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Abstract To increase the quality of loans provision and
reduce the risk involved in this process, several credit scor-
ing models have been developed and utilized to improve
the process of assessing credit worthiness. Credit scor-
ing is an evaluation of the risk connected with lending
to clients (consumers) or an organization. The Gustafson-
Kessel (GK) algorithm has become one of the most valuable
tools for credit scoring. However, this algorithm demon-
strates a relatively poor capability to identify a subset of
features from a large dataset. Most methods that use the
GK algorithm require a predefined number of clusters.
This paper presents a new GK-based modified binary par-
ticle swarm optimization (MBPSO) approach to increase
the classification accuracy of the GK algorithm. The pro-
posed MBPSO consists of three parts. First, the figure of
particles is utilized to determine the optimal number of clus-
ters automatically and overcome the drawback of the GK
algorithm that requires a predefined number of clusters. A
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subset of features is identified because the same dataset may
contain influencing features or a high level of noise. The
two procedures are then combined in the same optimiza-
tion method to increase the classification accuracy of the
GK algorithm. Second, the updating function uses velocity
and position to update the next position for every parti-
cle in the swarm. Third, a kernel fuzzy clustering method
(KFCM) is used as the fitness function because this function
can analyze high- dimensional data. These modifications
are utilized as preprocessing steps before the classification
of credit data is performed. Internal measures of clustering
are conducted on Australian, German, and Taiwan stan-
dard datasets that contain 690, 1,000, and 30,000 instances,
respectively, with several feature properties. Results show
that the GK algorithm is good at separating the data into
clusters. Furthermore, the fuzzy Rand validity measures
of the three credit datasets derived by using the proposed
method of combining the GK algorithm with a MBPSO are
greater than the values of the two other compared methods.
This finding means that fuzzy partitioning (classification) is
robust therefore, the risk associated with loans provision can
be reduced when the proposed method is used.

Keywords Credit scoring · Gustafson-Kessel algorithm ·
Feature subset selection problem · Binary particle swarm
optimization

1 Introduction

The most successful operational research technique in the
financial sector is credit scoring [1]. One of the most cru-
cial procedures in a bank is credit evaluation, which is also
known as a credit management decision. This procedure
includes the collection and analysis of credit management
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decisions. This procedure involves collection and analyza-
tion of data and classification of different credit variables
to arrive at a credit decision [2]. Empirical credit scoring
has replaced judgment credit scoring. Empirical credit scor-
ing is essentially the method which produces a “score” that
a bank can use to rank its loan applicants or borrowers in
terms of risk. To build an empirical credit scoring, histori-
cal data and statistical techniques were used; credit scoring
tries to isolate the effects of various applicant characteristics
on delinquencies and defaults. For example, the different
between good and bad account [3]. Empirical credit scoring
is more formal and accurate than judgment credit scoring
so it has been improved based on the results of judgment
credit scoring. Different statistical and artificial intelligence
(AI) system techniques have been utilized to improve the
performance of empirical credit scoring models [3, 4], such
as discriminate analysis [5], linear probability, logit [6], and
probit models [7]. These statistical techniques are suitable
for identifying a linear relationship between independent
and dependent variables. However, when these variables
have non linear relationships, an AI technique such as a neu-
ral network is more appropriate than statistical techniques.
Examples of AI techniques include the Bayesian network,
support vector machine (SVM) and integer programming
[8], k-nearest neighbor (KNN) [9], and classification tree
[10]. These techniques are commonly used to model and
assess credit risks [11]. However, these methods possess
weaknesses. For example, representation of knowledge by
an artificial neural network (ANN)is difficult because an
ANN requires a large number of training samples and a long
learning time [12].

Clustering is the most recommended classification
method. Cluster analysis is a non-parametric statistical
method that can be used for credit scoring. One of its
principal advantages is that it does not assume presence
of a specific data distribution. Thus, it is suitable when
prior knowledge is insufficient. Cluster analysis is typi-
cally applied when no prior hypotheses exist. The method
is exploratory and identifies the most likely solution so it
is suitable for credit risk analysis [13]. In clustering, simi-
lar data points or elements are grouped into the same cluster
and different data points are placed into different clusters.
Clustering is performed through partitioning and hierarchi-
cal clustering. Partitioning clustering employs either the
hard or the fuzzy clustering technique. Hard clustering
assumes that each element of the dataset belongs to only one
cluster, whereas fuzzy clustering assumes that each element
(point) in a dataset could belong fully or partially to all or
several clusters. Fuzzy clustering is more flexible than hard
clustering and thus more suitable for real-world problems
[14].

