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Abstract This paper explores the physical and computational
aspects of normally applied magnetic field on non-Newtonian
Prandtl-Eyring fluid flow over a stretching sheet. The Prandtl-
Eyring fluid is a non-Newtonian viscoinelastic fluid model
capable of describing zero shear rate viscosity effects.
Stretching of a sheet induces the flow (Couette flow). The
mathematical formulation of the problem gives a highly
non-linear system of partial differential equations. By means
of a scaling group of transformations, the partial differential
equations are transfigured into ordinary differential equation.
The implicit finite difference scheme Keller-Box is imple-
mented to solve the resulting equation. The expression for
dimensionless velocity is calculated numerically and inclusive
pictures of its physical characteristics are analyzed very con-
cisely and briefly. The influence of different pertinent param-
eters is displayed via graphs, which are plotted against varia-
tion in parameters. Computation of the skin friction coefficient
is accomplished, and effects of influential parameters are an-
alyzed via graphs and tables. The accuracy of the present
solution is certified by displaying contrast between present
and existing literature. It is important to remark that the results
have shown excellent agreement up to significant number of
digits.
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1 Introduction

The magnetohydrodynamics is a subdivision of fluid dynam-
ics in which properties of electrically conducting fluids are
analyzed. Naturally, this branch of fluid dynamics is very rich
i.e. many fluids like plasma, salt water and electrolysis are the
examples of magnetohydrodynamics. Also, this concept is
incorporated in many industrial and daily life-used devices
such as magnetohydrodynamic (MHD) pumps, MHD power
generator and electromagnetic propulsion. The astrophysics is
another branch of science which acquired benefits from this
feature of fluid e.g. MHD applied in interplanetary medium
and interstellar medium to control thermal equilibrium. In
aerospace engineering, angular velocities in inertial naviga-
tion systems are measured with magnetohydrodynamic sen-
sors very precisely. Thus, due to extensive use of MHD in
many fields, a lot of work in literature has been done which
addresses the examination of fluid under transverse magnetic
field. Mathematically, this phenomenon is expressed in the
composition of well-known Navier-Stokes equations in con-
junction with Maxwell equations. Alfven [1] did the initiative
work; he examined the physical aspects of magnetohydrody-
namics. Rossow [2] studied the boundary layer flow of elec-
trically conducting flow over a flat plate. They found that the
wall friction factor and wall heat flux are decreased when
relative motion between plate and magnetic field is not con-
sidered while reverse effects are recorded when relative mo-
tion is assumed. Abel and Mahesha [3] designed the problem
on MHD viscoelastic fluid under the effects of thermal con-
ductivity, non-uniform source and radiation. They studied the
behavior of a transverse magnetic field on temperature profile
in both prescribed surface temperature (PST) and prescribed
heat flux (PHF) cases. Shahzad and Ali [4] found an analytic
solution of the problem addressing the power law fluid flow
over a vertical stretched sheet under the impact of a magnetic
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field. Shahzad and Ali [5] extended their previous work by
taking convective boundary condition effects into account.
Ellahi [6] described the flow characteristics of MHD fluid
flow along with temperature-dependent viscosity effects.
Khan et al. [7] discussed the MHD Falkner-Skan flow with
convective boundary conditions. The convective flow of
MHD Jeffrey fluid over a stretched surface was investigated
by Jawad et al. [8]. Gul et al. [9] captured the thin film flow of
second-grade fluid in the presence of a transverse magnetic
field. The computations of dimensionless velocity and tem-
perature were obtained with the Adomian decomposition
method and optimal homotopy analysis method. The influ-
ence of the applied magnetic field on pseudoplastic type fluid
i.e. Eyring-Powell fluid over a stretching sheet, was analyzed
by Akbar et al. [10]. In this investigation, they computed the
solution via an implicit finite difference scheme and explored
that magnetic field strength as well as fluid parameter provide
an opponent to flow. The oblique stagnation point flow of
rheological fluid over a stretching sheet under combined in-
fluences of partial slip and MHD was deliberated numerically
by Nadeem et al. [11]. They concluded that both normal and
tangential components of fluid velocity diminish by varying
magnetic field while the impact is reverse for both skin friction
coefficients against the magnetic field. Malik et al. [12] exam-
ined the influence of transverse magnetic field on Powell-
Eyring nanofluid over a stretching sheet. The governing sys-
tem was solved by a shooting method, and the influence of the
Hartmann number was elaborated via graphs. They evaluated
that the Hartmann number reduces fluid velocity. Nadeem
et al. [13] formulated the problem on oblique stagnation point
flow of an MHD Walter-B type fluid. For solution purposes,
they employed the spectral quasi-linearization method as well
as the spectral local linearization method. They suggested that
magnetic field strength has converse effects on normal and
tangential wall shear stresses. Nawaz et al. [14] investigated
the Joule and Newtonian heating effects on MHD viscous
fluids over a stretching surface and established the comparison
between numerical and analytic solutions. The influence of
MHD on tangent hyperbolic fluid over a stretching cylinder
was elaborated very concisely by Malik et al. [15]. A numer-
ical solution was established via second-order implicit finite
difference scheme. In this investigation, they explored the fact
that consequences of transverse magnetic field are an oppo-
nent on local shear stress and fluid motion. Ellahi et al. [16]
studied the peristaltic motion of MHD Prandtl fluid through
tapered stenosis arteries and an analytic solution of the
governing problem is computed with the help of perturbation
technique. The similarity solutions of rotatingmicropolar fluid
flow between parallel plates with the impact of the magnetic
field was found and examined by Mehmood et al. [17]. The
expressions for non-dimensional velocity, micro-rotation and
temperature were computed by the improved homotopy anal-
ysis method i.e. OHAM. The flow of MHD Sisko fluid over a

