
ORIGINAL ARTICLE

Ahybridization of cuckoo search and particle swarm optimization
for solving optimization problems

Rui Chi1 & Yi-xin Su1
& Dan-hong Zhang1 & Xue-xin Chi1 & Hua-jun Zhang1

Received: 8 November 2016 /Accepted: 11 April 2017 /Published online: 11 May 2017
The Natural Computing Applications Forum 2017

Abstract A new hybrid optimization algorithm, a hybridiza-
tion of cuckoo search and particle swarm optimization
(CSPSO), is proposed in this paper for the optimization of
continuous functions and engineering design problems. This
algorithm can be regarded as some modifications of the re-
cently developed cuckoo search (CS). These modifications
involve the construction of initial population, the dynamic
adjustment of the parameter of the cuckoo search, and the
incorporation of the particle swarm optimization (PSO). To
cover search space with balance dispersion and neat compa-
rability, the initial positions of cuckoo nests are constructed by
using the principle of orthogonal Lation squares. To reduce
the influence of fixed step size of the CS, the step size is
dynamically adjusted according to the evolutionary genera-
tions. To increase the diversity of the solutions, PSO is incor-
porated into CS using a hybrid strategy. The proposed algo-
rithm is tested on 20 standard benchmarking functions and 2
engineering optimization problems. The performance of the
CSPSO is compared with that of several meta-heuristic algo-
rithms based on the best solution, worst solution, average
solution, standard deviation, and convergence rate. Results
show that in most cases, the proposed hybrid optimization
algorithm performs better than, or as well as CS, PSO, and
some other exiting meta-heuristic algorithms. That means that
the proposed hybrid optimization algorithm is competitive to
other optimization algorithms.

Keywords Cuckoo search . Particle swarm optimization .

Hybrid optimization . Orthogonal Lation squares . Step size

1 Introduction

A general optimization problem with equality, inequality, and
upper bound and lower bound constraints is stated as follows:

min f x!
� �

s:t:

gs x!
� �

≤0; s ¼ 1; 2;…; ng;

ht x!
� �

¼ 0; t ¼ 1; 2;…; nh;

x!¼ x1; x2;…; xDð ÞT∈RDjli≤xi≤ui; i ¼ 1;…;D
n o

;

l
!¼ l1; l2;…; lDð ÞT ; u!¼ u1; u2;…; uDð ÞT :

8>>>>>><
>>>>>>:

ð1Þ

where x!¼ x1; x2;…; xDð ÞT is the decision vector, RD is the
D-dimensional Euclidean space, f x!� �

is the objective func-

tion, gs x!� �
≤0 are the inequality constraints, ht x!� � ¼ 0 are

the equality constraints, ng is the number of inequality con-

straints and nh is the number of equality constraints, and l
!

and u! are the lower and upper bounds of the decision vari-
ables, respectively. Without the loss of generality, the present
paper aims at the sets of minimization problems.

The above general optimization problem (1) is the most
general and important type of design optimization problems
in engineering. Many real-world engineering optimization
problems are often highly nonlinear and involve a number of
different design variables under complex constraints [1]. The
classical optimizations such as Newton method [2], the gradi-
ent technique [3], and the interior method [4] have been de-
veloped to solve the engineering optimization problems.

* Yi-xin Su
suyixin@whut.edu.cn

1 School of Automation, Wuhan University of Technology,
Wuhan 430070, China

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670
DOI 10.1007/s00521-017-3012-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3012-x&domain=pdf

However, the classical techniques suffer from various draw-
backs. The Newton method is limited to continuity of the
optimization problem. The practicality of gradient-based tech-
niques has been reduced by the derivatives for nonlinearity of
the engineering problems and the difficulty of generating au-
tomatically objective functions [5]. The interior method is also
not very suitable to obtain the optima of engineering problems
because it is more likely to return a local minimum and is
always time consuming [6].

In view of these shortcomings of the classical techniques,
for solving the optimization problem (1) efficiently, some re-
searchers have focused on the application of heuristic algo-
rithms. The heuristic algorithms can be broadly classified into
three categories [7, 8]: constructive heuristic algorithms, im-
provement heuristic algorithms, and hybrid heuristic algo-
rithms. In general, constructive heuristics can find a solution
in a reasonable time but the quality of the solution is not very
satisfactory [7]. The improvement heuristics are mainly the
meta-heuristic evolutionary algorithms. In the last decade,
meta-heuristic evolutionary algorithms such as genetic algo-
rithm (GA) [9], simulated annealing (SA) [10], particle swarm
optimization (PSO) [11, 12], differential evolution (DE) [13],
ant colony optimization (ACO) [14], bat-inspired algorithm
(BA) [15], harmony search (HS) [16], dragonfly algorithm
(DA) [17], and more recently, cuckoo search (CS) [18] have
been developed to solve the engineering optimization prob-
lems. Improvement heuristic algorithms can normally con-
verge to better-quality minimums, but they are timely and
laborious processes.

Considering the restrictiveness of the constructive heuristic
algorithms and the improvement heuristic algorithms, recent-
ly, the research concentration has expanded to hybrid meta-
heuristic algorithms instead of a sole meta-heuristic algorithm.
It has become evident that a combination of two or moremeta-
heuristic algorithms, called hybrid heuristic algorithms, is
mostly efficient and can receive good application in dealing
with the real-world engineering problems. For example,
Nearchou [19] proposed a hybrid SA algorithm which inte-
grates the basic structure of a SA algorithm together with
features borrowed from the fields of GA and local search
techniques for solving the flow shop scheduling problem,
Alikhani et al. [20] hybridized electromagnetism-like mecha-
nism algorithm and Solis and Wets local search method for
continuous optimization problems, Costa et al. [21] used a
hybridization of genetic algorithm and pattern search method
for constrained global optimization problems, Yildiz [22] hy-
bridized an artificial immune algorithm with a hill climbing
local search algorithm for optimization problems, Melo et al.
[23] proposed a multi-view differential evolution for
constrained engineering design problems, Su et al. [24] hy-
bridized the particle swarm algorithm with the differential
evolution algorithm to solve the multi-objective optimization
problems, and Kanagaraj et al. [25, 26] hybridized genetic

algorithm and cuckoo search algorithm to solve several
constrained optimization problems. They have obtained good
effects for the engineering optimization problems.

Although some improved techniques for the engineering
optimization problems have been achieved, the further inves-
tigation is also needed due to the complexity of conflicting
objectives and various constraints [27]. As one of the existing
meta-heuristic algorithms, an evolution technique, called CS
[1, 6, 7, 18, 28–30], is a population-based heuristic evolution-
ary algorithm that is simple to implement and has few param-
eters to be tuned [7]. This algorithm is based on the interesting
breeding behavior such as brood parasitism of certain species
of cuckoos. And it has gained promising importance and ap-
plicability in many fields like shop scheduling, parameter op-
timization in structure designing and machining processes,
networking, and so on [6]. CS and its application in many
fields have been discussed in [28].

Along with the development trend of hybrid meta-heuristic
algorithms discussed above, this paper proposes a new hybrid
algorithm combining cuckoo search and particle swarm opti-
mization, called CSPSO in the following sections. The crucial
idea behind CSPSO can be summarized as follows.
Population of the algorithm is initialized by using the principle
of orthogonal Lation squares, to cover search space with bal-
ance dispersion and neat comparability. A dynamically var-
iable step size is proposed as a possible improvement
over the original CS. PSO is incorporated to increase
the diversity of population. The proposed CSPSO is
used to optimize benchmark functions and solve engi-
neering design problems. Result evaluation assures that
the proposed algorithm provides better performance than
other approaches.

The remainder of the paper is organized as follows.
Section 2 briefly reviews the fundamentals of CS and PSO.
Section 3 describes the proposed CSPSO algorithm. Sections
4–5 evaluate CSPSO using 20 standard benchmarking func-
tions and 2 engineering optimization problems, compare the
performance of CSPSO with other relative algorithms, and
discuss the strengths and weaknesses of the CSPSO algo-
rithm. Finally, the concluding remarks and some directions
for future research are provided in Section 6.