The GK algorithm is a powerful fuzzy clustering tech-
nique that has been used in various applications, such as

image processing, data classification, and system identifi-
cation. The GK algorithm is similar to the fuzzy clustering
method (FCM) algorithm. The main difference between
them is how they calculate distances. The FCM algo-
rithm uses the square Euclidean distance measure, whereas
the GK algorithm uses the Mahalanobis distance mea-
sure. Mahalanobis distance employs a covariance matrix, in
which the clusters are in ellipsoidal, hyper-ellipsoidal, or
other forms. Clusters in the FCM algorithm are in a spher-
ical form, and the cluster shape does not change according
to the type of data.

In cluster analysis, one of the most challenging problems
is the number of clusters in a dataset. The number of clus-
ters is usually known or fixed in advance, and this value is a
crucial parameter for most clustering algorithms. However,
having a predetermined number of clusters is unrealistic
for many data analyses in the real world. Therefore, for
algorithms such as the GK algorithm, a cluster validation
technique needs to be used to determine the number of
clusters [14].

Clusters in high dimensions cannot be visualized because
high-dimensional data have their own distinct characteris-
tics. This impossibility makes the identification and defini-
tion of clusters within these data challenging [15].

Credit scoring databases are often large and contain
many redundant and irrelevant features. Classifying these
data is therefore demanding in terms of computation. This
difficulty can be overcome by using a feature selection
method.

This study proposes a modified binary particle swarm
optimization (MBPSO) algorithm to address the problems
of feature subset selection and determination of the number
of clusters in credit scoring data. Classification accuracy is
improved to build a simple and robust credit scoring model.
The most relevant features are selected, and an evolutionary
computing optimization-based approach is utilized. Binary
particle swarm optimization (BPSO) and kernel fuzzy clus-
tering are the sources of inspiration. Although the proposed
method is under BPSO, it is different from other BPSO
methods in terms of the representation of the positions of
particles (problems of feature subset selection and inte-
grating the number of clusters) and in terms of updating
the positions of the particles (inclusion/exclusion of fea-
tures and number of clusters). The proposed approach is
essentially a modification of the discrete PSO method [16].

The remainder of the paper is organized as follows.
Section 2 provides a brief background and review of prior
studies on feature subset selection and number of clusters.
Section 3 describes the proposed MBPSO+GK. Section 4
presents the GK algorithm. Section 5 shows the measures of
cluster validity. Section 6 shows the results of the proposed
MBPSO+GK and a comparison of these results with those
of two baseline algorithms, namely, BPSO+GK and GK.
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The conclusions and several recommendations for future
research are presented in Section 7.

2 Background and review of prior studies

2.1 Feature selection

Several methods have been proposed to improve feature
selection. These include filter and wrapper methods. Fil-
ter methods use factor, principal component, discriminant,
or independent component analysis to statistically test the
variables and identify the best features. These methods can
also use other distance and information measures for indi-
rect performance measurement. Filter methods assess the
key properties of the data and the properties of the classi-
fier. Hence, these methods are quick and straightforward.
However, filter methods are sensitive to redundancy [17].

By contrast, wrapper methods consider the accuracy of
the classifier in selecting the best features. Consequently,
the results are dependent on the type of classification algo-
rithm used. Given that the resulting subset of features is
closely linked to the classifier used, these methods are often
not generalizable. Another drawback of wrapper approaches
is that the search space for the selection of (n) features is 2n;
searching for features is therefore computationally expen-
sive [18]. Regardless of the approach adopted for feature
selection, the search strategy can significantly influence the
results. Many wrapper techniques have been utilized for
feature selection, but most of them tend to become stuck
in local optima [19]. Most wrapper algorithms are either
exact methods that apply the branch and bound principle
or “involve” methods that apply greedy sequential subset
selection, mathematical programming, nested partitioning,
and meta-heuristics [20]. Two examples of greedy meth-
ods are sequential forward and backward selection [21].
An example of mathematical programming is that proposed
in [22], which uses successive linearization and a bilinear
algorithm to select the feature subset through a parametric
objective function [22]. Meanwhile, the use of nested parti-
tion method was demonstrated in the work of [23], and this
approach was later extended to an adaptive version [24].