stretching cylinder and heat transfer was investigated by
Malik et al. [18]. They prevailed that fluid parameter and
magnetic parameter have opposite impacts on fluid momen-
tum. Makinde and Animasaun [19, 20] discussed the
biconvection flow of MHD nanofluid over an upper surface
of paraboloid of revolution under the different thermo-
physical effects and computed the numerical solution via
shooting technique. Zeeshan et al. [21] found the numerical
solution of the problem addressing viscous fero-fluid over a
stretching surface under the impact of magnetic dipole and
thermal radiation. Salahuddin et al. [22] designed the problem
on Williamson fluid flow under the effect of normal applied
magnetic field. In this study, they considered the Cattanneo-
Christov heat flux model along with variable stretching. For
determination of solution, implicit finite difference scheme
Keller-Box has been employed. They concluded that the in-
fluence of the applied magnetic field is reverse in the case of
velocity and temperature. The influence of the fero-magnetic
field on viscoelastic fluid over a porous stretching sheet was
numerically investigated by Majeed et al. [23]. They explored
that the fero-magnetic field enhances the wall friction factor
while an opponent behavior is noticed in wall heat flux.
Majeed et al. [24] expand their previous investigation by con-
sidering unsteady viscoelastic fero-fluid flow past a stretching
surface. Maqbool et al. [25] discussed the Hall current effects
on MHD Falkner-Skan flow of finitely extensible non-linear
elastic Peterlin (FENE-P) fluid over a stretching surface. The
governing similarity equations were solved by ADM and re-
sults were compared with numerical solution. Ellahi et al. [26]
also studied the impact of Hall current on MHD Jeffrey fluid
flow through a non-uniform duct. Ellahi et al. [27] and
Rehman et al. [28] studied theMHD Powell-Eyring fluid flow
over stretching surfaces with different physical properties and
found numerical solutions of governing boundary value prob-
lems. The effects of variable viscosity on MHD pseudoplastic
fluids through different geometries were reported by Khan
et al. [29] and Malik et al. [30]. Ali et al. [31] and Jawad
et al. [32, 33] formulated the problem on axisymmetric flows
of Newtonian and non-Newtonian fluids under the impact of
magnetic field, partial slip and convective boundary condi-
tions. The numerical and analytical solution were calculated
and presented graphically against variations in pertinent pa-
rameters. Recently, Awais et al. [34] discussed the stagnation
point flow ofMHDSisko fluid flow over a stretching cylinder.
For solution purposes, a well-known shooting technique was
employed and they suggested that the Hartmann number im-
posed an opposing force on fluid velocity. Hussain et al. [35]
briefly explained the computational features of MHD Sisko
fluid over a stretching cylinder along with variable thermal
conductivity and viscous dissipation effects. The fifth-order
Runge-Kutta integration scheme was employed to solve
boundary value problems; they perceived that the magnetic
field parameter has opposite effects on fluid momentum and
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energy. Bilal et al. [36] found a numerical solution of 3D
MHD Williamson fluid flow over a non-linear bidirectional
stretching sheet. They prevailed that effects of the magnetic
field are similar on both axial and tangential velocity
components.

