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Abstract Constraint check plays a central role in estab-
lishing generalized arc consistency which is widely used to
solve constraint satisfaction problems. In this paper, we pro-
pose a new generalized arc consistency algorithm, called
GTR, which ensures that the tuples that have been checked
to be allowed by a constraint will never be checked again.
For each constraint, GTR maintains a dynamic list of the
tuples that were checked to be allowed by this constraint
and check their validities to identify some values with sup-
ports. It is equipped with a mechanism avoiding redundant
validity checks. The basic GAC3 algorithm is employed to
find a support for the rest values and to add new tuples to
the dynamic list. The experiments show that maintaining
GTR during search saves a number of constraint checks. It
also brings some improvements over cpu time while solving
some CSPs with tight constraints.

Keywords Constraint satisfaction · Local consistency ·
Backtracking

1 Introduction

Constraint check plays a central role in arc consistency
(AC) [16]. Maintaining arc consistency (MAC) [15, 18] is
widely used to solve binary constraint satisfaction problems
(CSP). In non-binary CSPs, AC is replaced by generalized
arc consistency (GAC) [4]. An efficient MGAC algorithm

� Minghao Yin
ymh@nenu.edu.cn

1 School of Computer Science and Information Technology,
Northeast Normal University, Changchun, 130117, China

usually has two features: (1) the GAC algorithm it uses is
efficient, (2) it maintains few data structure during search.
GAC algorithms can be classified into the coarse-grained
and the fine-grained. The coarse-grained algorithms, such
as AC3 and its improvements, are based on constraint-
oriented propagation schemes. The latter [1, 3, 17] are based
on value-oriented propagation schemes. The fine-grained
algorithms usually maintain elaborate data structures dur-
ing search, so the coarse-grained GAC algorithms are more
efficient and more popular when being used in search. The
original AC3 (GAC3) algorithm has the worst-case time
complexity O(ed3) (O (er3dr+1)). By recording last sup-
ports, AC3.1 algorithm avoids some repeated constraint
checks and it has an optimal worst-case time complex-
ity O(ed2) [5], but MAC3.1 is inefficient due to its heavy
data structure. MAC3.2 [9] explores multi-directional sup-
ports, but it still maintains heavy data structures during
search. MAC3r algorithm [14] explores residue supports
which are not maintained during search, so it costs less time
than MAC3 and MAC3.1. Making use of multi-directional
residues, AC3rm algorithm [10] improves AC3r. MAC3rm
is efficient to solve CSPs, although its worst-case complex-
ity is O(ed3). This is because MAC3rm also maintains few
data structure during search. Exploring multiple residues,
MAC3rm2 [11] is more efficient than MAC3rm. All the
coarse-grained AC algorithms can be extended to GAC
versions.

In some problems, we may face tight constraints, such
as the constraint C10 in mknap-1-3 has a tightness higher
than 0.99 and the weightedSum constraints inmagicSquare1

problems have tightness higher than 0.95. The GAC algo-
rithms usually execute much more constraint checks to

1The two instances are downloaded from http://www.cril.univ-artois.
fr/∼lecoutre/benchmarks.html.
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enforce GAC on these tight constraints than dealing with
loose constraints. For example, themknap-1-3 instance con-
tains eleven 20-arity constraints and only one of them, C10,
has tightness higher than 0.99, the tightnesses of the other
constraints are between 0.25 and 0.47. We use MGAC3rm2
to solve mknap-1-3 and observe that the number of con-
straint checks executed on C10 is 1,067,710, whereas the
total number on all the other constraints is 40,744. The result
indicates that we should pay more attention to GAC algo-
rithms for tight constraints, especially for those processed
by a generic GAC algorithm. Although saving constraint
checks does not always save time [20], it is important to
save constraint checks in MGACwhen constraint checks are
relatively expensive. Some constraint checks are repeated
in coarse-grained MGAC and [14] we identify two types of
repeated constraint checks:

• Positive repeat: a constraint check for a tuple τ on a
constraint c is performed and it is allowed by c. Later in
the search, τ is still valid and it is checked again. Such
repeated constraint checks are called positive repeats.