2 The original PSO and original CS

In this section, the features of the original PSO, the original
CS, and a hybridization of CS and PSO are discussed.

2.1 The original PSO

PSO is a meta-heuristic evolutionary technique proposed by
Kennedy and Eberhart [11, 12]. The original intent of particle
swarm theory is to graphically mimic the swarm

S654 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

characteristics of a bird flock which is characterized by grace-
ful but unpredictable choreography. Like other evolutionary
techniques, PSO uses the common evolutionary computation
method [31] as follows.

(1) It is initialized with a random population called swarm.
Each individual of the swarm can be written as a particle,
and each particle’s position resembles a solution.

(2) It finds out the best solution by updating generations
consecutively.

(3) The reproduction operation is on the basis of the old
generation. A particle modifies its memorized values in-
cluding velocity, position, personal best position, and
global best position to achieve better position. The whole
particles search the problem space for the best solution
by the current optimal solutions.

Defined that D is the problem space dimension, and N is
the number of particles. The position of particle i is noted as

y!i ¼ y!i1; y
!

i2;…; y!iD

� �T
, its velocity is defined as

v!i ¼ vi1; vi2;…; viDð ÞT , and its best position (best previous
performance) in history is called the personal best (p!i). The
best position found previously by all particles in the
group is called the global best (g!). The updates of
the swarm particles are accomplished using the follow-
ing equations.

vij k þ 1ð Þ ¼ vij kð Þ þ c1r1 pij kð Þ−yij kð Þ
� �

þ c2r2 g j kð Þ−yij kð Þ
� �

ð2Þ

yij k þ 1ð Þ ¼ yij kð Þ þ vij k þ 1ð Þ ð3Þ

where i = 1 , 2 , … ,N , j = 1 , 2 , … ,D.k is the current gen-
eration. c1 is the cognitive memory factor, c2 is the social
memory factor, and they are two constants. r1 and r2 (r1 ,
r2 ∈ [0, 1]) are random numbers. Equation (2) calculates a
new velocity for each swarm particle on the basis of its previ-
ous velocity v!i kð Þ, its personal best position p!i kð Þ, and the
global best position g! kð Þ. Equation (3) updates the position
of each swarm particle in problem space.

Performance evolution of the particles depends on the
fitness of an evolution function that is predefined and
related to the objective functions of the optimization
problem [32]. In the process of optimizing minimization
problem, when the fitness of the improved solution is
lower than that of the previous solutions, the improved
solution is closer to the best solution. p!i kð Þ of each
swarm particle is updated only if its current position’s
fitness value is lower than the previous best value, oth-
erwise p!i kð Þ will be unchanged. g! kð Þ is always the
best position at which the best fitness so far has been

achieved. Mathematically, this can be formulated as
Eqs. (4–5).

p!i k þ 1ð Þ ¼ y!i k þ 1ð Þ; if f y!i k þ 1ð Þ
� �

< f p!i kð Þ
� �

;

p!i kð Þ; otherwise:

8<
:

ð4Þ
g! k þ 1ð Þ ¼ argmin f p!i k þ 1ð Þ

� �
ð5Þ

where f y!i k þ 1ð Þ� �
is the fitness value of the current posi-

tion of particle i. The pseudo code of the original PSO is given
in Fig. 1.

2.2 The original CS

2.2.1 Cuckoo breeding behavior and Lévy flight

The concept of meta-heuristic technique known as cuckoo
search algorithm [1, 18] was first proposed by Yang and
Deb in the year 2009. It is a novel algorithm based on the
breeding behavior of cuckoo species. Cuckoo hens lay their
eggs in other birds’ nests or the communal nests. While laying
their eggs, they may remove the host birds’ eggs from the nest
to increase the hatching probability of their own eggs. In gen-
eral, eggs of cuckoo hens hatch slightly earlier than the host
birds’ eggs, and the cuckoo chick grows faster. Once the first
cuckoo egg hatches, the foremost action of the chick is to
blindly roll the host eggs out of the nest, which can increase
the cuckoo chicks’ share of food provided by its host bird [28].
Apart from the propelling action of the cuckoo chick, it also
mimics the host chicks’ call in order to access more opportu-
nity of feeding [29].

In the original CS, Yang and Deb also introduced the con-
cept of Lévy flight. A cuckoo performs Lévy flight to search
for a new nest. The Lévy flight process, named by the French
mathematician Paul Lévy, is essentially a model of random
walks that is characterized by random step lengths drawn from
a power law distribution [30]. The foraging behavior of many
animals and insects has the typical characteristics of Lévy
flight [34, 35]. This process has previously been widely used
to solve the problems in optimization and other fields of sci-
ences [18, 33–35].

2.2.2 Cuckoo search implementation

As proposed by Yang, three idealized rules are suggested as
follows [18].

(1) Each cuckoo lays one egg at a time, and a random nest is
chosen to dump the egg.

(2) The best nest with high quality of eggs will pass onto the
next generations.

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S655

(3) The number of host nests is fixed and there is a proba-
bility pa ∈ [0, 1] with which a host bird discovers an
alien. In this case, the host bird can either discard the
egg or the nest so as to build a completely new nest in
a new location.

Based on the above-mentioned rules, the original CS is
developed as follows.

In the CS technique, one egg in a nest resembles a
solution and a cuckoo egg resembles a new solution.
The algorithm begins with an initial population generat-
ed randomly. The population uses D-dimension parame-
ter vector restricted by the upper and lower bounds as
given in Eqs. (6–7).

l
!¼ l1; l2;…; lDð ÞT ð6Þ
u!¼ u1; u2;…; uDð ÞT ð7Þ

During the generation of a new solution x!i k þ 1ð Þ, a Lévy
flight is carried out as in Eq. (8).

xi
*

k þ 1ð Þ ¼xi
*

kð Þ þ α⊕Le
0
vy s;λð Þ ð8Þ

where x!i kð Þ represents the current solution, k is the current
generation, and α(α > 0) represents the step size. In general, α
should be proportional to the scale of the studied problem,
even though α = 1 can be used in common [18]. The product
⊕ means entry-wise multiplications. Lévy flights essentially

resemble random walks, and their random steps follow the
Lévy distribution as given in Eq. (9).

Le
0
vy s;λð Þ∼s−λ; 1 < λ≤3ð Þ ð9Þ

Equation (9) has an infinite variance with an infinite mean
[1]. Accordingly, the consecutive steps/jumps of a cuckoo
have formed a process with random walks, and the process
obeys a power law distribution with a heavy tail [1]. In fact,
the process of generating a new solution can be seen as a
stochastic equation for a random walk, and this random walk
forms a Markov chain whose next location only depends on
the current position and the transition probability [7]. In this
way, the evolution process is to use the new and potentially
better solutions to continually replace worse solutions. The
final goal is to gain the best solution. The pseudo code of
the original CS is presented in Fig. 2.

3 The hybrid CSPSO algorithm

3.1 Selection method of initial population

CS has succeeded in proving its superior performance, com-
pared with PSO and GA [30]. But there is still some room for
improvement in CS, we can control the intensification and
diversification through the cuckoo’s mobility in the search
space to help the individual find much better solutions [30].
It is a serious issue that how to use a minimum number of

S656 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

Fig. 1 Pseudo code of PSO
algorithm

initial solutions to sample the distribution characteristic of the
search space. A selection method of initial population present-
ed here, called orthogonal arrays, is expounded in detail [36].
The key aim of using orthogonal arrays is to draw its advan-
tage of balance dispersion and neat comparability.

Following the rule of probability and statistics, orthogonal
arrays are generated based on the principle of orthogonal Lation
squares. Here the orthogonal arrays, which include N initial
solutions, can be constructed by the following two steps.

Step: 1 Calculate the dispersed coordinate points aij of each
variable by usingD-dimension vector in the problem
space restricted by the upper and lower bounds.

aij ¼ l j þ i−1ð Þ

� uj−l j
� �.