Fluids which are usually encountered in daily practice
do not behave like Newton prediction about fluids i.e.
their deformation rate does not vary linearly versus shear
stress. The common examples of this type of fluids are
blood, toothpaste, ketchup, paints, suspensions, lubri-
cants, silly putty etc. They are called non-Newtonian
fluids. Shear properties of Newtonian fluids are deliberat-
ed with deformation rate, but this concept is inadequate in
the case of non-Newtonian fluids. Additionally, it is a
well-known fact that collection of non-Newtonian fluids
contains different varieties such as shear thinning, shear
thickening, linear viscoelasticity, non-linear viscoelastici-
ty, rheopexy and thixotropy. Also, experimentally it is
found that every subclass of non-Newtonian fluids is re-
markable dissimilar physical and mechanical properties.
Thus, estimation of important fluid properties of non-
Newtonian fluids with single constitutive equations is use-
less. In general, non-Newtonian fluids are split into two
principle castes, viscoelastic and viscoinelastic. The pres-
ent investigation focuses on the examination of
viscoinelastic fluids. Mostly viscoinelastic fluids have
similar attributes at zero shear stress; on the other hand,
characteristics are exceptionally unfamiliar against ap-
plied stress. Thus, to scrutinize physical aspects of
viscoinelastic fluids more accurately, researchers pro-
posed numerous models: few among them are power
law model, Prandtl fluid model and Prandtl-Eyring fluid
model. The power law model predicts that the deforma-
tion rate and shear stress have a non-linear relation. The
Prandtl model suggests that the shear stress is proportion-
al to the sine inverse function of deformation rate while
the Prandtl-Eyring model proposed that the shear stress is
related to sine hyperbolic function of deformation rate.
The present analysis focuses on the Prandtl-Eyring fluid
model. Darji et al. [37] assumed the boundary layer flow
of viscoinelastic fluids and designed the similarity solu-
tions. Finally, they computed a numerical solution of the
Prandtl-Eyring fluid model equations and visualized that
fluid parameter effects are inverse on fluid velocity and its
slope. Akbar et al. [38] perused the biomechanical fea-
tures of Prandtl-Eyring fluid flow; in this inspection, they
surveyed the blood flow through tapered arteries. The so-
lution was approximated with regular perturbation method
for small Prandtl-Eyring fluid parameter, and they per-
ceived that both fluid parameters speed up the fluid move-
ment. Akbar [39] studied the peristaltic transport of
Prandtl-Eyring fluid in the small intestine with magneto-
hydrodynamics and convective boundary conditions. A

perturbation solution was determined for small values of
the fluid parameter and She detected that the behavior of
velocity is opposite near the walls for the Hartmann num-
ber and fluid parameter while both parameters slow the
fluid motion.

After surveying the above literature, it can be found that no
attempt has been presented to explore the effects of transverse
magnetic field on Prandtl-Eyring fluid over a stretching sur-
face. Thus, this analysis is proposed to overcome this deficien-
cy. Hence, the present analysis elaborates the physical charac-
teristics of MHD Prandtl-Eyring fluid over a stretching sheet.
The governing flow equations are solved with implicit finite
difference technique Keller-Box method. The parametric
study of all physical parameters on interesting quantities is
accomplished and displayed graphically.

