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Abstract The objective here is to examine the characteristics
of non-Fourier flux theory in flow induced by a nonlinear
stretched surface. Constitutive expression for an incompress-
ible Walter-B liquid is taken into account. Consideration of
thermal stratification and variable thermal conductivity char-
acterizes the heat transfer process. The concept of boundary
layer is adopted for the formulation purpose. Modern method-
ology for the computational process is implemented. Surface
drag force is computed and discussed. Salient features of sig-
nificant variables on the physical quantities are reported
graphically. It is explored that velocity is enhanced for a larger
ratio of rate constants. The increasing values of thermal relax-
ation factor correspond to less temperature.

Keywords Thermal stratification .Walter-Bmaterial .

Non-Fourier flux theory . Stagnation point flow . Variable
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1 Introduction

An impressive consideration has been given to heat conduc-
tion [1–3] because of its ample applications in several fields.
The traditional one-dimensional (1D) fundamental model to
characterize heat conduction is analyzed through Fourier’s

relation [4]. This yields an approach to analyze heat conduc-
tion and develops the foundation to investigate the thermal
process of heat transfer in recent years. However, an ambigu-
ity of Fourier’s model [5–7] is that the whole structure is
affected directly by the original disruption. Such behavior
disprove the causality principle [8, 9] through heat conduction
paradox. Cattaneo [10] recommended a generalized model
which yields the relaxation factor into account. The Cattaneo
basic expression only comprises partial time derivatives
whereas larger spatial gradients might be needed [11] for the
entire process. Hence, modifying the Btime derivative^ by
BOldroyds’ upper-convected derivative,^ Christov [12] rec-
ommended the frame-indifferent modification of the
Cattaneo expression:

qþ λ
∂q
∂t

þ v:∇q−q:∇vþ ∇:vð Þq
� �

¼ −kgradT :

Here (q, λ, v, k, T) indicate heat flux, thermal relaxation
parameter, velocity, thermal conductivity, and temperature,
respectively. The aforementioned expression justifies objec-
tivity principle and fascinates the attention of recent investi-
gators [13–25].

Fluid flow and heat transport characteristics over a flat
or stretched surface have turned to be the ground of great
importance due to their numerous applications in plastic
and rubber sheet manufacturing, filaments and polymer
sheets, glass blowing, etc. Stretching flow towards a flat
surface is firstly explored by Crane [26]. Moreover, plates
in usage with variable thickness are utilized in marine and
aeronautical configurations and mechanical and civil en-
gineering. For reliable and effective design, it is essential
to consider buckling loads for these plates. No doubt the
usage of variable thickness supports to decrease the load
of mechanical elements and develop the effectiveness of
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materials [27]. Few studies comprising the simultaneous
characteristics of variable thickness and heat transfer can
be found in the attempts [28–32].

Although required in definite utilizations, thermal stratifi-
cation influences the performance of the condenser and could
be destructive for structural reliability of the pool walls pre-
pared through concrete. Analysis on rigidly stratified medium
demonstrates that stationary regions are energetic at the
boundary of cold and hot water, which minimizes the service
lifetime of plants and several demanding components [33].
For instance, the blight heat elimination process in fast devices
encounters the phenomenon of stratification at relatively high
temperature producing exhaustion in nuclear mechanisms.
Thus, from the structural security opinion as well, stratified
coolant aspects are significant [34]. Representative studies on
thermal stratification are given in [35–37]. Moreover, the abil-
ity of a substance to control heat is recognized as thermal
conductivity. It is either constant or differs with temperature
linearly for liquidmetals from 0 to 400 °F [38]. Representative
investigations regarding this topic can be mentioned through
[39–42] and several studies therein.

The current investigation intends to analyze the non-
Fourier flux characteristics in flow of Walter-B material over
the surface with variable thickness. Stagnation velocity is con-
sidered nonlinear. Heat transfer in the presence of thermal
stratification and temperature-dependent thermal conductivity
is analyzed. A homotopic algorithm [43–50] is utilized to
obtain convergent expressions. Graphical trends for several
significant variables versus velocity and temperature fields
are discussed in detail.