• Negative repeat: a constraint check for a tuple τ on a
constraint c is performed and it is disallowed by c. Later
in the search, τ is still valid and it is checked again.
Such repeated constraint checks are called negative
repeats.

In this paper, we propose a new generic GAC algorithm,
called growing tabular reduction (GTR), which avoids all
positive repeats and some of the negative repeats. It ensures
that a tuple on a constraint cwill never be checked again if it
has been checked to be allowed by c. For each constraint c, it
maintains a dynamic list recording the tuples that have been
checked to be allowed by c. It first iterates over all active
tuples in the list and checks their validities. A tuple is valid
iff all the values in the tuple are present in the domains of
the corresponding variables. If a tuple in the list is valid, all
the values in this tuple have supports on c. Secondly, it uses
constraint checks to seek supports for those values that have
not found a support. If a new tuple is found to be allowed by
c, it will be added into the list of c. There is extensive redun-
dant work if we check all tuples in the list, so we propose
a method to avoid redundant validity checks in maintain-
ing GTR during search. An improved version, GTR2, is
also introduced. The experimental results show that, com-
pared with the classical coarse-grained MGAC algorithms,
MGTR algorithms are not efficient on binary instances,
but they save both constraint checks and cpu time on the
non-binary instances with larger arity constraint that are
tight.

This paper is organized as follows. Section 2 provides
some technical background about CSP. The GTR algo-
rithm and its improvement are introduced in Section 3.
Section 4 presents the discussions and some related works.

The experimental results and the analysis are in Section 5.
Finally, conclusion and future work are in Section 6.

2 Background

A constraint satisfaction problem (CSP) P is a triple P =
〈X,D,C〉 where X is a set of n variables X = {x1, x2...xn},
D is a set of domains D = {dom(x1), dom(x2)...dom(xn)}
where dom(xi) is a finite set of possible values for vari-
able xi , C is a set of e constraints C = {c1, c2 ... ce}. A
constraint c consists of two parts, an ordered set of vari-
ables scp(c) = {xi1, xi2 ... xir} and a subset of the Cartesian
product dom(xi1) × dom(xi2) × ... × dom(xir ) that speci-
fies the allowed (or disallowed) combinations of values for
the variables {xi1, xi2 ... xir}. |scp(c)| is the arity of c. We
use r to denote the arity of a constraint and d to denote
the domain size of a variable. An element of dom(xi1) ×
dom(xi2)×...×dom(xir ) is called a tuple on scp(c), denoted
by τ . τ [x] is the value of x in τ . The tightness of a con-
straint c is t/dr , where t is the number of disallowed tuples
on scp(c) and dr is the number of all tuples on scp(c). Ver-
ifying if a given tuple is allowed by a constraint is called
a constraint check and verifying if a given tuple is valid
is called a validity check (x, a) denotes the value a for
variable x.

Definition 1 (Generalized arc consistency [4]) Given a CSP
P = 〈X,D,C〉, a constraint c ∈ C, and a variable x ∈ scp(c),

• A value (x, a) is consistent with c iff there exists a valid
tuple τ allowed by c and τ [x] = a. τ is called a support
for (x, a) on c.

• A constraint c is generalized arc consistent iff ∀x ∈
scp(c), dom(x) �= ∅ and ∀a ∈ dom(x), (x, a) is
consistent with c.

• P is generalized arc consistent iff all the constraints of
C are generalized arc consistent.

To establish GAC on a constraint, GAC algorithms seek
a support for every value (x, a) on the constraints involv-
ing x and remove those values without any support on these
constraints. If the domain of a variable is empty, GAC fails.
To seek a support for a value on a constraint, the GAC-
valid scheme, iterating over valid tuples to find an allowed
one, is a universal technique for all kinds of constraints.
The MGAC algorithm, maintaining generalized arc con-
sistency during backtracking search, is the most popular
technique to solve hard CSPs. It builds up a search tree from
level 0 to level n, where n is the number of variables. At
each node of the search tree, a variable x and a value a in
dom(x) are selected and a GAC algorithm is used to prop-
agate the assignment. At level 0, GAC is usually enforced
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to preprocess the problem before searching starts. A dead-
end is reached if the propagation fails, then a backtracking
occurs.