N−1ð Þ i ¼ 1; 2;…;N ; j ¼ 1; 2;…;Dð Þ
ð10Þ

Step: 2 Generate the initial solutions by using the principle
of orthogonal Lation squares.

bij ¼ ahj i ¼ 1; 2;…;N ; j ¼ 1; 2;…;Dð Þ ð11Þ

where h = (i + j − 1) modN, and if h = 0, then h =N.

Hence, an initial individual of the population b
!

i ¼
bi1; bi2;…; biDð ÞT ; i ¼ 1; 2;…;Nð Þ is generated via the
above mentioned steps. In the proposed CSPSO, the initial
individual can also be denoted as: x!i; y!i and z!i; x!i ¼
b
!
i; y!i ¼ b

!
i; z!i ¼ b

!
i i ¼ 1; 2;…;Nð Þ:.

3.2 Dynamic step size

The step size α is an important parameter in fine-tuning
of improved solutions and can potentially affect the
convergence rate of algorithm [37–39]. The performance
of CS has been proved to be superior, compared with
PSO and GA [1]. This relies on the introduction of
Lévy flight process. However, a fast convergence of
CS algorithm cannot be guaranteed, since the process
is essentially a model of random walk. In the original
CS, α is a fixed constant and α = 1 is used in [18]. To
enhance the convergence rate, the original CS is slightly
modified with respect to the step size α in this paper.
α(k) is decreased with increasing iteration number. This
is done similar to the principle that the inertia weight is
reduced with increasing iteration number in PSO [11].
In the initial generations, α(k) is large enough to en-
force the cuckoos to search more various solutions,
which guarantee the diversity of the new solution vec-
tors. In the final generations, α(k) is decreased to result
in a better fine-tuning of improved solution vectors. In
this paper, α(k) is dynamically adjusted with the gener-
ation number given below.

α kð Þ ¼ αmax−
αmax−αminð Þ

kmax
� k ð12Þ

where k is the current iteration, kmax is the total number of
iterations. αmin and αmax are the lower and upper bounds of
the parameter α, respectively, and their values are taken as
αmin = 0.01, αmax = 0.5 in a hit and trial method.

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S657

Fig. 2 Pseudo code of CS
algorithm

3.3 The hybrid CSPSO procedure

In the original CS, there is no information exchange between
each cuckoo, and actually, the search process of each cuckoo
is performed independently [40]. Here, we will combine the
good search ability of CS and the global search advantage of
PSO to enhance the population diversity and the convergence
rate of the proposed hybrid algorithm. In this case, instead of
employing a single pattern which is called Lévy flight to gen-
erate new solutions in CS, we use an integration of two dif-
ferent ways to generate the solutions in CSPSO. The first way
is the classical pattern of Lévy flight in CS, and the second is
the updating ways as Eqs. (2–3) in PSO. The detailed hybrid
process is described below.

Each cuckoo performs Lévy flight to generate a new solu-
tion x!i k þ 1ð Þ and follows the updating ways based on PSO
to generate a new solution y!i k þ 1ð Þ. A new solution of the
CSPSO is generated with the combination of x!i k þ 1ð Þ and

y!i k þ 1ð Þ, and the updating formula of the new solutions is
proposed in Eq. (13).

z!i k þ 1ð Þ ¼ d � x!i k þ 1ð Þ þ 1−dð Þ � y!i k þ 1ð Þ ð13Þ

where z!i k þ 1ð Þ is the new solution of the CSPSO, d (d ∈ [0,
1]) is a random number.

The steps involved in the hybrid CSPSO can be shown in
detail in Fig. 3. As is shown in Fig. 3, there are three improve-
ments in the proposed hybrid algorithm. The first improve-
ment is that initial individuals of the hybrid algorithm are
generated by using orthogonal Lation squares, which is de-
scribed in Subsection 3.1. The second improvement is that the
step size of the CS is dynamically adjusted instead of a fixed
value which is discussed in subsection 3.2. The third improve-
ment is that the CS is hybridized with the PSO to form a new
hybrid optimization algorithm using the hybrid strategy which
is described in this section. The proposed CSPSO can be sum-
marized as given in Fig. 3.

S658 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

Fig. 3 Pseudo code of the
proposed algorithm

4 Experimental studies on benchmark functions

4.1 Benchmark functions

To evaluate the performance of the proposed CSPSO and
conduct a further comparative study, a set of well-known
test functions [41–44] are used as benchmark problems.
The dimension of these test functions can be fixed or
unfixed. The number of dimensions is set as 10 in this
work for unfixed dimension functions. But for a function
with fixed number of dimension, the dimension number
has been preset by the literature and cannot be changed.
Both unimodal and multimodal functions are selected to
evaluate the robustness of the proposed CSPSO algo-
rithm. Functions F1 − F14 are unimodal functions and
F15 − F20 are mul t imodal func t ions . The name
(Function), the formula (Formula), the range of dimen-
sion (D), the searching range (Range), and the known
optimal value (Optima) of these problems are listed in
Table 1.

4.2 Algorithms used for comparison and parametric
studies

To test the effectiveness of CSPSO and to conduct an exhaus-
tive comparison, the proposed CSPSO and other six algo-
rithms PSO [12], DE [13], BA [15], HS [16], CS [18], and
ICS [37] are tested on the series of test functions above. The
detailed computational data of all test functions for all these
algorithms will be presented. The successful rate, the best
fitness, the worst fitness, mean value, and standard deviation
of all algorithms are given.

In all experiments, the values of the common parameters
used in each algorithm such as the population size and the total
iteration number are chosen to be the same. For all algorithms,
the population size is set as N = 20, and the total number of
iterations is set as kmax = 2000. To reduce the random error of
the simulation, all experiments on each test function is repeat-
ed 50 times. All computational experiences for the benchmark
problems are implemented usingMatlab2013b on a PC with a
Intel core i5-4460 3.20 GHz processor and 8.0 GB memory.

The algorithms and other specific parameters settings are
given below:

(1) CSPSO: pa = 0.25, αmin = 0.01, αmax = 0.5;
(2) PSO [12]: c1 = c2 = 2, wmin = 0.4, wmax = 0.9;
(3) DE [13]: F = 0.6, CR = 0.1;
(4) BA [15]: A = 0.25, r = 1, Qmin = 0, Qmax = 2;
(5) HS [16]: M = 30, HMCR = 0.95, PAR = 0.3, BW = 0.06;
(6) CS [18]: pa = 0.25, α = 1;
(7) (7)ICS [37]: pmin = 0.005, pmax = 0.5, αmin = 0.01,

α(max) = 0.5.

4.3 Simulation and comparison

We begin with a discussion on the success rate obtained
for 20 benchmark problems. Table 2 reports the success
rate by applying the seven algorithms to optimize the
benchmark problems F1 − F20, respectively. The success
of an algorithm means that this algorithm can result in a
function value less than the pre-specified optimal value,
i.e., 1.0E−08, for all problems with the number of iter-
ations less than the pre-specified maximum number. The
successful rate is calculated as the number of successful
runs divided by the total number of runs. In this paper,
on one function, 0 success rate means that in all itera-
tions the algorithm cannot obtain a fitness value less
than 1.0E−08.

From Table 2, it can be seen that CSPSO achieves best
success rate on 16 functions, and on 15 of these 16 functions
it achieves 100% success rate. Both CS and ICS achieve
100% success rate on 15 functions. DE achieves 100% suc-
cess rate on 14 functions. On nine functions, PSO gets 100%
success rate. On five functions, BA and HS all have 100%
success rate. Only on function Griewank, DE has better per-
formance than CSPSO. In summary, the CSPSO has a very
good success rate in testing the majority of the benchmark
problems.

Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 present the compu-
tational results obtained for 20 functions, respectively. The
best results among the seven algorithms are shown in italics.
BBest^ represents the best fitness, BWorst^ represents the
worst fitness, BMean^ represents the mean value of the fitness,
and BStd^ represents the standard deviation of the fitness
value.