2 Formulation

Here steady two-dimensional stagnation point flow of
Walter-B material towards a surface moving with nonlin-
ear velocity is modeled. A stretching surface of variable
thickness generates the flow. Heat transfer via non-Fourier
flux theory is investigated. Thermal stratification along
with temperature-dependent thermal conductivity is
retained. Viscous dissipation effects are not accounted.
The governing equations are

∂u
∂x

þ ∂v
∂y

¼ 0; ð1Þ

u
∂u
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þ v
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ð3Þ
u ¼ Uw xð Þ ¼ U 0 xþ bð Þn; v ¼ 0; T ¼ Tw

¼ T 0 þ c xþ bð Þ at y ¼ A1 xþ bð Þ1−n2 ; ð4Þ
u→Ue xð Þ ¼ U∞ xþ bð Þn; T→T∞ ¼ T0 þ d xþ bð Þ when y→∞:

ð5Þ

Here (u, v) specify the liquid velocities parallel to hor-

izontal and vertical directions, ν ¼ μ
ρ

� �
the kinematic vis-

cosity, ρ the fluid density, (k0, μ0) the short memory co-
efficient and restricting viscosity at low shear rate,
(Uw(x), Ue(x)) the stretching and free stream velocities,
(T, T∞) the fluid and ambient fluid temperature, (U0) the
reference velocity, (b, c, d) the dimensional constants, A1

the small variable with respect to the surface is adequately
thin, and k(T) the temperature-dependent thermal conduc-
tivity, which is given as [20]

k Tð Þ ¼ k∞ 1þ ε
T−T∞

∇T

� �
: ð6Þ

Here, ambient fluid thermal conductivity is denoted by k∞,
ε is the small parameter which characterizes the behavior of
temperature on thermal conductivity and ∇T = T − T0. Also,
the type of motion, surface shape and characteristics of the
boundary layer can be controlled through the parameter n. It
is worth pointing that the present analysis reduced to a surface
with growing thickness and convex outer shape, whereas the
analysis converted to a surface with growing thickness and
convex outer shape when n < 1. Also, for n = 0, the motion
is reduced to a linear case with constant velocity. Considering
[16],

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1
νU 0 xþ bð Þnþ1

r
F ξð Þ; ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

U0

ν
xþ bð Þn−1

r
y; u ¼ U 0 xþ bð Þn F 0

ξð Þ;

v ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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the continuity equation ((1)) is fulfilled automatically and
the emerging nonlinear problems in F and Θ are
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Here, prime signifies differentiation with respect to ξ and

α ¼ A1

ffiffiffiffiffiffiffiffiffiffiffi
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2
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q
: Letting F(ξ) = f(ξ − α) = f(η) and Θ(ξ) = θ(ξ

−α) = θ(η), Eqs. (8)–(11) yield
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; f
0
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0
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θ 0ð Þ ¼ 1−S; θ ∞ð Þ ¼ 0; ð15Þ

where A ¼ U∞
U0

� �
represents the ratio of velocities,

Pr ¼ μcp
k

� �
the Prandtl number, β ¼ k0U0 xþbð Þn−1

μ0

� �
the local
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Weissenberg number, S ¼ d
c

� �
the thermal stratification param-

eter, and γ(=λU0(x + b)n − 1) the relaxation factor.
Our analysis reduces to Fourier’s situation when γ = 0 in

Eq. (13).
The skin friction coefficient is defined as

C f ¼ τw
1

2
ρu2w

; ð16Þ

with

τw ¼ μ0
∂u
∂y

� �
y¼A1 xþbð Þ1−n2

−k0 u
∂2u
∂x∂y

−2
∂u
∂x

∂u
∂y

� �
y¼A1 xþbð Þ1−n2

:

ð17Þ

Utilizing Eq. (17) in Eq. (16), the dimensionless form of the
skin friction coefficient is given below:

ffiffiffiffiffiffiffiffi
Rex

p
C f ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
1−β

7n−1
2

f ′−2η
n−1
2

f ′′
� �	 


f ′′ þ βη
n−1
2

f ′ f ′′′
� �

η¼0

;

ð18Þ

with Rex = uw(x)(x + b)/ν showing the local Reynolds
number.

3 Series solutions via homotopic procedure

Our intention here is to compute the convergent solution ex-
pressions for Eqs. (12) and (13) along with conditions (14)
and (15). For this purpose, the initial approximations and lin-
ear operators are considered as

f 0 ηð Þ ¼ Aηþ 1−Að Þ 1−e−ηð Þ þ α
1−n
1þ n

; θ0 ηð Þ ¼ 1−Sð Þe−η; ð19Þ

Lf ¼ f ‴− f
0
; Lθ ¼ θ″−θ; ð20Þ

with

Lf C1 þ C2eη þ C3e−ηð Þ ¼ 0; Lθ C4eη þ C5e−ηð Þ ¼ 0; ð21Þ

in which Ci(i = 1 − 5) signify the arbitrary constants.
Convergence of secured obtained solutions is verified

through the homotopy analysis method (HAM). Auxiliary
variables (ℏf, ℏθ) involved in formulated series solutions are
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significant for such motivation. Thus, Figs. 1 and 2 highlight
the plots for 12th order of approximations. The values verify-
ing the convergence are in the ranges −1.40 ≤ ℏf ≤ − 0.20 and
−1.65 ≤ ℏθ ≤ − 0.90.