The classical GAC3rm algorithm is recalled here. We
present the constraint-oriented version of GAC3rm in algo-
rithm 1 and algorithm 2. The changedVars stores all the
variables in scp(c) whose domains are changed during cur-
rent invocation of algorithm 2. The gacValues(x) records
the values in dom(x), which have already found a support.
Residue supports are used at line 6 in algorithm 2 and multi-
directional residue is implemented at lines 14 to 16. The
residue(x, a, c) is a residue support for (x, a) on c, which was
found as the support for (x, a). If residue(x, a, c) is valid,
(x ,a) still has a support on c; otherwise, the FINDSUPPORT

procedure is called to find a new support for (x, a). FIND-
SUPPORT iterates over all valid tuples involving (x, a) on c
and check whether they are allowed by c. If an allowed one
is found, it returns the tuple as the new support; otherwise,
it returns NULL.

3 Growing tabular reduction: saving constraint
checks during search

Before introducing the GTR algorithm, we give an exam-
ple of positive repeats and negative repeats in MGAC3rm.
Given a constraint c, x∈scp(c) and a∈dom(x), τ1, τ2, τ3, τ4,
and τ5 are tuples involving (x, a) on scp(c), where τ3 and τ5
satisfy c. At the beginning, all the five tuples are valid. After
checking τ1, τ2, and τ3, GAC3rm finds τ3 as the support for
(x, a) and records it as the residue support. (x, a) has a sup-
port as long as τ3 is still valid. Later in the search, assuming
τ3 loses its validity due to some assignment and τ1, τ2, τ4,
and τ5 are still valid, so during the search for another sup-
port, τ1 and τ2 are checked again. These constraint checks
on τ1 and τ2 are negative repeats. After searching, τ5 is
found as a new support and it is recorded as new residue
support for (x, a). The old residue support τ3 is discarded.
Later in the search, a backtracking occurs, assuming τ5 loses
its validity and τ3 becomes valid again. Now, GAC3rm will
seek a new support for (x, a) because τ5 is no longer valid.
It will check all valid tuples, so τ3 is checked again. This
constraint check on τ3 is a positive repeat. Before this pos-
itive repeat on τ3, if τ1 and τ2 are still valid, then there
are another two negative repeats. If we did not discard the
old residue support τ3 when it became invalid and restore it
after it becomes valid again, then this positive repeat will be
avoided and the corresponding two negative repeats are also
avoided.

In this section, we propose a new coarse-grained GAC
algorithm avoiding all positive repeats, named growing tab-
ular reduction (GTR). The GTR algorithm maintains a
dynamic list of the tuples for each constraint c, which have
been checked to be allowed by c. The algorithm contains
two parts. In the first part, it iterates over all the recorded
tuples in the list and check their validities. The values
appearing in a valid one have supports on c. In the second
part, it uses constraint checks to search for supports for only
those values that have not found a support. This part is sim-
ilar to what GAC3 does. If a new tuple is found as a new
support of a value, it will be added into the dynamic list.
Obviously, it may execute a great number of validity checks
if we use this simple strategy during search. To solve this
problem, we propose a method to avoid redundant valid-
ity checks. For each constraint, it records the tuples deleted
at each level and restores them after a backtracking occurs.
This method ensures that the tuples that have been verified
to be invalid at level i will not be rechecked at level j (j>i).
If a backtracking occurs, restoring tuples for each constraint
can be done in constant time. In the following data struc-
tures, the tuples mean only the tuples that have been checked
to satisfy constraint c, not all tuples satisfying c.
• tupleList(c) is a dynamic array of tuples. It records all

the tuples that have been checked to be allowed by c.
New tuples will be added at the end of the array. The
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tuples in tupleList(c), which have not been verified to
be invalid, are called active tuples.

• firstActive(c) is the position of the first active tuple in
tupleList(c). It is initialized to 0. All active tuples in
tupleList(c) are indexed from tupleList(c).length-1 to
firstActive(c). The tuples before firstActive(c) are deleted.