Another study proposed a stochastic gradient descent
algorithm, in which each feature is given a weight based
on its importance to classification to find the best subset of
features [25]. A comparative study of four feature selection
methods was presented, which use data mining approach
in reducing the feature space. The final results show that
among the four feature selection methods, the Gini index
and information gain algorithms perform better [26]. Var-
ious meta-heuristic algorithms have also been proposed to
improve feature selection. These include genetic algorithms
(GA), simulated annealing (SA), and PSO. For instance, a

GA was used in a previous study to optimize the feature
subset and effectively model the parameters for SVM; this
approach demonstrated good performance [27]. A method
of genetic algorithm (GA) based neural network was pro-
posed for feature selection [28]. In [29], the use of a particle
swarm optimization (PSO) and a genetic algorithm (GA)
(both augmented with support vector machines SVM) for
the classification of high-dimensional microarray data. An
SA approach was developed in another study to obtain the
parameters for feature selection in SVM [30]. The authors
named the approach SA − SV M . Furthermore, a hybrid
method that combines artificial bee colony optimization and
a differential evolving algorithm was proposed in [31] to
improve feature selection and enhance classification accu-
racy. The method was tested on 15 datasets from the UCI
repository and was determined to be successful [31]. This
review of relevant literature indicates that a global search
method is required to develop a successful feature selection
algorithm. Evolutionary computation techniques are neces-
sary because of their global search ability, and one of the
best techniques is the particle swarm algorithm [32]. In a
PSO-based approach, each particle moves toward its actual
best position, so the best position is determined by the full
swarm over several iterations. This concept is what guides
PSO toward the optimal solution and is the basis upon which
most types of PSO are developed [33]. For instance, the
PSOSVM model, which is a hybrid of discrete PSO and
SVM, was proposed to choose a appropriate feature subset
of simulated data [34]. A modified PSO algorithm was also
proposed to select a feature subset [35]. In another work,
four feature selection approaches for feature preprocessing
were combined; one of them is hybrid fuzzy a priori with
PSO [36]. Meanwhile, a weighted binary swarm optimiza-
tion method proposed for feature selection was modeled as
a discrete optimization task [37].

2.2 Number of clusters

In most clustering methods, the number of clusters is
already known. Thus, finding a way to enable an algorithm
to automatically estimate the number of clusters when it is
not known in advance remains a major challenge. A pre-
vious study attempted to overcome this problem [38]. In
this previous study, a dynamic clustering approach based
on PSO was proposed. A binary PSO was used to find the
best number of clusters. Then, the center of the selected
cluster was refined by K-means clustering. The authors
applied their approach called DCPSO to an unsupervised
image classification task with some success [38]. Another
promising method is that proposed by [39], in which the
classical PSO is modified to a kernel-induced similarity
measure instead of a sum of squares distance. The proposed
approach, which the authors named the multi-elitist PSO
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(MEPSO) method, can find the optimal number of clusters
automatically [39]. A clustering method that can deal with
different numbers of clusters has also been proposed; this
method combines CPSO and K-means algorithms [40].

An improved version was subsequently proposed and
called CPSOII. CPSOII, which is a combination of PSO and
a dynamic clustering algorithm, can automatically find the
best number of clusters and categorize data objects [41]. A
robust PSO-based clustering method that considers the local
density of data to measure how compact clusters are and that
can also automatically estimate the number of clusters was
put forward by [42] that method can deal well with noise.

Overall, this review indicates that most previous studies
did not use BPSO to select the feature subset and estimate
the number of clusters.

3 The proposed algorithm (MBPSO)

In BPSO, the position or state of each particle is a binary
that can be changed from 1 to 0 or from 0 to 1 [16]. Parti-
cle velocity is defined as the probability that the state could
change or mutate from 0 to 1 or vice versa. To discover the
optimal solution, each particle changes its direction during
its search for the feature space either because of its own par-
ticular best experience or cognitive learning (pbest) resulting
from the best experience of all the other particles (i.e., the
swarm’s collective social learning (gbest).

Each particle retains the ((pbest) value, which is the best
fitness value, at position (Pi) and the best value at posi-
tion (pbest). Each particle represents a candidate or solution
and is considered a point in a D-dimension space. It is
represented by its position and velocity.