4 Discussion

This section highlights the salient characteristics of the ratio of
velocities (A), Prandtl number (Pr), local Weissenberg number
(β), thermal stratification parameter (S), thermal relaxation
factor (γ), and power index (n) on velocity f′(η) and tempera-
ture θ(η) through Figs. 3, 4, 5, 6, 7, 8, 9, and 10.

Figure 3 communicates the behavior of A on f′(η). It is
remarked that f′(η) boosts via larger A. Impact of β on f′(η) is
reported through Fig. 4. Larger β reduces f′(η), which relates to
a thinner momentum layer. Physically, viscoelasticity yields
tensile stress which diminishes the boundary layer and thus
f′(η) reduces. Figure 5 characterizes the features of n on f′(η).
Clearly f′(η) shows increasing behavior for larger n. Actually,
stretching velocity rises for larger n and consequently more
deformation in the fluid is generated. Thus, f′(η) rises.

Characteristics of n on θ(η) are disclosed through Fig. 6. It
is explored that both θ(η) and thermal layer thickness boost for
larger n. Effect of ε on θ(η) is portrayed via Fig. 7. Here, θ(η)
augments when ε is increased. In fact, thermal conductivity
rises through larger ε, due to which a considerable amount of
heat moves from the sheet to the material. Therefore, θ(η)
augments. Figure 8 highlights the influence of γ on θ(η).
Here, θ(η) decays for higher γ. From the physical point of
view, elements of the material need more time to transport
heat to its adjacent elements, due to which θ(η) decays.
Salient features of S on θ(η) is depicted in Fig. 9. It is noticed
that θ(η) and the associated layer thickness decay for higher S.
Physically, temperature difference reduces between the sur-
face of the sheet and liquid, which generates the reduction in
θ(η). Figure 10 explores the impact of Pr on θ(η). As expected,
θ(η) and the corresponding layer thickness reduce when Pr is
enhanced. An enhancement in Pr corresponds to a slow rate of
thermal diffusion.

Convergence of series solution is verified numerically
through Table 1. It is noticed that the 25th order of deforma-
tions are acceptable regarding convergent expressions of ve-
locity and temperature. Characteristics of β and A on surface

drag force C fRe1=2x

� �
is disclosed through Table 2. Here, C f

Re1=2x decays via larger β and A. Table 3 delivers the compar-
ative analysis of skin friction coefficient (i.e., when β = 0 and

Table 1 Convergence of HAM expression for various orders of
deformations when n = 1.5, A = γ = K2 = 0.2,K1 = 0.1,S = 0.3, α=ε =
0.5, Pr = 1.2, and ℏf = ℏθ = − 0.9

Order of approximations −f′′(0) −θ′(0)

1 1.0110 0.9447

5 1.0213 0.9185

10 1.0243 0.9038

15 1.0254 0.9214

20 1.0259 0.9236

25 1.0262 0.9275

30 1.0262 0.9275

35 1.0262 0.9275

40 1.0262 0.9275

Table 2 Skin friction C f Re1=2x

� �
for distinct values of parameters β

and Awhen n = 1.5, γ=0.2,S = 0.3, ε = 0.5,α = 0.2, and Pr = 1.2

β A
C f Re1=2x

0.0 0.1 −0.9668
0.2 −0.4372
0.4 −0.2561
0.1 0.0 −0.7376

0.2 −0.6843
0.4 −0.5806
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n = 1) with the work of Mahapatra and Gupta [51].
Reasonable agreement is observed.

5 Final remarks

Here non-Fourier heat flux in stagnation point flow towards
nonlinear stretching flow of Walter’s B material is addressed.
The main findings are summarized below.

& There is reverse behavior of A and β on f′(η) qualitatively.
& Temperature (θ(η)) via γ and Pr is less when compared

with ε.
& Fourier’s expression has high temperature in comparison

to non-Fourier expression.
& Surface drag force decays for larger A and β.
& Viscous material results can be achieved by putting β = 0.
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