensions, including strong-coworker network, advice net-

work and friendship network. They are, respectively, gener-

ated from the following three questionnaires: Would you go

through this list and check the names of those with whom you

haveworkedwith?Think backover the past year, towhomdid

you go for basic professional advice? Would you go through

this list, and check the names of those you socialize with

outside work? All attorneys are divided into two statuses:

partner and associate, forming a mixture structure. The Gd99

is a real undirected network characterizing 234 characters and

their relations in the long-running German soap opera called

‘‘Lindenstrasse.’’ The network contains four dimensions

describing four relations: family, business, friendship and

partner. All characters are labeled by eight colors: yellow,

green, blue, pink, white, orange, gray and black. The Bay is

real directed foodweb networks describing a 125-component

budget of the carbon exchanges occurring during the wet and

dry seasons in Florida Bay. Nodes in these networks represent

major components of the ecosystem, and edges represent the

transfers of material or energy between the components. All

the 125 nodes are categorized into seven species: primary

producers, invertebrates, fishes, birds, reptiles, mammals and

detrital compartments. The Email is a real undirected net-

works extracted from the emails of the authors of this article. It

is described by four different types of relations: authorship,

recipient, copy and sameday. All emails are categorized into

13 groups: administration, archives, articles, corbeillesauve-

garde, enseignement, inbox, mailinglists, personnel, projets,

recherche, sent, spam and trash. Table 2 illustrates the results

identifiedby the ninemodels.As can be seen, theMBMmodel

achieves the best Pnmis on the Syn-mix, Lazega, Bay and

Email networks and the MBNPM model achieves the best

Pnmis on the Syn-mix and Email networks. Specifically, On

the Syn-mix network, both MBM and MBNPM models

Table 2 Pnmis identified by nine models on the nine multidimensional networks

ID UI UO UL PMM MPMM SCRM MNM MBM MBNPM

1 0 0.9822 0.1946 0.9665 0.0074 0.5576 0.9727 1 1

2 0.9628 0.6485 0.5668 0.648 0.0944 0.6892 0.7164 0.9385 0.7568

3 0 0.0451 0.2745 0.0085 0.0027 0.0224 1 1 1

4 0.0233 0.0323 0.0228 0.0081 0.0016 0.0019 0.0182 0.3467 0.1248

5 0.8538 0.7252 0.3977 0.8013 0.1104 0.9057 1 1 1

6 0 0.5294 0.2171 0.0133 0.0002 0.0312 0.0162 0.5699 0.2521

7 0.2012 0.1098 0.2063 0.1087 0.0541 0.0469 0.1964 0.1942 0.1728

8 0 0.0419 0.3773 0.4443 0.1146 0.3158 0.3832 0.4726 0.3419

9 0.2746 0.2964 0.2257 0.3479 0.0016 0.2595 0.151 0.4078 0.3905

Bold values are the best Pnmis on the networks
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achieve a perfect Pnmi of 1, which are the same as the MNM

model and outperform other models; on the Lazega network,

the Pnmi of the MBM model is 0.5699, which is higher than

other models by at least 0.0405, and the Pnmi of the MBNPM

model is 0.2521,which is inferior to theUOandMBMmodels

but is superior to UI, UL, PMM, MNM, MPMM and SCRM

models; on the Gd99 network, the Pnmis of the MBM and

MBNPM models are 0.1942 and 0.1728, respectively, which

are inferior to theUI,ULandMNMmodels but are superior to

othermodels; on theBaynetwork, thePnmiof theMBMmodel

is 0.4726,which is higher than othermodels by at least 0.0283,

and thePnmi of theMBNPMmodel is 0.3419,which is inferior

to the UL, PMM, MNM and MBM models; on the Email

network, the Pnmi of theMBM is 0.4078, which is higher than

other models by at least 0.0599, and the Pnmi of the MBM is

0.3905, which is higher than other models by at least 0.0426.

Overall, the MBM and MBNPM models show comparable

performance with other four models on the multidimensional

networks with mixture structure.

5.4 Robust analysis

We also compare the nine models on synthetic multidimen-

sional networks except a certain dimension for robust analy-

sis. (C1, C2, C3, C4), (T1, T2, T3, T4) and (M1,M2,M3,M4)

are used to denote theSyn-com,Syn-tri andSyn-mixnetworks

except the first, second, third and fourth dimension, respec-

tively. Table 3 illustrates the results identified by the nine

models on the 12multidimensional networks, where numbers

in bold are the bestPnmis in the networks. It can be seen that the

MBM model achieves the best Pnmis on all networks except

the C1 and M1, and the MBNPM model achieves the best

Pnmis on all networks except theC4andT1.On theC1andM1,

the MBM model is inferior to the MBNPM but superior to

other models; on the C4 and T1, theMBNPM is inferior to the

MBMbut superior to othermodels. The reasonwhy theMBM

fails to achieve a Pnmi of 1 on the C1 and M1 is that the

structure of these networks is not clear; for example, the

bipartite structure is nonexistent inM1.Overall, theMBMand

MBNPM models outperform other models on all networks.

6 Conclusion

In this paper, we propose a novel feature aggregationmethod

based on a mixture model and Bayesian theory for multidi-

mensional networks without pre-assuming the structure

type, called the multidimensional Bayesian mixture (MBM)

model. We also further extend the MBM model using

Bayesian nonparametric theory to automatically determine

the group number, called the multidimensional Bayesian

nonparametric mixture (MBNPM) model. Experiments

conducted on a number of synthetic and real multidimen-

sional networks show that the MBM and MBNPM models

(1) show comparable performancewith other state-of-the-art

methods in networks with community structure or mixture

structure and (2) outperform other methods in networks with

disassortative structure. As future work, we will apply our

models to structural regularity exploration on real networks

and seek possible applications.
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