• levelLast(c) is an array of size n + 1 where n is the num-
ber of variables. levelLast(c)[p] is the position of the last
invalid tuple of tupleList(c) removed when the search
was at level p. Level 0 corresponds to the preprocessing
step. levelLast(c)[p] = −1 if no tuple was removed at
level p. It is used to record and restore firstActive(c) at
each level during search.

The GTR algorithm for a constraint is present in algorithm
3 and it is called at line 5 in algorithm 1. When MGTR is
propagating at level i, all the tuples in tupleList(c) before
firstActive(c) have been verified to be invalid at previous
levels, so they will not be checked. The first part of GTR
is implemented at lines 3 to 11 and the second part is from
lines 13 to 24. In part1, all the values with residue supports
are identified. In part2, a GAC3 scheme is employed to find
a support for the rest values. If a support is found, it is added
to the end of tupleList(c) at line 22. If lines 3 to 11 and
lines 22 to 24 are removed, algorithm 3 degenerates into a
constraint-oriented GAC3 algorithm.

Algorithm 4 removes the tuple indexed at i by switch-
ing it with the first active tuple indexed by firstActive(c) and
increasing firstActive(c) by 1. In this way, all the deleted
tuples are moved to the position before firstActive(c), so
they will not be rechecked if no backtracking occurs. If a
backtracking occurs at level i, the RESTORE procedure in
algorithm 5 restores the tuples deleted at level i by simply
recovering firstActive(c). After the restoring, the order of
the active tuples may be different. This is not a problem,
because all tuples after firstActive(c) will be checked in next
invocation. This mechanism also ensures that the new added
tuples will not be missed.

The example in Fig. 1 illustrates how the data structures
of GTR work. A constraint c defined by a predicate x+ y =
z, dom(x) = dom(y) = {1, 2, 3} and dom(z) = {3, 4, 5}. At
the beginning, tupleList(c) is empty, firstActive(c) is 0 and
the elements in levelLast(c) are −1.

• (a) The first invocation skips part1. It finds the supports
for all values and adds the tuples into tupleList(c) at
part2.

• (b) At level 1, (x, 1) is removed by other constraint. At
part1, the algorithm checks tuples indexed from 4 to
0 and (1,2,3),(1,3,4) are removed. At part2, (2,2,4) is
found as the support for (y, 2) and it is added to the end
of tupleList(c).

• (c) At level 2, (y, 3) is removed. At part1, the algo-
rithm checks tuples indexed from 5 to 2 and (2,3,5) is
removed. As the new support for (z, 5), (3,2,5) is added
to the end.

• (d) Assuming that c is never checked again until the
searching backtracks to level 1. After the backtracking,
both (x, 1) and (y, 3) are restored. In order to restore
the deleted tuples, firstActive(c) is set to levelLast(c)[1]
in Fig. 1b. Then, levelLast(c)[1] is set to −1. In the 4th
invocation, all the 7 tuples will be checked at part1.
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Fig. 1 Data structures of GTR

Proposition 1 The worst-case time complexity of GTR to
establish GAC at the preprocessing step is O(er3dr+1) with
space complexity O(er2d).

Proof At the preprocessing step, the tuples in tupleList(c)
which are verified to be invalid can be discarded. In the
worst case, each tuple in tupleList(c) supports only one
value, so there are at most rd tuples in tupleList(c) at
the preprocessing step. Therefore, the part1 of algorithm 3
costs r2d time, because each validity check costs r time.
The part2 cost r2dr time, because there are r variables in
scp(c), d values in the domain of each variable, FINDSUP-
PORT(x, a, c) may iterate over at most dr−1 tuples and each
constraint check costs r time. So the worst-case time com-
plexity of algorithm 3 is O(r2dr). For each constraint c,
algorithm 3 will be called at most rd times and there are
e constraints; therefore, the worst-case time complexity to
establish GAC is O(er3dr+1). As for space, there are at
most rd tuples in tupleList(c), each tuple needs r space and
there are e constraints, so the worst-case space complexity
is O(er2d).

Proposition 2 The worst-case space complexity of main-
taining GTR during search is O(erdr ).

Proposition 2 is straightforward, because the total num-
ber of tuples recorded in tupleList(c) is at most dr when
GTR is maintained during search.

Proposition 3 The GTR algorithm avoids all positive
repeats when it is maintained during search.