In BPSO, the velocity of every particle is updated as
follows

vt
id = vt−1

id + c1r1
(
pt

id − xt
id

) + c2r2

(
pt

gd − xt
id

)
(1)

The changing positions of the particles are calculated by

update functions. For instance, if a particle s
(
vt+1
id

)
is

larger than a random number between 0 and 1,its posi-
tion is represented by 1 (i.e., the position is selected for

update).However, if s
(
vt+1
id

)
is smaller than a random num-

ber between 0 and 1,its position is represented by 0 (i.e., the
position is not selected for update) [43].

s
(
vt+1
id

)
= 1

1 + e−vt+1
id

(2)

where s is the sigmoid function.

If (rand < s
(
vt+1
id

)
then xid = 1 else xid = 0 (3)

d = 1, 2, . . . , D where c1 indicates the cognition learn-
ing and c2 indicates social learning. Usually c1 = c2 = 2,

and r1 and r2 are random numbers uniformly distribution
in U(0, 1). Also, the velocity of the dimension is limited to
vmax, and vmax is specified by the parameters set by the user
of the algorithm. Each particle then moves to a new potential
solution based on (3).

Notably, the update function of BPSO does not consider
the current position of a particle in a binary search space,
so the choice of the next position is not influenced by the
current position. Thus, velocity alone represents the parti-
cle, although the binary position already exists in the BPSO.
Therefore, we used velocity and position similar to the orig-
inal PSO. The update function of the original BPSO is
changed as follows:

xt+1
id = xt

id + vt
id (4)

If
(

rand<exp
(
xt+1
id −xt

id

))
then xid = 1 else xid =0

(5)

where exp
(
xt+1
id − xt

id

)
is the exponential function of the

particle in two successive steps. In our approach, first, the
number of particles required is set. Second, each particle’s
initial coding string is produced randomly. In the process of
selecting features, each particle is coded to mimic a chro-
mosome in GA. In other words, each particle is coded into
a binary alphabetical string x = a1, a2, ..., an, f1f2...fD ,
where the first section of the particle (a1, a2, ..., an) rep-
resents the numbers of clusters (0 or 1). The number of
maximum clusters is n, and the numbers of 1s are counted
to represent the number of clusters, where D is the number
of features in the data. A bit value of 1 in second section
f1f2...fD denotes a selected feature and a bit value of 0
denotes an unselected feature.

If exp
(
xt+1
id − xt

id

)
is larger than a randomly produced

number that is within (0, 1),its position value fm, m = 1, 2,
. . . , D is represented as 1, which means that the feature is
selected because it is required for the next update.

In the proposed MBPSO, the combination of PSO with
a kernel-based fuzzy clustering algorithm allows the clus-
ter number to be determined and feature selection to be
performed. Each particle’s fitness is evaluated by KFCM.
When the fitness of a particle is better than its best fitness,
the position vector is saved for the particle. However, when
its fitness is better than the global best fitness, then the
position vector is saved for the global best. The particle’s
velocity and position are updated until the stopping criterion
or criteria are met. Using PSO can lead to fast convergence
during optimization. Moreover, precision can be improved
by combining PSO with a KFCM algorithm.

The MBPSO consists of the following steps:

Step 1: Initialize the particles in the swarm population to
provide them random positions and velocity vectors.
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Step 2: Measure the fitness of each particle position by
using the KFCM algorithm as follows:

1- Input the dataset X = (x1, x2, ..., xn) and
remove the features from the data as the prac-
ticals positions.

2- Identify the number of groups (clusters)from
the positions of the initial practicals and select
the stopping criterion(the number of iterations
or generations reach a prespecified value).

3- Choose the initial centers of the clusters from
the data randomly and calculate the partition
matrix uij by:

uij =

(
1

(1−K(xi ,cj ))
1

(m−1)

)

∑k
j=1

(
1

(1−K(xi ,cj ))
1

(m−1)

) (6)

where

K(x, c) = φ(x)T φ(c) (7)

and is an inner product kernel function if
we adopt the Gaussian function as a kernel

function, i.e., K(xi, cj ) = exp
(
−|xi−cj |2

σ 2

)
.

Since σ is presented as a dispersion, the
sample variance is used to estimate σ 2 with

σ 2 =
∑n

j=1(xj −x)2

n
, x =

∑n
j=1 xj

n
.

4- Update the center matrix cj by the formula:

cj =
∑n

i=1 um
ijK(xi, cj )xi

∑n
i=1 um

ijK(xi, cj )
(8)

where i = 1, 2, ..., n, j = 1, 2, ..., k, and m =
2 is the fuzziness parameter.