Sphere function and Schwefel 2.22 function are two
unimodal functions. They are mainly used to test the accuracy
of optimization algorithms. Here, they are easily optimized by
the seven algorithms. From the results of Table 3, it can be
observed that CSPSO shows the highest search performance
in terms of the solution qualities. In comparison with PSO,
DE, BA, HS, CS, and ICS algorithms, the proposed CSPSO
gets the smallest best, worst, mean, and standard deviation
values.

From Table 4, on Eason function, CSPSO, PSO, BA, CS,
and ICS algorithms show the same performances in terms of
the solution results. Except for DE and HS, the other five
algorithms all could approximate to global optimum. Step
function has one minimum and it is a discontinuous function.
The same performances are obtained by CSPSO, DE, CS, and
ICS algorithms. Except for PSO, BA, and HS, other four al-
gorithms all approximate to the global optimum for the Step
function.

Table 5 shows good capability of the proposed CSPSO
algorithm on Sum square function and Quadric function. For
Sum square function, CSPSO performs the highest

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S659

performance and ICS shows a moderate performance. Quartic
function is padded with random noise. It is hard to be opti-
mized because every evaluation for function depends on the
random noise generator (uniform or gaussian). From the re-
sults of Table 5, on Quadric function, it can be observed that
the performance of CSPSO and HS are better than other five

algorithms. HS gets the best BBest^ result, and CSPSO
achieves the best BWorst^ BMean^ and BStd^ results.
Overall, CSPSO is also competitive and effective for solving
Quartic function.

For Dixon-Price function in Table 6, CSPSO finds the best
BBest^ result in comparison with other six algorithms and it

Table 1 The benchmark test functions

Function Formula D Range Optima

Sphere

F1 xð Þ ¼ ∑
D

i¼1
x2i

10 [−100,100] 0

Schwefel 2.22

F2 xð Þ ¼ ∑
D

i¼1
xij j þ ∏

D

i¼1
xij j

10 [−10,10] 0

Eason F3(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2) 2 [−100,100] 0

Step

F4 xð Þ ¼ ∑
D

i¼1
xiþi0:5
� �� �2 10 [−100,100] 0

Sum square

F5 xð Þ ¼ ∑
D

i¼1
ix2i

10 [−100,100] 0

Quadric

F6 xð Þ ¼ ∑
D

i¼1
ix4i þ random 0; 1ð Þ

10 [−1.28,1.28] 0

Dixon-Price

F7 xð Þ ¼ x1−1ð Þ 2 þ ∑
D

i¼2
i 2x2i −xi−1
� �

2

10 [−10,10] 0

Schwefel 2.21 F8(x) = max {|xi|, 1 ≤ i ≤D} 10 [−100,100] 0

Zakharov

F9 xð Þ ¼ ∑
D

i¼1
x2i þ ∑

D

i¼1
0:5ixi

� 	
2 þ ∑

D

i¼1
0:5ixi

� 	
4

10 [−5,10] 0

Matyas
F10 xð Þ ¼ 0:26 x21 þ x22

� �
−0:48x1x2

2 [−10,10] 0

Trid6
F11 xð Þ ¼ ∑

n

i¼1
xi−1ð Þ 2− ∑

n

i¼2
xixi−1

6 [−D2, D2] −50

Powell

F12 xð Þ ¼ ∑
n=k

i¼1
x4i−3 þ 10x4i−2ð Þ½ 2 þ 5 x4i−1−x4ið Þ 2 þ x4i−2−x4i−1ð Þ 4 þ 10 x4i−3−x4ið Þ 4�

24 [−4,5] 0

Beale
F13 xð Þ ¼ 1:5−x1 þ x1x2ð Þ 2 þ 2:25−x1 þ x1x

2
2

� � þ 2:625−x1 þ x1x32
� �

2
2 [−4.5,4.5] 0

Trid10
F14 xð Þ ¼ ∑

n

i¼1
xi−1ð Þ 2− ∑

n

i¼2
xixi−1

10 [−D2, D2] −210

Rastrigin

F15 xð Þ ¼ ∑
D

i¼1
x2i −10cos 2πxið Þ� þ10Þ

10 [−5.12,5.12] 0

Griewank

F16 xð Þ ¼ 1
4000 ∑

D

i¼1
x2i − ∏

n

i¼1
cos xiffi

i
p

� �
þ 1

0 [−600,600] 0

Weierstrass

F17 xð Þ ¼ ∑
D

i¼1
ð ∑
kmax

k¼0
akcos 2πbk xi þ 0:5ð Þ� �� �

−D ∑
kmax

k¼0
akcos 2πbk*0:5

� �� � 2 [−0.5,0.5] 0

Bohachevsky1
F18 xð Þ ¼ x21 þ 2x22−0:3cos 3πx1ð Þ −0:4cos 4πx2ð Þ þ0:7

2 [−100,100] 0

Bohachevsky2
F19 xð Þ ¼ x21 þ 2x22−0:3cos 3πx1ð Þ *0:4cos 4πx2ð Þ þ0:3

2 [−100,100] 0

Bohachevsky3
F20 xð Þ ¼ x21 þ 2x22−0:3cos 3πx1 þ 4πx2ð Þ þ0:3

2 [−100,100] 0

S660 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

Table 2 The successful rate of all
algorithms for test functions Function Threshold

value
Successful rate (%)

PSO
[12]

DE
[13]

BA
[15]

HS
[16]

CS
[18]

ICS
[37]

CSPSO

Sphere 1.0E−08 0 100 0 0 100 100 100
Schwefel 2.22 1.0E−08 0 100 0 0 100 100 100
Eason 1.0E−08 100 100 100 100 100 100 100
Step 1.0E−08 50 100 18 98 100 100 100
Sum square 1.0E−08 0 100 0 0 100 100 100
Quadric 1.0E−08 0 0 0 0 0 0 0
Dixon-Price 1.0E−08 0 8 0 0 2 0 8
Schwefel 2.21 1.0E−08 100 100 0 0 100 100 100
Zakharov 1.0E−08 0 0 0 0 100 0 100
Matyas 1.0E−08 100 100 100 0 100 100 100
Trid6 1.0E−08 100 100 100 100 100 100 100
Powell 1.0E−08 0 0 0 0 0 0 0
Beale 1.0E−08 86 100 36 0 100 100 100
Trid10 1.0E−08 100 100 100 100 100 100 100
Rastrigin 1.0E−08 0 76 0 0 0 100 78
Weierstrass 1.0E−08 100 100 100 100 100 100 100
Griewank 1.0E−08 0 82 0 0 0 0 2
Bohachevsky1 1.0E−08 100 100 4 100 100 100 100
Bohachevsky2 1.0E−08 100 100 4 0 100 100 100
Bohachevsky3 1.0E−08 100 100 12 0 100 100 100

Table 3 Experimental results of Sphere function and Schwefel 2.22 function

Function
Criteria

Sphere Schwefel 2.22

Best Worst Mean Std Best Worst Mean Std

PSO [12] 5.14E−06 1.23E−02 1.50E−03 2.20E−03 4.50E−03 1.206E−01 2.87E−02 2.52E−02
DE [13] 1.00E−79 4.22E−76 4.04E−77 8.03E−77 7.80E−44 7.85E−42 9.61E−43 1.44E−42
BA [15] 3.27E−05 1.24E−04 8.11E−05 1.85E−05 1.39E−02 2.77E−02 2.33E−02 2.70E−03
HS [16] 5.90E−03 3.29E−01 1.09E−01 6.35E−02 3.09E−02 1.67E−01 7.78E−02 2.85E−02
CS [18] 1.04E−10 8.53E−09 1.13E−09 1.38E−09 1.70E−17 1.39E−15 3.68E−16 3.48E−16
ICS [37] 1.00E−48 2.56E−45 1.23E−46 3.64E−46 1.25E−27 3.87E−26 1.03E−26 8.45E−27
CSPSO 2.07E−124 2.70E−103 5.30E−105 3.78E−105 7.04E−76 9.01E—69 2.40E−70 1.31E−69