1.1 Mathematical formulation

Consider the steady, incompressible, and two-dimensional
flow of non-Newtonian Prandtl-Eyring fluid over a stretching
sheet. The sheet is stretched linearly along the x direction, and
the fluid occupied the upper half-plane i.e. y > 0. A magnetic
field of strength B is exerted perpendicular to the flow; the
conservation laws of mass and momentum in usual notion are

∇:V¼0; ð1Þ

ρ
dV
dt

¼ divTþJ� B; ð2Þ

where V is the velocity field, ρ is the fluid density, T is the
Cauchy stress tensor and J is the electric current density. The
stress tensor is defined below:

T¼−pIþμS; ð3Þ

where p is the fluid pressure, I is the identity tensor, μ is the
dynamic viscosity and S is called the extra stress tensor of
non-Newtonian Eyring-Prandtl fluid, which is defined below:

S¼
ASinh−1

1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tr A2

1

� �r !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tr A2

1

� �r A1; ð4Þ

In the above equation, A and C are fluid parameters. After
inserting the above expressions and then employing boundary
layer approximations, the governing equations deduced to

∂u
∂x

þ ∂v
∂y

¼ 0; ð5Þ
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u
∂u
∂x

þ v
∂u
∂y

¼ A
ρC

∂2u
∂y2

−
A

2ρC3

∂u
∂y

� �2 ∂2u
∂y2

−
σB2

ρ
u; ð6Þ

along with the boundary conditions

u ¼ U xð Þ ¼ ax; v ¼ 0 at y ¼ 0 and u→0 at y→∞: ð7Þ

In the above system, velocity components are represented
by u and v; σ shows electrical conductivity whileU(x) denotes
the stretching velocity. The stream function is chosen for the
following form:

u ¼ ∂Ψ
∂y

; v ¼ −
∂Ψ
∂x

: ð8Þ

The governing flow equations are partial differential equa-
tions; this system is inverted into ordinary differential equa-
tions by following appropriate similarity transformations

η ¼
ffiffiffiffi
a
ν

r
y;Ψ ¼ ffiffiffiffiffi

aν
p

xf ηð Þ; ð9Þ

Here, η and f denote independent and dependent dimen-
sionless variables respectively and ν is kinematic viscosity.
Employing Eq. (9) into Eqs. (5)–(7), the mass conservation
equation is identically satisfied while the linear momentum
law transfigured into the following form

α f ‴−αβ f ″2 f ‴− f
02 þ f f ″−M f

0 ¼ 0: ð10Þ

The two-point conditions are reshaped to

f 0ð Þ ¼ 0; f
0
0ð Þ ¼ 1; f

0
∞ð Þ ¼ 0: ð11Þ

In Eq. (10), material parameters are denoted by α and β
while M exhibits the Hartmann number; these dimensionless
parameters are defined below:

α ¼ A
μC

; β ¼ a3x2

2C2ν
;M ¼ σB2

aρ
: ð12Þ

The entity of practical interest i.e. skin friction coefficient,
is defined as

C f ¼ τw
1

2
ρU2

: ð13Þ

Here, Cf is called the skin friction coefficient, and τw shows
the shear stress at the wall of the surface. The quantity τw is
defined as

τw ¼ A
C

∂u
∂r

� �
y¼0

−
A

6C3

∂u
∂r

� �3

y¼0

: ð14Þ

After incorporating the dimensionless variables in
Eqs. (13)–(14), the skin friction coefficient adapted the fol-
lowing form:

1

2
C fRe

1
2
x ¼ α f ″ 0ð Þ− αβ

3
f ″ 0ð Þ� �3

: ð15Þ

In the above equation, Rex is known as the Reynolds number.