Proof For each constraint c, all the tuples that are checked
to be allowed are stored in tupleList(c), so a positive repeat
occurs iff a tuple in tupleList(c) is checked. During each
invocation, all the tuples before firstActive(c) are invalid,
so they will not be checked. The tuples after firstActive(c)
are valid and all the values appearing in these tuples are
identified as having supports. In part2, the algorithm seeks
supports for only those values that have not been identified
as having supports and each of the tuples after firstActive(c)
contains at least one value that has been identified as hav-
ing supports, so these tuples will not be checked. Therefore,
no positive repeat occurs when maintaining GTR during
search.

Property 1 For each constraint c, there is no duplicate
tuple in tupleList(c).

The property is true, because maintaining GTR during
search has no positive repeat, so a tuple allowed by c will be
checked and added into tupleList(c) at most once.

Besides naive GTR, the algorithm can be improved by
the methods used in STR2. The improved version, GTR2,
is shown in algorithm 6. GTR2 does not improve the
worst-case time complexity, but it avoids some unnecessary
operations. The additional data structures used in GTR2 is
same as those used in STR2. The Ssup records the variables
that at least one value has not found a support. If all values
in dom(x) have already found a support, we remove x from
Ssup, then efficiency is gained by iterating over only vari-
ables in Ssup at lines 15, 24, and 34. The Sval records
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the variables whose domain was changed between last
invocation and this invocation. The lastSize(c)[x] records the
domain size of x after each invocation of constraint c and
is used to determine whether the domain of a variable was
changed recently. To check the validities of the tuples, we do
not check the values of variable x if dom(x) was not changed
between last invocation and this invocation. Therefore, at
line 14 of algorithm 6, the procedure is Valid(τ , Sval) checks
only the variables in Sval to verify if τ is valid.

4 Discussion and related works

GTR avoids all positive repeats and the corresponding neg-
ative repeats executed before each positive repeat. However,
the negative repeats for proving a value having no support
cannot be avoided by GTR. When GTR is maintained dur-
ing search, the part1 iterates over O((1-t)dr ) allowed tuples
where t is constraint tightness. For each value, the part2
tries O(tdr−1) disallowed tuples before finding a support. If
the constraint is tight, (1-t)dr is a relatively small number
and it is relatively harder to find a support for a value;
therefore, GTR should be efficient when being used on tight
constraints. On the contrary, if the constraint is loose, it is
relatively easier to find a support and (1-t)dr may be a large
number, so GTR may be inefficient for loose constraints.

The part1 of GTR is similar to the simple tabular reduc-
tion (STR) algorithm [8, 13, 19, 21] which operates on
extensional constraints listing all allowed tuples in a table.
Both them identify the values which have supports by iter-
ating over the allowed tuples. One difference is that STR
iterates over a static table of allowed tuples of a constraint,
whereas GTR iterates over a dynamic list of tuples that are
checked to be allowed. When a backtracking occurs, STR
has a mechanism to restore tuples with few time cost, which
is suitable for only static tables. GTR employs a similar
mechanism to restore deleted tuples with the same time cost,
which works on dynamic lists. Another difference is that
STR determines if a value has supports after iterating the
table, because all allowed tuples are already in the table,
whereas GTR usually identifies some of the values with sup-
ports after iterating the dynamic list, for the rest values, it
uses constraint checks to determine if they have supports.
We prefer STR to GTR on extensional constraints, because
STR is a specialised algorithm for these constraints. How-
ever, GTR is a generic GAC algorithm that works on all
kinds of constraints.

GTR is also similar to the GIC4 algorithm proposed
in [2], but they enforce different consistencies. Another
difference between them is that GTR records the results
of constraint checks for each constraint, whereas GIC4
maintains only one list of global solutions. GIC4 enforces
global consistency, so maintaining GIC4 during search in
backtrack-free and it does not restore deleted solutions. The
major advancement of GTR over GIC4 is that GTR has a
mechanism to cope with backtracking and the deleted tuples
can be restored with low cost.