Italic emphasis indicate the best result

Table 4 Experimental results of Eason function and Step function

Function
Criteria

Eason Step

Best Worst Mean Std Best Worst Mean Std

PSO [12] −1.00E+00 −1.00E+00 −1.00E+00 0 3.00E+00 6.40E−01 7.49E−01 7.05E−01
DE [13] −1.00E+00 −9.98E−01 −1.00E+00 3.00E−04 0 0 0 0

BA [15] −1.00E+00 −1.00E+00 −1.00E+00 0 4.00E+00 1.68E+00 1.10E+00 1.07E+00

HS [16] −1.00E+00 −1.00–04 −5.29–01 4.93E−01 1.00E+00 2.00E−02 1.41E−01 1.41E−01
CS [18] −1.00E+00 −1.00E+00 −1.00E+00 0 0 0 0 0

ICS [37] −1.00E+00 −1.00E+00 −1.00E+00 0 0 0 0 0

CSPSO −1.00E+00 −1.00E+00 −1.00E+00 0 0 0 0 0

Italic emphasis indicate the best result

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S661

Table 5 Experimental results of Sum square function and Quadric function

Function
Criteria

Sum square Quadric

Best Worst Mean Std Best Worst Mean Std

PSO [12] 1.00E−04 1.86E−01 2.02E−02 3.53E−02 6.70E−03 4.27E−02 2.48E−02 8.60E−03
DE [13] 4.69E−80 5.13E−75 2.08E−76 7.27E−76 2.50E−03 2.27E−02 1.23E−02 4.80E−03
BA [15] 2.32E−04 6.52E−04 4.02E−04 8.96E−05 1.64E−02 2.38E−01 1.06E−01 4.93E−02
HS [16] 2.10E−03 3.10E + 00 6.41E−01 5.94E−01 1.00E−04 2.09E−02 3.90E−03 4.30E−03
CS [18] 1.63E−35 1.38E−31 3.60E−33 1.95E−32 4.00E−04 7.50E−03 2.90E−03 1.40E−03
ICS [37] 1.20E−47 3.50E−45 3.43E−46 5.78E−46 9.00E−04 5.60E−03 2.80E−03 1.10E−03
CSPSO 4.14E−125 4.90E−104 1.11E−105 6.97E−105 3.00E−04 4.00E−03 1.00E−03 8.00E−04

Italic emphasis indicate the best result

Table 6 Experimental results of Dixon-Price function and Schwefel2.21 function

Function
Criteria

Dixon-Price Schwefel 2.21

Best Worst Mean Std Best Worst Mean Std

PSO [12] 0.80E−03 7.68E−01 6.15E−01 1.81E−01 0 4.51E−93 2.13E−94 7.77E−94
DE [13] 5.10E−20 6.67E−01 7.47E−02 1.63E−01 4.49E−89 1.25E−56 2.50E−58 1.77E−57
BA [15] 2.50E−03 6.68E−01 6.54E−01 9.40E−02 1.70E−08 4.05E−06 7.98E−07 8.87E−07
HS [16] 2.11E−02 1.08E + 00 4.63E−01 3.08E−01 8.00E−04 1.34E−01 3.21E−02 3.37E−02
CS [18] 4.85E−14 6.67E−01 3.45E−01 3.33E−01 1.32E−55 2.39E−47 1.01E−48 3.93E−48
ICS [37] 1.05E−11 6.67E−01 2.48E−01 3.17E−01 2.57E−76 9.49E−67 2.82E−68 1.39E−67
CSPSO 4.41E−18 6.67E−01 6.13E−01 1.83E−01 3.47E−247 1.69E−236 4.70E−238 0

Italic emphasis indicate the best result

Table 7 Experimental results of Zakharov function and Matyas function

Function
Criteria

Zakharov Matyas

Best Worst Mean Std Best Worst Mean Std

PSO [12] 1.94E−05 3.37E+01 6.74E−01 4.76E+00 2.37E−177 3.68E−163 1.50E−164 0
DE [13] 5.70E−05 1.43E−02 2.00E−03 2.70E−03 7.79E−93 1.91E−78 4.80E−80 2.71E−79
BA [15] 7.43E-05 2.24E−04 1.41E−04 3.87E−05 3.10E−11 5.56E−09 8.97E−10 1.01E−09
HS [16] 2.12E−02 4.39E+00 7.82E−01 8.41E−01 4.56E−07 9.10E−03 1.50E−03 1.90E−03
CS [18] 1.60E−22 6.29E−20 6.27E−21 1.19E−20 1.98E−90 1.10E−70 3.30E−72 1.63E−71
ICS [37] 1.00E−04 4.76E−02 7.00E−03 9.30E−03 3.33E−48 5.11E−41 1.31E−42 7.35E−42
CSPSO 2.30E−35 3.09E−21 7.60E−23 4.44E−22 1.13E−304 5.83E−287 1.42E−288 0

Italic emphasis indicate the best result

Table 8 Experimental results of Trid6 function and Powell function

Function
Criteria

Trid6 Powell

Best Worst Mean Std Best Worst Mean Std

PSO [12] −5.00E+01 −5.00E+01 −5.00E+01 0 2.28E−01 1.56E+02 5.21E+00 2.19E+01
DE [13] −5.00E+01 −5.00E+01 −5.00E+01 0 7.99E−02 8.31E−01 2.66E−01 1.61E−01
BA [15] −5.00E+01 −5.00E+01 −5.00E+01 0 1.88E−02 2.12E−01 9.93E−02 5.07E−02
HS [16] −4.99E+01 −4.89E+01 −4.96E+01 2.67E−01 8.00E−04 9.04E−01 1.72E−01 1.73E−01
CS [18] −5.00E+01 −5.00E+01 −5.00E+01 0 3.00E−04 1.95E−02 4.20E−03 4.00E−03
ICS [37] −5.00E+01 −5.00E+01 −5.00E+01 0 2.30E−03 2.43E−02 9.10E−03 4.50E−03
CSPSO −5.00E+01 −5.00E+01 −5.00E+01 0 1.60E−03 1.20E−02 6.90E−03 2.30E−03

Italic emphasis indicate the best result

S662 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

achieves the same best BWorst^ result as DE, CS, and ICS.
Regarding the BMean^ and BStd^ results, ICS provides the
best BMean^ result and BBA^ provides the best BStd^ result.
In Table 6 and Table 7, it is obvious that CSPSO achieves the
best results for Schwefel 2.21 function, Zakharov function,
and Matyas function. Compared with other six algorithms,
CSPSO performs the best and HS shows the worst
performance.

The results of Trid 6 function and Powell function are pre-
sented in Table 8. For Trid 6 function, CSPSO shows the same

best performance as PSO, DE, BA, CS, and ICS, but the
performance of HS gets worse. On Powell function, CS
achieves the best BBest^ and BMean^ results. CSPSO gets
the best BWorst^ and BStd^ results. Overall, CSPSO is very
competitive and effective for solving Powell function.