5- Calculate the objective function of each par-
tition and select the minimum value for the
fitness function value of each particle.

J (X, U, C) =
n∑

i=1

k∑

j=1

(uij )
m | φ(xi) − φ(cj ) |2

(9)

where

| φxi −φcj |2= K(xi, xi)+K(cj , cj )−2K(xi, cj )

(10)

6- For convergence, test if the termination toler-
ance satisfies the following: ||CI − CI+1|| ≤
ε where I is the iteration number.

7- Select the particle that has the minimum fit-
ness function value as the local and global
solution.

Step 3: Calculate the velocity of each particle for the next
update.

Step 4: Move each particle to its next updated position
according to (4, 5) and return to step 2 if the best
position has not been found.

Step 5: Stop the algorithm if the stopping criterion or cri-
teria are satisfied or if the number of iterations
reaches the predetermined maximum number.

4 The Gustafson –Kessel algorithm

The GK algorithm is a powerful fuzzy clustering tech-
nique that can be used in many applications, such as image
processing and classification. The algorithm estimates the
cluster covariance matrix, which enables it to match the
distance metric to the cluster shape [44], which is a key
advantage. The GK algorithm needs a set of n samples in
the p dimensional space and the number of clusters k as
the input parameters. A fuzzy partition of a dataset X can
be represented by a (n ∗ k)U = [uij ], where uij gives the
degree of membership that the ith object belongs into the jth
cluster, where (1 ≤ i ≤ n) and (1 ≤ j ≤ k).

The GK algorithm has several similarities with the FCM
algorithm. The main difference between them is that the
FCM algorithm uses the square Euclidean distance mea-
sure, and the GK algorithm uses the Mahalanobis distance
measure. The clusters formed by the FCM algorithm are
spherical, and the cluster shape does not change accord-
ing to the type of data. By contrast, in the GK algorithm,
the cluster shape can change according to the data and can
be created in several different forms, such as ellipsoidal
and hyper-ellipsoidal. Hence, the GK algorithm employs
a covariance matrix. The GK algorithm consists of the
following steps.

1- Dataset X = (x1, x2, ..., xn) is given.
2- Select the number of groups or clusters and the subset

of features by modify binary particle swarm optimiza-
tion (MBPSO) and select the termination condition.

3- Generate initial values for partition matrix Uij to
denote the degree of membership of xi to the cluster
j . This degree of membership satisfies the following
constraints

• 0 ≤ uij ≤ 1 for i ∈ 1, 2, ..., n, j ∈ 1, 2, ..., k

• ∑k
j=1 uij = 1 for i ∈ 1, 2, ..., n

4- Calculate the C-means matrix cj with a dimension (k×
p) where 1 ≤ j ≤ k, that represents the center of the
clusters by the following formula

cj =
∑n

i=1 um
ij xi

∑n
i=1 um

ij

(11)
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5- Compute the cluster covariance matrix by:

Fj =
∑n

i=1 um
ij (xi, cj )(xi − cj )

T

∑n
i=1 um

ij

(12)

6- Compute the Mahalanobis distance by:

d2
ij = (xi − cj )Aj (xi − cj )

T (13)

Aj defined as following:

Aj = Vj [det(Fj )]
1
p F−1

j (14)

where xi is the ith data, p is the number of features or
attributes, cj is the center of cluster j, Vj is the volume
of cluster, and j Vj = 1, F−1

j is the inverse of matrix
Fj .

7- Update the partition matrix uij by:

uij = 1

∑k
r=1

(
dij

drj

) 2
m−1

(15)

Where i = 1, 2, ..., n, j = 1, 2, ..., k and i �= r .
8- For convergence, test if the termination tolerance satis-

fies the following: ||UI − UI+1|| ≤ ε

5 Measures of cluster validity

5.1 Internal measures

Several internal indices are used simultaneously, and the
most important ones are described below.

1- The partition coefficient (PC) measures the amount of
overlapping between clusters and is defined as follows
[45]:

PC = 1

n

n∑

i=1

k∑

j=1

u2
ij (16)

where uij is the membership degree of the ith data point
in the jth cluster. The best algorithm for partitioning the
data is the one that produces the highest value of PC.

2- Classification entropy (CE) measures only the fuzzi-
ness of the cluster partitions, so it is similar to PC [45].