Exploring multiple residue supports, the GAC3rm k
algorithms [11], where k is the maximum number of
residues, enforces less positive repeats than GAC3rm.When
searching for a support for a value, GAC3rm k first checks
the validities of the k residues. If none of the residues is
valid, it starts to search for a new support by constraint
checks. If k is set to infinity, no residue support is discarded,
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Table 1 Results on non-binary
instances with tight constraints Instance GAC3rm GAC3rm2 GAC3rm inf GTR GTR2 GAC3.1 GAC3.2

BIBD (30) cpu 23.62 20.21 87.51 (1 out) 15.03 13.27 106.86 (1 out) 22.31

cc 278M 224M – 127M 127M – 203M

vc 25M 33M – 42M 42M – 28M

rn 11K 21K – 119K 119K – 20K

BIBD 6-30-15-3-6 cpu 149 132 298 53 48 1059 117

cc 2.4B 2.1B 0.8B 0.8B 0.8B 13.7B 1.6B

vc 20M 25M 10B 40M 40M 20M 23M

rn 4K 8K 212K 212K 212K 4K 8K

BIBD 7-42-18-3-6 cpu 208 198 236 161 156 out 177

cc 2.4B 2.3B 1.9B 1.9B 1.9B – 1.7B

vc 6.7M 8M 1.6B 13M 13M – 7.5M

rn 8K 15K 100K 100K 100K – 14K

Costas Array (8) cpu 25.29 25.03 37.12 23.14 21.92 29.54 29.47

cc 540M 429M 300M 300M 300M 341M 458M

vc 198M 298M 1.5B 260M 260M 199M 221M

rn 4.7K 9.2K 26.2K 26.2K 26.2K 4.7K 7.2K

Costas Array-16 cpu 33.15 32.92 43.35 29.12 27.65 38.02 38.25

cc 711M 564M 391M 391M 391M 453M 605M

vc 261M 392M 1.8B 312M 312M 261M 291M

rn 7.3K 14.5K 50.7K 50.7K 50.7K 7.3K 11.2K

Costas Array-17 cpu 152 150 231 140 132.75 178 177

cc 3.2B 2.6B 1.8B 1.8B 1.8B 2.1B 2.8B

vc 1.2B 1.8B 9.4B 1.6B 1.6B 1.2B 1.3B

rn 8.8K 17.5K 79K 79K 79K 8.8K 13.5K

radar 8-30-3-0-15 cpu 0.75 0.69 0.67 0.60 0.55 0.83 0.71

cc 2.2M 2.0M 1.6M 1.6M 1.6M 2.5M 2.0M

vc 244K 357K 10M 787K 787K 243K 326K

rn 2.6K 5K 18K 18K 18K 2.6K 4.8K

mknap-1-3 cpu 0.291 0.279 0.386 0.30 0.281 0.406 0.343

cc 1.11M 1.10M 1.09M 1.09M 1.09M 1.26M 1.08M

vc 49.6K 65K 732K 50K 50K 49.4K 59K

rn 438 866 8K 8K 8K 438 670

mknap-1-4 cpu 235 218 453 180 171 372 209

cc 721M 708M 543M 543M 543M 917M 516M

vc 9.5M 13M 28B 29M 29M 9.5M 11M

rn 614 1218 591K 591K 591K 614 941

magic-Square-5 cpu 3.45 3.06 5.98 2.10 2.01 3.0 2.32

cc 194M 163M 81M 81M 81M 135M 112M

vc 4.3M 6.3M 293M 17M 17M 4.3M 5.7M

rn 1.5K 2.99K 112K 112K 112K 1.5K 2.79K

magic-Square-6 cpu 17.90 16.72 14.98 13.46 13.30 28.39 13.76

cc 1.0B 0.95B 0.77B 0.77B 0.77B 1.5B 0.76B

vc 1.5M 2.1M 26M 5.0M 5.0M 1.5M 1.9M

rn 3.0K 6.0K 96K 96K 96K 3.0K 5.7K

magic- Square-7 cpu out out 1066 1062 1026 out out

cc – – 57B 57B 57B – –

vc – – 162M 25M 25M – –

rn – – 357K 357K 357K – –

The best cpu time is in italic. rn is the number of residue supports
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so GAC3rm infinity also avoids all positive repeats and
the worst-case space complexity of GAC3rm infinity is
the same as that of GTR. However, compared with GTR,
GAC3rm infinity cannot avoid redundant validity checks.
It may execute much more validity checks than GTR. The
dynamic list of GTR may be adopted in MGAC3rm infinity
to avoid redundant validity checks, but each value on each
constraint needs a dynamic list, so it maintains rd dynamic
lists for each constraint, which is much more than that of
GTR.