1.2 Numerical solution

In the present study, the numerical solution of the governing
flow equation i.e. Eq. (10) along with boundary conditions
(Eq. (11)) is computed with an implicit finite difference
scheme called the Keller-Box method. This scheme is of sec-
ond order and unconditionally stable. Cebeci and Bradshaw
[40] utilized this procedure to solve the heat transfer problem.
In this method, first higher-order equations are redesigned into
first-order equations. For this aim, new dependent variables u,
v, and w are introduced in such a way:

u ¼ f
0
; ð16Þ

v ¼ u
0
; ð17Þ

w ¼ v
0 ð18Þ

After inserting the new variables into Eq. (10), it takes the
form defined below:

α 1−βv2
� �

v
0 þ fv−u2−M 2u ¼ 0: ð19Þ

In the second step, derivatives are approximated via second-
order central difference scheme. Initially, the net rectangle in the
x − η plane is divided into mesh points, described in Fig. 1.

x0 ¼ 0; xi ¼ xi−1 þ ki; i ¼ 1; 2; 3…I ;
η0 ¼ 0; xi ¼ η j−1 þ hj; j ¼ 1; 2; 3…J ;

ð20Þ

where ki is the difference between two consecutive x-points
while hj is the spacing between η values.

Equations (16)–(17) are converted into difference equa-
tions by using central difference derivatives at midpoint
(xi, ηj − 1/2):

f ij− f
i
j−1

hj
¼ uij þ uij−1

2
; ð21Þ

uij−uij−1
hj

¼ vij þ vij−1
2

: ð22Þ
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But Eq. (19) is changed into difference equation by approx-
imating derivatives at midpoint (xi − 1/2, ηj − 1/2)

α vij−v
i
j−1

	 

−
hj

2
αβ wv2
� �i

j−1=2

þ hj

2
f ij−1=2v

i
j−1=2−

hj

2
uij−1=2
	 
2

−
hj

2
M 2uij−1=2

¼ Lj−1=2; ð23Þ

where

Lj−1=2 ¼ −α vi−1j −vi−1j−1
	 


þ hj

2
αβ wv2
� �i−1

j−1=2−
hj

2
f i−1j−1=2v

i−1
j−1=2

þ hj

2
ui−1j−1=2
	 
2

þ hj

2
M 2ui−1j−1=2: ð24Þ

The right hand side of the equation i.e. Lj − 1/2 consists
known quantities.

After differencing, the boundary conditions take the fol-
lowing form:

f i0 ¼ 0; ui0 ¼ 1; uiJ ¼ 0: ð25Þ

The above system of difference equations i .e.
Eqs. (21)–(23) has nonlinearity of higher order. To solve this
non-linear simultaneous system, the well-known technique
named Newton’s method is applied. So, we have

f kþ1ð Þ
j ¼ f kð Þ

j þ δ f kð Þ
j ;

u kþ1ð Þ
j ¼ u kð Þ

j þ δu kð Þ
j ;

v kþ1ð Þ
j ¼ v kð Þ

j þ δv kð Þ
j :

ð26Þ

Incorporating the above expressions into Eqs. (21)–(23)
and retaining only linear terms in δ, the above non-linear sys-
tem is reordered to

δ f j−δ f j−1−
hj

2
δuj þ δuj−1
� � ¼ r1ð Þ j; ð27Þ

δuj−δuj−1−
hj

2
δv j þ δv j−1
� � ¼ r2ð Þ j; ð28Þ

a1ð Þ j−1=2δv j þ a2ð Þ j−1=2δv j−1 þ a3ð Þ j−1=2δ f j þ a4ð Þ j−1=2δ f j−1
þ a5ð Þ j−1=2δ uj þ a6ð Þ j−1=2δ uj−1 ¼ r3ð Þ j;

ð29Þ

where

a1ð Þ j−1=2 ¼ α 1−
1

2
βv2j−1=2

� �
−
hj

2
αβ vwð Þ j−1=2 þ

hj f j−1=2

4
;

a2ð Þ j−1=2 ¼ −α 1−
1

2
βv2j−1=2

� �
−
hj

2
αβ vwð Þ j−1=2 þ

h j f j−1=2

4
;

a3ð Þ j−1=2 ¼
hvj−1=2

4
; a4ð Þ j−1=2 ¼ a3ð Þ j−1=2;

a5ð Þ j−1=2 ¼ −
h
2
u j−1=2−

hM
4

; a6ð Þ j−1=2 ¼ a5ð Þ j−1=2;