CE = −1

n

n∑

i=1

k∑

j=1

uij log(uij ) (17)

The best clustering algorithm is the one with the lowest
value of CE.

3- The partitions index (SC) [46] is the ratio between the
sum of the separation and the compactness of the clus-
ters. It is the sum of the cluster validity measures for

each individual divided by the fuzzy cardinality for
each cluster.

SC =
k∑

j=1

∑n
i=1 um

ij ||xi − cj ||2
∑n

i=1 uij sumk
d=1||cd − cj ||2

(18)

SC is useful for comparing different partitions with an
equal number of clusters. A good partition is obtained
by a low value of SC.

4- The separation index (S) [46] in contrast to the SC, uses
a minimum-distance separation for partition validity. A
lower value of S indicates a good partition.

S =
k∑

j=1

n∑

i=1
u2

ij ||xi − cj ||2

n mini �=j ||ci − cj ||2 (19)

5- The Xie and Beni’s (XB)index [47] aims to measure the
proportion between the total variation within clusters
and the separation of clusters. It is defined as follows:

XB =
k∑

j=1

∑n
i=1 um

ij ||xi − cj ||2
n minij ||xi − cj ||2 (20)

This index focuses on separation and compactness
properties. The clusters are well separated if XB has a
small value.

6- The Dunn’s Index (DI) [47] aims to recognize dense
and well-separated clusters. It is defined as the pro-
portion between the minimal intra-cluster distance and
the maximal inter-cluster distance. For each cluster
partition, this index can be identified as follows:

DI = min
j∈k

{
min

j∈k(i �=j)

{
minx∈ciy∈cj

d(x, y)

maxx,y∈k d(x, y)

}}
(21)

A high Dunn’s index denotes that the a desirable algo-
rithm is suitable for producing clusters.

7- Davies-Bouldin index (DB) [48] is defined as follows:

DB = 1

n

n∑

i=1

max
i �=j

(
di + dj

d(ci, cj )

)
(22)

where (k) is the number of clusters, cj and ci are the
centers of clusters, and respectively dj and di are the
average distances of all the elements in clusters (j) and
(i) respectively and d(ci, cj ) is the distance between
the centers ci and cj . The best algorithm is the cluster-
ing algorithm that produces a collection of clusters with
the smallest DB index.

5.2 External measures

External measures indicate the quality of the resulting par-
titioning; thus, they can be considered tools that can help
experts evaluate the clustering results. The fuzzy Rand
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Table 1 Dataset description

Dataset Classes Instances Features

Australian 2 690 14

German 2 1000 24

Taiwan 2 30000 23

index is a well-known measure of similarity between two
partitions of a dataset [49].

Given a fuzzy partition w = {W1, W2, . . . , Wk} of X,
each element x ∈ X can be characterized by its membership
vector

W(x) = (W1(x), W2(x), . . . , Wk(x)) ∈ [0, 1]k (23)

where Wi(x) is the degree of membership of x in the ith
cluster Wi . A similarity measure for associated membership
vectors can be formed as follows:

EW(x, x′) = 1 − ||W(x) − W(x′)|| (24)

where ||.|| is a proper metric on [0, 1]k . If W and Z are two
fuzzy partitions to generalize the concept of concordance, a
pair (x; x ′) is defined and the degree of concordance is:

conc(x, x′) = 1 − ||EW(x, x′) − EZ(x, x′)|| ∈ [01] (25)

the degree of discordance is

disc(x, x′) = 1 − ||EW(x, x′) − EZ(x, x′)|| (26)

The distance measure for the fuzzy partitions is then
defined by the normalized sum of the degrees of discordance
as follows:

d(W, Z) =
∑

(x,x′)∈X ||EW(x, x′) − EZ(x, x′)||
(N(N − 1)/2)

(27)

Likewise,

RE(W, Z) = 1 − d(W, Z) (28)

This condition corresponds to the normalized degree of concor-
dance and is a direct generalization of the original Rand index.
The Rand index is a similarity measure that assumes values
between 0 and 1. If the value is near 1 this means that ith the
cluster in W and the ith cluster in Z are identical thus W = Z.