The MAC3cache algorithm [14] caches the results of
all possible constraint checks. This method was proposed
to work on binary CSPs, because caching the results of
all possible constraint checks will cost dr space for each
r-arity constraint. When a constraint check is repeated,
MAC3cache can get the result with low cost. GTR also
caches the results of some constraint checks, but only the
allowed results, not all possible constraint checks. Actu-
ally, we would prefer the STR algorithm to a classical GAC
algorithm after all allowed tuples are cached.

5 Experiments

The experiments were run on a PC with Intel(R) Core(TM)
i5-3210M CPU @2.5GHz, 4GB RAM, JDK 1.7. The per-
formance of maintaining each GAC (or AC for binary
instances) algorithm for finding the first solution or prov-
ing unsatisfiable is measured by CPU time (cpu) in seconds,
number of constraint checks (cc), and number of validity
checks (vc). The numbers of cc and vc are present by kilo
(K), million (M), and billion (B). Timeout (out) is 1200 s
and maximum memory is set to 1000M. In the average
results, the cpu time of timeout instances are counted as
1200 s. The results of those instances where all solvers are
timeout are eliminated from the average results. The vari-
able ordering heuristic is dom/wdeg [6] equipped with a
random restart strategy [7, 22]. The GAC3rm k algorithms
are implemented with a static FIFO policy and the later
added residues are checked earlier.

Firstly, we compared GTR with GAC3rm, GAC3rm 2,
GAC3rm infinity, GAC3.1, and GAC3.2 on some non-binary

Table 2 Results on non-binary instances without tight constraints

Instance GAC3rm GAC3rm2 GAC3rm inf GTR GTR2 GAC3.1 GAC3.2

Chessboard coloration 25-25-2 cpu 15.44 15.41 13.96 18.69 41.32 – –

cc 12M 2.0M 0.6M 0.6M 0.6M out out

vc 34.6M 48.7M 63.7M 43.2M 43.2M of of

rn 0.7M 1.2M 0.5M 0.5M 0.5M memory memory

Chessboard Coloration 9-9-3 cpu 1.76 2.03 4.26 2.49 3.26 4.46 3.62

cc 8.1M 4.5M 0.2M 0.2M 0.2M 10M 6.2M

vc 24.8M 35.3M 149M 54.4M 54.4M 24.8M 31.5M

rn 15K 31K 85K 85K 85K 15K 28K

tdsp C1-1-20 cpu 4.42 4.40 16.0 14.91 11.40 5.66 4.15

cc 26M 22M 3M 3M 3M 34M 22M

vc 30M 44M 1.4B 675M 675M 30M 41M

rn 10K 18K 409K 409K 409K 10K 18K

tdsp C1-1-21 cpu 5.60 5.30 17.21 13.57 10.22 6.29 5.07

cc 33M 26M 7M 7M 7M 34M 26M

vc 37M 54M 1.4B 522M 522M 37M 51M

rn 10K 19K 392K 392K 392K 10K 19K

Golomb ruler 34-9-a4 cpu 6.58 10.06 190 88 81 14.5 15.8

cc 50M 44M 8M 8M 8M 67M 47M

vc 132M 202M 9.1B 1.9B 1.9B 135M 186M

rn 63K 117K 7M 7M 7M 63K 124K

Golomb Ruler 44-10-a4 cpu 51 95 – – – 146 162

cc 422M 373M out out out 548M 399M

vc 1.02B 1.58B of of of 1.04B 1.47B

rn 132K 248K memory memory memory 132K 261K

The best cpu time is in italic
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instances containing intensional constraints. GTR and
the GAC3rm algorithms are light when being used in
search, whereas GTR2 maintains the data structure last-
Size. GAC3.1 and GAC3.2 maintain the data structure last
during search. As we mentioned at Section 4, the gain in
efficiency that GTR brings is related to constraint tight-
ness, so we tested five problems contain some tight con-
straints (Multi-Knapsack Instances (mknap), magicSquare,
Balanced Incomplete Block Designs (BIBD), CostasAr-
ray, Radar Surveillance (radar)) and three problems con-
tain only loose constraints (ChessboardColoration, Two-
Dimensional Strip Packing Problems (tdsp) and Golomb
Ruler). All these benchmark instances are downloaded from
http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html.