From the results in Table 9, it can be clearly seen
that CSPSO and CS show the same performance and
they are much better than other five algorithms on
Beale function. They both could approximate to the
global optimum successfully. On Trid 10 function, all

Table 9 Experimental results of Beale function and Trid10 function

Function
Criteria

Beale Trid10

Best Worst Mean Std Best Worst Mean Std

PSO [12] 0 7.62E−01 1.07E−01 2.67E−01 −2.10E+02 −2.09E+02 −2.10E+02 1.51E−01
DE [13] 0 1.41E−09 2.80E−11 1.99E−10 −2.10E+02 −2.05E+02 −2.09E+02 1.20E+00
BA [15] 3.40E−10 7.62E−01 1.22E−01 2.82E−01 −2.10E+02 −1.98E+02 −2.09E+02 2.55E+00
HS [16] 7.07E−06 7.93E−02 1.23E−02 1.48E−02 −2.09E+02 −8.57E+01 −1.76E+02 3.61E+01
CS [18] 0 0 0 0 −2.10E+02 −2.10E+02 −2.10E+02 3.67E−13
ICS [37] 0 2.92E−30 1.36E−31 4.73E−31 −2.10E+02 −2.09E+02 −2.10E+02 1.37E−05
CSPSO 0 0 0 0 −2.10E+02 −2.09E+02 −2.09E+02 1.90E−03

Italic emphasis indicate the best result

Table 10 Experimental results of Rastrigin function and Weierstrass function

Function
Criteria

Rastrigin Weierstrass

Best Worst Mean Std Best Worst Mean Std

PSO [12] 1.67E−02 9.61E+00 6.70E+00 2.08E+00 −8.83E+01 −6.70E+01 −8.16E+01 4.79E+00
DE [13] 0 1.10E+00 2.79E−01 5.33E−01 −1.20E+02 −1.20E+02 −1.20E+02 0
BA [15] 2.01E+00 2.09E+01 9.29E+00 3.81E+00 −5.38E+01 −2.48E+01 −4.00E+01 7.04E+00
HS [16] 8.20E−03 2.68E−01 7.14E−02 5.55E−02 −1.19E+02 −1.19E+02 −1.17+02 4.27E−01
CS [18] 1.73E−02 4.85E+00 1.87E+00 1.15E+00 −1.19E+02 −1.19E+02 −1.19E+02 1.00E−04
ICS [37] 0 0 0 0 −9.0E+01 −9.0E+01 −9.0E+01 0
CSPSO 0 9.95E−01 5.14E−02 2.09E−01 −1.19E+02 −1.16E+02 −1.19E+02 6.18E−01

Italic emphasis indicate the best result

Table 11 Experimental results of Griewank function and Bohachevsky1 function

Function
Criteria

Griewank Bohachevsky1

Best Worst Mean Std Best Worst Mean Std

PSO [12] 3.82E−02 3.91E−01 1.54E−01 8.49E−02 0 0 0 0
DE [13] 0 1.47E−02 1.70E−03 3.80E−03 0 0 0 0
BA [15] 3.32E−06 1.57E−05 9.69E−06 2.62E−06 5.06E−09 4.70E−01 1.77E−01 2.12E−01
HS [16] 3.51E−02 5.23E−01 2.25E−01 8.47E−02 −8.00E+00 −7.83+00 −7.92E+00 4.60E−02
CS [18] 3.20E−03 6.37E−02 2.86E−02 1.56E−02 0 0 0 0
ICS [37] 1.85E−07 3.30E−02 1.26E−02 7.70E−03 0 0 0 0
CSPSO 1.10E−14 6.58E−02 2.00E−02 1.64E−02 0 0 0 0

Italic emphasis indicate the best result

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S663

algorithms get the best BBest^ result, CS achieves the
best BWorst^ and BStd^ results, and PSO gets the best
BMean^ result as well as CS and ICS. In general, CS
performs the best and CSPSO shows a moderate perfor-
mance on Trid 10 function.

Table 10 gives the results of all algorithms for Rastrigin
function and Weierstrass function. Rastrigin function is a com-
plex multimodal function and based on the above-mentioned
Sphere function. It uses cosine function to consistently produce
many local optimal points. So it could easily fall into the local
optimum when the algorithm finds out the global optimum. In
Table 10, for Rastrigin function, it is remarkable that ICS per-
forms better than others and it approximates to the global opti-
mum. The performance of CSPSO is also promising but slight-
ly worse than ICS. For Weierstrass function, DE gets the best
BBest^, BWorst^, BMean^, and BStd^ results and its perfor-
mance is the best. CSPSO shows a moderate performance.

The results of Griewank function and Bohachevsky1
function are presented in Table 11, and the results of
Bohachevsky2 function and Bohachevsky3 function are
presented in Table 12. For Griewank function, DE
achieves the best BBest^ results, BA gets the best
BWorst^ BMean^ and BStd^ results. In comparison with
other six algorithms, CSPSO shows a moderate perfor-
mance. For Bohachevsky1 function, Bohachevsky2 func-
tion, and Bohachevsky3 function, CSPSO, PSO, DE, CS,
and ICS all could approximate to global optimum and
they perform much better than BA and HS.

To give a visualized and detailed comparison, Figs. 4, 5, 6,
7, 8, 9, 10, 11 gives the convergence curves of the proposed
CSPSO algorithm and other six algorithms PSO [12], DE
[13], BA [15], HS [16], CS [18], and ICS [37]. This paper
only presents eight representative convergence curves on
eight functions (Sphere, Schwefel 2.22, Sum square,
Schwefe l 2 .21 , Zakharov, Matyas , Powel l , and
Bohachevsky3). The plot depicts convergence trends of the
considered seven algorithms in a random run. To clearly com-
pare the performance of each algorithm, the log-based 10 of

the obtained results is made in plotting figures. In a figure, the
labels of X-axis and Y-axis represent the algorithm iteration
numbers and the function value, respectively.

From Figs. 4, 5, 6, 7, 8, 9, 10, 11, we could observe that
CSPSO converges to global optimum quickly. CSPSO has
much faster convergence compared with other six algorithms
on Sphere function, Schwefel 2.22 function, Sum square func-
tion, Schwefel 2.21 function, Zakharov function, Matyas
function, and Bohachevsky3 function. From Fig. 10, for
Powell function, CSPSO shows higher convergence rate than
CS and they both converge faster than other five algorithms.
What is more, the optimum obtained by CSPSO is better than
that of other six algorithms. Through above analysis and dis-
cussion, it can be illustrated that the proposed CSPSO is effi-
cient for solving these benchmark problems, while DE and
ICS show a moderate performance in the comparison.

5 Application studies on two engineering cases

Several cases taken from the optimization literatures have
been previously solved by using a variety of other methods
[1, 45], which is useful to show the performance of the algo-
rithms. In this section, to validate the accuracy and effective-
ness of the proposed CSPSO, we use two typical design cases
[1] as applications.

5.1 Constraint handing technique

For a constrained problem, it is an important aspect to
choose a suitable method which is employed to handle
constraints. The method should help the algorithm search
in the feasible regions and be able to arrive at the bounds
of the search space. An unfeasible solution may become a
feasible solution in the population. A common method is
the use of penalty function [46] (see Eqs. (14–15)) and
this method is chosen for the proposed CSPSO in this
paper. The idea of the penalty method is to transform

Table 12 Experimental results of Bohachevsky2 function and Bohachevsky3 function

Function
Criteria

Bohachevsky2 Bohachevsky3

Best Worst Mean Std Best Worst Mean Std

PSO [12] 0 0 0 0 0 0 0 0
DE [13] 0 0 0 0 0 0 0 0
BA [15] 3.47E−09 2.18E−01 9.18E−02 1.06E−01 3.91E−09 2.26E−01 3.88E−02 8.46E−02
HS [16] 5.00E−04 5.85E−01 2.01E−01 1.09E−01 2.30E−03 3.64E−01 1.11E−01 1.07E−01
CS [18] 0 0 0 0 0 0 0 0
ICS [37] 0 0 0 0 0 0 0 0
CSPSO 0 0 0 0 0 0 0 0

Italic emphasis indicate the best result

S664 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

the constrained problem into an unconstrained one by in-
troducing a penalty factor.

The constrained violation degree is stated as:

G x!
� �

¼ ∑
i¼1

ng

max 0; gi x!
� �n o

ð14Þ

The penalty function of the constrained problem (1) can be
defined as follow:

T x!;σ
� �

¼ f x!
� �

þ σG x!
� �

ð15Þ

where f x!� �
is the objective function, σ is the penalty factor

[48].

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-120

-100

-80

-60

-40

-20

0

20
f1 (Sphere function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 4 The convergence curve of Sphere function>

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S665

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-70

-60

-50

-40

-30

-20

-10

0

10
f2 (Schwefel 2.22 function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 5 The convergence curve of Schwefel 2.22 function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-120

-100

-80

-60

-40

-20

0

20
f5 (Sum square function)

lg
(o

pt
im

al
 v

al
ue

)
iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 6 The convergence curve of Sum square function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-250

-200

-150

-100

-50

0

50
f8 (Schwefel 2.21 function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 7 Pseudo code of PSO algorithm

5.2 Tension/compression spring design problem

The tension/compression springs are often used in the
field of engineering. A standard spring design problem
has three design variables: the wire diameter w (=x1),

the mean coil diameter d(=x2), and the number of coils l
(=x3). The objective of this problem is to minimize the
weight of spring. It also has four nonlinear inequality
constraints.