6 Results and discussion

6.1 Data description

To evaluate the performance of the proposed approach,
Australian, German, and Taiwanese datasets from the UCI
machine learning repository were used. Table 1 shows the
characteristics of the datasets. The input variables were
scaled during the data preprocessing stage. The main advan-
tage of scaling is that it prevents attributes in greater numer-
ical ranges from dominating over those in smaller numerical
ranges. Another advantage is that it can prevent numerical
difficulties during calculation. Scaling of the feature value
can also help increase accuracy according to our experimen-
tal results. Generally, each feature can be linearly scaled to
the [0, 1] range by using the following formula

x1 = x − minx

maxx − minx

(29)

where x is original value, x1 is the scaled value, max is the
maximum value of feature x, and min is the minimum value
of feature x.

The following tables show the internal indices for the
clustering of the Australian, German, and Taiwanese credit
data. The first column shows the values of the indices of the
GK algorithm, and the second column presents the proposed
algorithm (GK+BPSO) with three cases. The first one is for
feature selection only, the second one is for determining the

Table 2 The validity measures of Australian credit data

Algorithms GK GK+BPSO GK+MBPSO

Validity measures F N F+N F N F+N

PC 0.7277 0.5000 0.3333 0.3333 0.9973 0.2766 0.8776

CE 3.3897 0.6931 1.0986 1.0986 0.0071 1.4169 0.2071

SC 2.9343 1.3830 2.3813 2.8578 1.1641 0.9723 0.8730

S 4.7605 0.6915 0.7938 0.9578 2.4276 0.2569 0.8540

XB 1.8017 0.3458 0.2646 0.8480 1.9358 0.0760 0.8086

DI 0.4938 0.0065 0.0395 0.0231 2.5094 0.0191 0.0338

DB 1.4972 0.7322 0.7782 0.7782 0.7782 0.7782 0.6929

J (objective function) 94.24 185.95 150.92 139.9 74.281 51.55 45.02

No. iteration 31 22 20 16 16 13 12

No. clusters 2 3 3 5 5

Features selection 14 6 11 6 8
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Table 3 The validity measures of German credit data

Algorithms GK GK+BPSO GK+MBPSO

Validity measures F N F+N F N F+N

PC 0.5400 0.5000 0.2000 0.1667 0.7458 0.7066 0.9761

CE 2.6931 0.6931 1.6094 1.7918 0.4157 1.5919 0.6009

SC 4.7122 0.7108 2.3813 0.3901 1.7756 2.0262 0.0715

S 2.3600 0.3554 0.1589 0.0650 1.1608 1.0553 0.0054

XB 3.1800 0.1777 0.0318 0.9886 0.9339 2.0011 0.8080

DI 0.0790 0.3694 0.0892 0.0334 0.3078 0.4229 0.8145

DB 3.7400 0.7240 0.7117 0.7382 0.7387 1.7387 0.0159

J (objective function) 477.33 467.10 262.92 148.97 288.27 350.95 110.02

No. iteration 19 14 6 9 9 9 9

No. clusters 2 5 3 5 4

Features selection 24 9 13 13 10

number of clusters, and the third is for both feature selection
and determining the number of clusters. The third column
shows GK+MBPSO for the three cases.

Table 2 shows the values of the internal indices for Aus-
tralian data for GK, GK+BPSO, and GK+MBPSO. The
value of the first index (PC) for the GK+MBPSO algo-
rithm is near 1, which is greater than its value for GK and
GK+BPSO. The value of the second index (CE) for the
GK+MBPSO algorithm is less than the value for GK and
GK+BPSO. The values of the other indices (SC, S, and XB)
for the GK+MBPSO algorithm are lower than the values for
the GK and GK+BPSO algorithms. However, the value of
DI for the proposed method is greater than the values for the
other methods, and the value of DB for the GK+MBPSO
algorithm is lower than the values for GK and GK+BPSO
algorithms. This result means that the algorithms separated
clusters well. The proposed method determined that the
number of clusters is five, and it selected eight features.

Table 3 shows the internal indices for German data for
GK, GK+BPSO, and GK+MBPSO. The value of the first
index (PC) for the GK+MBPSO algorithm is near 1, which
is greater than its value for GK and GK+BPSO. The value
of the second index (CE) for the GK+MBPSO algorithm
is less than the value for GK and GK+BPSO. The values
of the other indices (SC, S, and XB) for the GK+MBPSO
algorithm are lower than the values for GK and GK+BPSO
algorithms. However, the value of DI for the proposed
method is greater than the values for the other methods, and
the DB for GK+MBPSO is lower than the values for GK
and GK+BPSO. This result means that the algorithms sep-
arated clusters well. The proposed method determined that
the number of clusters is four, and it selected 10 features.