Table 1 presents the results of some problems containing
tight constraints. The integers in the brackets under instance
names are the number of tested instances in that series.
On the mknap, magicSquare, and BIBD instances, we can
see that GTR algorithms trade a relatively small number
of validity checks (compared to the number of constraint
checks) for some constraint checks. Consequently, they save
some cpu time. More specifically, the gain on each mknap
instance is from the only tight constraint and the gains
on magicSquare and BIBD instances are from the weight-
edSum constraints in these instances. On the CostasArray
instances, GTR algorithms save a little time from the trad-
ing, it reduces the sum of validity checks and constraint
checks. The radar-8-30-3-0-15 instance is the only repre-
sentative which needs 729 search tree nodes to solve (others
are easier). GAC3.2 enforces less constraint checks than
GTR on the mknap instances, because it maintains the data
structure last during search, which avoids some negative
repeats.

Table 2 presents the results of some problems containing
only loose constraints. The results ofChessboardcoloration,
tdsp, and Golomb ruler show that it is not recommended
to trade constraint checks for validity checks on loose con-
straints. The GTR algorithms are not efficient on these
instances, but they are still better than GAC3rm infinity,
because GAC3rm infinity needs much more validity checks.
The GTR2 algorithm maintains additional data structures
during search, so it costs more cpu time than the GTR
algorithm on the instances containing a large number of
constraints, e.g., the Chessboardcoloration instances, but it
improves GTR in general.

Secondly, we compared GTR with AC3rm on binary
instances including real-world, patterned, and academic
binary instances. The results in Table 3 show that GTR is not
efficient on these binary instances even on those instances
containing tight constraints [12]. The main reason is that

Table 3 Results on binary real-world, patterned, and academic
problems

Instance AC3rm AC3rm2 GTR

RLFAP cpu 27.1 29.4 172 (1 out)

scens11 (10) cc 307M 215M –

RLFAP cpu 40.1 42.9 350

scens11-f4 cc 486M 334M 141M

RLFAP cpu 2.97 3.13 23.7

scens11-f6 cc 36M 26M 11M

Job-Shop cpu 84.56 83.75 126 (4 out)

(41) cc 2.4B 1.9B –

Job-Shop cpu 13.8 14.7 114

e0ddr1-10-by-5-1 cc 400M 371M 328M

Job-Shop cpu 1069 991 out

e0ddr2-10-by-5-10 cc 33B 23B –

Queens-Knights cpu 1.05 1.05 8.83

(12) cc 10.3M 9.9M 8.7M

Queens-Knights cpu 3.52 3.54 31.23

25-5-add cc 35M 34M 30M

Queens-Knights cpu 4.12 4.21 46.97

25-5-mul cc 41M 39.8M 34.9M

GTR is built in a GAC scheme which is less efficient than
an AC scheme. Both GTR and an AC scheme check the
validity of residue supports. The GTR needs two operations
to check the validity on binary constraints, whereas an AC
scheme needs only one operation. Each valid residue sup-
port supports only one value in both schemes. For an r-ary
constraint, GTR needs r operations to check the validity of
a residue support and the residue support supports r values.

In summary, the GTR algorithms have few improvement
on binary instances, but they bring some improvements on
non-binary tight constraints.

6 Conclusion and future work

In this paper, we propose a new generalized arc consistency
algorithms GTR and its improved version GTR2, which
avoid all positive repeats. The experimental results show
that the GTR algorithms save a number of constraint checks.
It is not suggested to use GTR on binary instances, but it
works well on those tight constraints with larger arity. If we
adopt the dynamic list of supports in some higher level local
consistencies where the cost of finding a support is much
more expensive, potentially, it may bring more improvement
on cpu time.
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