ð30Þ

r1ð Þ j ¼ − f j− f j−1

	 

þ hj

2
u j þ uj−1
� �

; ð31Þ

r2ð Þ j ¼ − uj−u j−1
� �þ hj

2
v j þ v j−1
� �

; ð32Þ

r3ð Þ j ¼ −αhjwj−1=2 þ
hj

2
αβwj−1=2 v j−1=2

� �2− f j−1=2v j−1=2 þ uj−1=2
� �2 þMuj−1=2

h i
þ Lj−1=2; ð33Þ

while prescribed boundary conditions are altered to

δ f 0 ¼ 0; δu0 ¼ 0; δuj ¼ 0: ð34Þ

The system of equations i.e. Eqs. (27)–(29) is a linear sys-
tem. So for computation of solution, firstly this system is
converted into a matrix form. After conversion, its structure
is a block-tridiagonal matrix, which is defined below:

A1½ � C1½ �
B2½ � A2½ � C2½ �
− − −
− − −

− − −
Bj−1
� �

Aj 1

� �
C j−1
� �

Bj
� �

Aj
� �

0
BBBBBBBB@

1
CCCCCCCCA

δ1½ �
δ2½ �
−
−
−
δ j−1
� �
δ j
� �

0
BBBBBBB@

1
CCCCCCCA

¼

r1½ �
r2½ �

−
−
−
r j−1
� �
r j
� �

0
BBBBBBBB@

1
CCCCCCCCA
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A½ � δ½ � ¼ r½ �: ð35Þ

The components of the above tridiagonal system are de-
fined as

A1½ � ¼
0 1 0
d 0 d
a2 a3 a1

0
@

1
A ;

Aj
� � ¼

d 1 0
�1 0 d
a6ð Þ j a3ð Þ j a1ð Þ j

0
@

1
A ;

where j ¼ 2; 3; 4;…; J:

Bj
� � ¼

0 −1 0
0 0 d
0 a4ð Þ j a2ð Þ j

0
@

1
A ;

where j ¼ 2; 3;…; J :

C j
� � ¼

d 0 0
1 0 d
a5ð Þ j0 0

0
@

1
A ;

where j ¼ 1; 2;…; J−1:

δ1½ � ¼
δv0
δ f 1
δv1

0
@

1
A; δ j

� � ¼
δu j−1
δ f j
δv j

0
@

1
A

where j ¼ 2; 3;…; J :

and r j
� � ¼

r1ð Þ j−1=2
r2ð Þ j−1=2
r3ð Þ j−1=2

0
@

1
A where j ¼ 1; 2; 3;…; J :

For solution of this block-tridiagonal matrix, the Thomas
algorithm is employed. The convergence criterion of the com-
puted solution is that |δv0| is less than error tolerance. If the
computed solution does not hold the convergence criteria,
then values of dependent variables are revised by Newton’s
method and the procedure is repeated unless the solution sat-
isfied the criteria.

2 Results and discussion

In the present analysis, the flow of Prandtl-Eyring fluid over a
stretching sheet is investigated. The transverse magnetic field
is employed to control the momentum boundary layer. The
solution is found by employing the implicit finite difference
scheme Keller-Box method. To certify the precision of the
used method, a contrast is presented with previously reported
data i.e. Akbar et al. [10] and Malik et al. [15] via Table 1. It
could be seen that results are in good agreement.

In order to obtain a clear insight of the physical problem,
the results are debated with the aid of graphical illustrations.
The significance of pertinent flow parameters on fluid mo-
mentum and wall friction are depicted via Figs. 2, 3, 4, 5,
and 6. Additionally, variations in wall friction factor are

discussed numerically though Table 2. The illustration of
these results is elaborated briefly and concisely below.

Figure 2 demonstrates the velocity profile variations corre-
sponding to values of the Hartmann numberM= 0.1, 0.5, 1, 1.5
while retaining α = 5 and β = 0.4. This graph explained that the
velocity curves show declination versus independent variable η,
additionally strengthening the transversemagnetic field influence
velocity of the flow reduces. This result provides the strength to
the well-known fact that the magnetic field generates Lorentz
force, which dwindles the velocity profile f′(η).