S666 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-35

-30

-25

-20

-15

-10

-5

0

5

10
f9 (Zakharov function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 8 The convergence curve of Zakharov function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-300

-250

-200

-150

-100

-50

0
f10 (Matyas function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 9 The convergence curve of Matyas function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-3

-2

-1

0

1

2

3

4

5
f12 (Powell function)

lg
(o

pt
im

al
 v

al
ue

)
iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 10 The convergence curve of Powell function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4
f20 (Bohachevsky3 function)

lg
(o

pt
im

al
 v

al
ue

)

iteration number

CSPSO

PSO

DE

BA

HS

CS

ICS

Fig. 11 The convergence curve of Bohachevsky3 function

The mathematical model of this problem can be written
compactly as:

min f x!
� �

¼ x3 þ 2ð Þx2x21

s:t:

g1 x!
� �

¼ 1−
x32x3

71785x41
≤0;

g2 x!
� �

¼ 4x22−x1x2
12566 x2x31−x41

� � þ 1

5108x21
−1≤0;

g3 x!
� �

¼ 1−
140:45x1
x22x3

≤0;

g4 x!
� �

¼ x2 þ x1
1:5

−1≤0;

8>>>>>>>>>><
>>>>>>>>>>:

where

0:05≤x1≤2:0; 0:25≤x2≤1:3; 2:0≤x3≤15:0:
This problem has been studied previously by several re-

searchers from earlier studies. Belegundu [47] used eight differ-
ent mathematical programming methods to solve this problem.
Coello [48] also solved this problem by using GA algorithm.
Additionally, Eskandar [49] solved this problem using a water
cycle algorithm. In this work, the proposed CSPSO algorithm

and other six referred algorithms: PSO [12], DE [13], BA [15],
HS [16], DA [17], CS [18], HCSGA [25, 26], and ICS [37, 38]
are all employed to solve the tension/compression spring design
problem. The parameters of these algorithms for this problem are
set as the same as subsection 4.2. The optimal solution is obtain-

ed at x!* ¼ 0:054719001; 0:434025369; 7:8714408840ð Þ with
corresponding function value equal to f * x!� � ¼ 0:012665256.
The best result obtained by the proposed CSPSO is compared
with that gained by other eight algorithms and the comparisons
are presented in Table 13. One important thing to note about this
table is that the results of HCSGA are from [25, 26].

As it can be seen from Table 13, the searching quality of
CSPSO is better than all other six algorithms, that is, the cost
is the lowest.

5.3 Welded beam design optimization problem

The so-called welded beam design is another practical prob-
lem that has been often used as a benchmark for testing the
performance of different optimization methods. The objective
is to find the minimum of the overall fabrication cost which
consists of the set-up, weld labor, and material costs, under the

Table 13 Optimal results for
minimization of the weight of
spring

Methods Optimal design variables (x) Cost

w d l

PSO [12] 0.052560919 0.378056872 10.139443232 0.012678906
DE [13] 0.051997147 0.364174266 10.864896900 0.012667024
BA [15] 0.050000000 0.311156617 14.914377401 0.012699285
HS [16] 0.050000000 0.315233688 14.322644706 0.012863618
DA [17] 0.054277415 0.422242014 8.3756900062 0.012906745
CS [18] 0.057840785 0.523525808 5.5999560338 0.012665799
HCSGA [25, 26] 0.283000000 1.400032000 6.0000000000 2.213301000
ICS [37, 38] 0.053945073 0.413394932 8.6154155079 0.012665743
CSPSO 0.054719001 0.434025369 7.8714408840 0.012665256

Italic emphasis indicate the best result

Table 14 Optimal results for
welded beam design Methods Optimal design variables (x) Cost

w l d h

PSO [12] 0.205730228 3.470480974 9.036610984 0.205730228 1.7248544245
DE [13] 0.321076220 2.471791858 7.233530741 0.321076575 2.1219959265
BA [15] 0.147793791 5.411485988 9.038818192 0.205769634 1.8675292043
HS [16] 0.363918170 2.282509819 6.692758675 0.375095249 2.3004829282
DA [17] 0.191845186 3.797668365 9.037082880 0.205727870 1.7463220380
CS [18] 0.205730228 3.470480979 9.036610990 0.205730228 1.7248544246
HCSGA [25, 26] 0.205752962 3.470488920 9.036624340 0.205729620 1.7248522000
ICS [37, 38] 0.205496531 3.475776552 9.036073079 0.205756271 1.7253114787
CSPSO 0.219211677 3.354013957 8.634284996 0.225366761 1.7248544245

Italic emphasis indicate the best result

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S667

appropriate constraints of shear stress τ, bending stress in the
beam σ, buckling load on the bar P, and maximum end de-
flection δ. The problem has four design variables: the width
w(=x1), the length of the welded area l(=x2), the depth of the
main beam d(=x3), and the thickness of the main beam h(=x4).

The mathematical formulation of this problem can be writ-
ten as:

min f x!
� �

¼ 1:1047x21x2 þ 0:04811x3x4 14:0þ x2ð Þ

s:t:

g1 x!
� �

¼ x1−x4≤0;

g2 x!
� �

¼ δ x!
� �

−0:25≤0;

g3 x!
� �

¼ τ x!
� �

−13600≤0;

g4 x!
� �

¼ σ x!
� �

−30000≤0;

g5 x!
� �

¼ 0:10471x21 þ 0:04811x3x4 14þ x2ð Þ−5:0≤0;
g6 x!
� �

¼ 0:0125−x1≤0;

g7 x!
� �

¼ 6000−P x!
� �

≤0;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

where

σ x!
� �

¼ 5040000

x23x4
;

Q ¼ 6000 14þ x2
2

� �
;

D ¼ 1

2

ffi
x22 þ x1 þ x3ð Þ2

q
;

J ¼
ffiffiffi
2

p
x1x2

x22
6
þ x1 þ x3ð Þ2

2

" #
;

δ x!
� �

¼ 65856

30000x33x4
;

β ¼ QD
J

;

α ¼ 6000ffiffiffi
2

p
x1x2

;

τ x!
� �

¼
ffi
a2 þ αβx2

D
þ β2

r
;

P x!
� �

¼ 0:61423� 106
x3x34
6

1−
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30
.
48

r
28

0
BB@

1
CCA;

0:1≤x2; x3≤10; 0:1≤x1; x4≤2:0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The proposed CSPSO algorithm is applied to the welded
beam design optimization problem and the optimal result is
compared with that obtained by earlier algorithms: PSO [12],
DE [13], BA [15], HS [16], DA [17], CS [18], HCSGA [25,
26], and ICS [37, 38]. The parameters set of these algorithms
are the same as subsection 4.2. Their comparison results are
listed in Table 14, where the results of HCSGA are from [25,
26]. Using the proposed CSPSO, we have the following opti-

mal result x!* ¼ 0:219211677; 3:354013957;ð 8:634284996
; 0:225366761Þ with corresponding function value equal to

f * x!� � ¼ 1:7248544245.

From Table 14, HCSGA achieves the best result, and the
proposed CSPSO and PSO provide the better results for the
welded beam design optimization problem. Additionally, ex-
cept for HCSGA, the better function value 1.7248544245 ob-
tained by the proposed CSPSO is the same as the result by
PSO.