Table 4 shows the internal indices for Taiwan data for
GK, GK+BPSO, and GK+MBPSO. The value of the first
index (PC) for the GK+MBPSO algorithm is near 1, which
is greater than its value for GK and GK+BPSO. The value

Table 4 The validity measures of Taiwan credit data

Algorithms GK GK+BPSO GK+MBPSO

Validity measures F N F+N F N F+N

PC 0.5277 0.6819 0.2009 0.3808 0.7622 0.6276 0.8082

CE 3.6931 0.4904 1.6072 1.2109 0.3822 1.0584 0.2423

SC 6.1690 4.4189 2.3873 2.3281 1.7746 2.0268 0.2071

S 8.1324 2.5224 5.1368 5.3894 4.1628 3.6466 1.0540

XB 3.5423 1.8456 1.0347 2.5067 0.9439 1.5700 0.9804

DI 0.0343 0.0027 0.0010 0.0016 1.8740 0.5329 0.7374

DB 1.8709 0.5849 0.5847 0.4172 0.5847 1.5847 0.3868

J (objective function) 155 244.88 162.92 163.30 150.23 140.25 90.02

No. iteration 30 25 16 41 40 17 20

No. clusters 2 5 5 4 5

Features selection 23 14 14 10 10
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Table 5 The fuzzy rand validity measure of three credit data

Data set GK GK+BPSO GK+MBPSO

Australian 0.8600 9517 0.9911

German 0.7888 0.8057 0.9955

Taiwan 0.8476 0.9022 0.9534

of the second index (CE) for the GK+MBPSO algorithm
is less than the value for GK and GK+BPSO. The values
of the other indices (SC, S, and XB) for the GK+MBPSO
algorithm are lower than the values for GK and GK+BPSO
algorithms. However, the value of DI for the proposed
method is greater than the values for the other methods, and
the DB for the GK+MBPSO algorithm is lower than that for
GK and GK+BPSO algorithms. This result means that the
algorithms separated clusters well. The proposed method
determined that the number of clusters is five, and it selected
10 features.

As shown in the summarized results, the proposed mod-
ified method (MBPSO) for determining the number of
clusters and for feature selection with the GK algorithm
(GK+MBPSO) exhibits the best performance for the three
datasets because it has a smaller distance function (objec-
tive function) and a smaller number of iterations for the
three datasets. A t test was conducted on the internal index
values of the proposed method (GK+MBPSO) and GK for
the three datasets. The results demonstrate that significant
differences exist between them at 95%, and the P value
of proposed method (MBPSO+GK) and GK for the three
datasets is 0.025, 0.033, and 0.043. As we compare with
method of [31] the number of iterations is 300 iterations and
repeated 10 times but our method do not exceed 40 itera-
tion for three datasets. The number of data in their method
is from 30–50 but our method the size of data 690,1000 and
30000.

Table 5 shows that the results of the fuzzy Rand valid-
ity measures for the Australian, German, and Taiwanese
credit datasets are 0.9911, 0.9955, and 0.9933, respectively.
The values of the (GK+MBPSO algorithm) are greater than
the values of the two other methods. This finding means
that fuzzy partition (classification) is robust, so the risk
associated with loans can be reduced with this method.

7 Conclusion

We proposed a new modified BPSO-KFCM method for
determining the number of clusters and for selecting fea-
tures in fuzzy data clustering. We developed and improved
the GK algorithm to increase classification accuracy for
cluster analysis. The three algorithms were applied to Aus-
tralian, German, and Taiwanese credit datasets, and their

performance was compared. The cluster internal validity
indices of the proposed method (GK+MBPSO) are better
than those of the other algorithms. The t test on the internal
indices of the proposed method (GK+MBPSO) demon-
strated that significant differences exist among the methods
at 95%. The results of the fuzzy Rand validity measures
show that fuzzy partition (classification) is robust, so the
risk associated with loans can be reduced with this method.
In future work, other validation measures can be utilized
to test the effectiveness of the proposed approach for clus-
ter analysis. Moreover, the modified BPSO-KFCM can be
improved to select the initial centers of clusters integrated
with feature selection.

The cluster internal validity indexes confirm that the per-
formance of the proposed algorithm (GK+MK) is better
than that of the GK and GKK algorithms. A fuzzy validity
index is applied in this paper for evaluating the fitness of
clustering to data sets.
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