Fluctuations in fluid velocity f′(η) against altering the
values of the Prandtl-Eyring fluid parameter α is elaborated
in Fig. 3 while fixed values are allotted to Hartmann number
M and fluid parameter β. This graph reveals that motion is
accelerated rapidly when the fluid parameter enlarges. The
result holds practically, because enhancement in fluid param-
eter causes decrease in viscosity i.e. less resistance is offered

Table 1 Comparison of wall shear stress by varying Hartmann number
Mwhile neglecting the influence of fluid parameters, i.e., puttingα = β =
0.

M Akbar et al. [10] Malik et al. [15] Present results

0 −1 −1 −1
0.5 −1.11803 −1.11802 −1.1180
1.0 −1.41421 −1.41419 −1.4137
5.0 −2.44949 −2.44945 −2.4495
10 −3.31663 −3.31657 −3.3166
100 −10.04988 −10.04981 −10.0500
500 −22.38303 −22.38294 −22.3835
1000 −31.63859 −31.63851 −31.6391
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Fig. 2 Contrast of fluid velocity curves for variation in Hartmann
number M = 0.1, 0.5, 1, 1.5 and keeping α = 5 and β = 0.4



to flow and alternatively momentum transportation
accelerates.

Figure 4 manifests the significance of fluid parameter β on
axial velocity f′(η); on the other hand, both parameters have
assigned fixed values i.e. α = 5 ,M = 3. It can be seen that
curves of velocity are overlapping on each other i.e. the ve-
locity profile has changed slightly due to variation of fluid
parameter β. Additionally, this figure described a decreasing
behavior of fluid velocity against higher values of fluid pa-
rameter β. This is due to the fact that fluid parameter β varies
inversely with momentum diffusivity. Finally, one can see that
a strong magnetic field (M = 3) decelerates fluid momentum
substantially.

Figure 5 expresses the attributes of both Hartmann
number M and Prandtl-Eyring fluid parameter α on wall
shear stress. This figure displays that in the curve corre-
sponding to α = 2 values of the skin friction coefficient
vary slightly against increasing values on M. On the other
hand, absolute values of the skin friction coefficient en-
hance rapidly versus M when α has allotted values 5, 7,
and 10. Also, this figure exhibits that both parameters
have significant dependence on each other. Additionally,
this graph shows that numerical values of wall friction
enlarge for higher values of both parameters.

Figure 6 depicts deviations in practically interested
quantity i.e. skin friction coefficient corresponds to
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altering values of Hartmann number M and fluid parame-
ter β; additionally, the value of α is fixed. The values of
wall friction changes very slightly versus increasing effect
of fluid parameter β while curves change rapidly against
Hartmann number M. Finally, it is concluded from the
figure that fluid parameter β declines the friction of wall
slowly.

The impact of existing parameters α, β, andM on the local
shear stress is exhibited via Table 2. The behavior of the skin
friction coefficient increases against α and M while its char-
acteristics are opposite when fluid parameter β enhances.

3 Conclusions

A theoretical investigation is designed to observe the impact of
normally applied magnetic field on Prandtl-Eyring fluid flow
over a linearly stretching surface. The governing equations of
the flow field are solved numerically with the efficient tech-
nique Keller-Box method. Observations are carried out and
reported by varying important flow parameters α, β, and M
against axial velocity and wall friction coefficient. The specific
findings derived from the present analysis are listed below:

& An appreciable growth has been noticed in the transporta-
tion of momentum against increment in fluid parameter α
while fluid parameter β decays the velocity at all points of
the flow domain.

& The strength of the magnetic field is counterproductive for
enhancement in fluid velocity.

& The effect of the magnetic field on local shear stress is
more prominent than both fluid parameters α and β.
Also, absolute values of the skin friction coefficient en-
hance by increasing fluid parameterα and Hartmann num-
ber M while numerical values of wall shear stress decline
versus fluid parameter β.
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