6 Discussion and conclusion

In the present study, we have formulated a hybrid algorithm
called CSPSO to solve continuous optimization problems.
From the formulation of CSPSO to its implementation and
comparison, we can see that it is a promising algorithm. The
proposed CSPSO algorithm is potentially more promising
than PSO [12], DE [13], BA [15], HS [16], DA [17], CS
[18], HCSGA [25, 26], and ICS [37, 38] for most of the test
problems. The primary reason is that CSPSO takes the
search advantage of PSO and combines it to CS. From the
framework of the CSPSO, it can be observed that the pop-
ulation individuals in CSPSO evolve with two different
mechanisms and then exchange their information with each
other. This can be viewed as a kind of co-evolutionary to
some extent. According to the interactive iterations of the
CS and PSO, the diversity of the optimal solutions and the
convergence rate of the CSPSO are both enhanced. This
superior performance of CSPSO is guaranteed by the co-
evolutionary mechanism.

Moreover, the population of the proposed CSPSO is ini-
tialized by using the principle of orthogonal Lation squares
and a dynamic step size is employed in CS instead of the
original fixed constant. The effectiveness of these improve-
ments is checked for several different performance criteria,
such as success rate, best solution, worst solution, and mean
solution and the original deviation, convergence rate, etc.

Unlike the problem-dependent algorithms which are on the
basis of specific assumptions, such as the gradient information
of the optimization objective, the convexity of constraint re-
gions, and so on [50], CSPSO has solved different types of
problem directly. The results on 20 benchmark test functions
and 2 typical engineering design cases validate the effective-
ness of the proposed CSPSO. Moreover, the extensive con-
ducted comparative study shows that CSPSO outperforms the
other algorithms in the literature for most cases. However, the
present algorithm is only suitable for single objective optimi-
zation problems. Application of the proposed algorithm to
multi-objective optimization problems is the future work.

Acknowledgments The authors would like to thank the Associate
Editor and the reviewers for their detailed comments and valuable sug-
gestions which considerably improved the presentation of the paper. The
work is supported by the Natural Science Foundation of Hubei Province,
C h i n a (# 2 0 1 5 C F B 5 8 6 a n d # 2 0 1 6 C F B 5 0 2) , a n d
the Fundamental Research Funds for the Central Universities (#163111005).

S668 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Yang XS, Deb S (2010) Engineering optimisation by cuckoo
search. International Journal of Mathematical Modelling and
Numerical Optimisation 1(4):330–343

2. Sun DI, Ashley B, Brewer B et al (1984) Optimal power flow by
Newton approach. IEEE Transactions on Power Apparatus and
Systems 103(10):2864–2880

3. Dommel HW, Tinney WF (1968) Optimal power flow solutions.
IEEE Transactions on Power Apparatus and Systems 87(10):1866–
1876

4. Capitanescu F, Wehenkel L (2013) Experiments with the interior-
point method for solving large scale optimal power flow problems.
Electric Power Systems Research, vol 95:276–283

5. Diez M, Peri D (2010) Robust optimization for ship conceptual
design. Ocean Eng 37(11–12):966–977

6. Sekhar P, Mohanty S (2016) An enhanced cuckoo search algorithm
based contingency constrained economic load dispatch for security
enhancement. Int J Electr Power Energy Syst 75:303–310

7. Li X, Yin M (2013) A hybrid cuckoo search via Lévy flights for the
permutation flow shop scheduling problem. Int J Prod Res 51(16):
4732–4754

8. NaganoMS,Moccellin JV (2002) A high quality solution construc-
tive heuristic for flow shop sequencing. J Oper Res Soc 53(12):
1374–1379

9. Mitchell M (1998) An introduction to genetic algorithms. MIT
press, London

10. Tang O (2004) Simulated annealing in lot sizing problems. Int J
Prod Econ 88(2):173–181

11. BrattonD, Kennedy J (2007) Defining a standard for particle swarm
optimization. In: Proceedings of the 2007 I.E. Swarm Intelligence
Symposium, pp 120–127

12. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:
Proceedings of the IEEE International joint conference on neural
networks, pp 1942–1948

13. Storn R, Price K (1997) Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341–359

14. Dorigo M, Di Caro G (1999) The ant colony optimization meta-
heuristic. In: New ideas in optimization, pp 11–32

15. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. SIMULATION 76(2):60–68

16. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In:
Nature inspired cooperative strategies for optimization, studies in
computational intelligence, pp 65–74

17. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic opti-
mization technique for solving single-objective, discrete, and multi-
objective problems. Neural Comput & Applic 27(4):1053–1073

18. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World
Congress on Nature and Biologically Inspired Computing, pp 210–
214

19. Nearchou AC (2004) A novel metaheuristic approach for the flow
shop scheduling problem. Eng Appl Artif Intell 17(3):289–300

20. AlikhaniMG, JavadianN, Tavakkoli-MoghaddamR (2009) A nov-
el hybrid approach combining electromagnetism-like method with
Solis and wets local search for continuous optimization problems. J
Glob Optim 44(2):227–234

21. Costa L, Santo I, Fernandes E (2012) A hybrid genetic pattern
search augmented Lagrangian method for constrained global opti-
mization. Appl Math Comput 218(18):9415–9426

22. Yildiz AR (2009) A novel hybrid immune algorithm for optimiza-
tion of machining parameters in milling operations. Robot Comput
Integr Manuf 25(2):261–270

23. De Melo VCV, Carosio GLC (2013) Investigating multi-view dif-
ferential evolution for solving constrained engineering design prob-
lems. Expert Syst Appl 40(9):3370–3377

24. Su Y, Chi R (2017) Multi-objective particle swarm-differential evo-
lution algorithm. Neural Comput & Applic 28(2):407–418

25. Kanagaraj G, Ponnambalam SG, Jawahar N et al (2013) An effec-
tive hybrid cuckoo search and genetic algorithm for constrained
engineering design optimization. Eng Optim 46(10):1331–1351

26. Kanagaraj G, Ponnambalam SG, Gandomi AH (2016) Hybridizing
cuckoo search with bio-inspired algorithms for constrained optimi-
zation problems. International Conference on Swarm, Evolutionary,
and Memetic Computing, pp260–273

27. Huang J, Gao L, Li X (2015) An effective teaching-learning-based
cuckoo search algorithm for parameter optimization problems in
structure designing and machining processes. Appl Soft Comput
36:349–356

28. Mohamad AB, Zain AM, Bazin NEN (2014) Cuckoo search algo-
rithm for optimization problems—a literature review and its appli-
cations. Appl Artif Intell 28(5):419–448

29. Mohapatra P, Chakravarty S, Dash PK (2015) An improved cuckoo
search based extreme learning machine for medical data classifica-
tion. Swarm and Evolutionary Computation 24:25–49

30. Ouaarab A, Ahiod B, Yang XS (2014) Discrete cuckoo search
algorithm for the travelling salesman problem. Neural Comput &
Applic 24(7–8):1659–1669

31. HuX, Eberhart R (2002)Multiobjective optimization using dynam-
ic neighborhood particle swarm optimization. In: Congress on
Evolutionary Computation, pp1677–1681

32. Shokrian M, High KA (2014) Application of a multi objective
multi-leader particle swarm optimization algorithm on NLP and
MINLP problems. Comput Chem Eng 60:57–75

33. Shlesinger MF, Zaslavsky GM, Frisch U (1995) Lévy flights and
related topics in physics. Lecture Notes in Physics, Berlin

34. Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in dobe
ju/’hoansi foraging patterns. Hum Ecol 35(1):129–138

35. Pavlyukevich I (2007) Lévy flights, non-local search and simulated
annealing. J Comput Phys 226(1):1830–1844

36. Chen K, Zhang Y, Chen G et al (2016) Further results on mutually
nearly orthogonal Latin squares. Acta Mathematicae Applicatae
Sinica, English Series 32(1):209–220

37. Valian E, Tavakoli S, Mohanna S et al (2013) Improved cuckoo
search for reliability optimization problems. Comput Ind Eng 64(1):
459–468

38. Valian E, Mohanna S, Tavakoli S (2011) Improved cuckoo search
algorithm for feed-forward neural network training. International
Journal of Artificial Intelligence & Applications 2(3):36–43

39. Bulatović RR, Bošković G, Savković MM et al (2014) Improved
cuckoo search (ICS) algorithm for constrained optimization prob-
lems. Latin American Journal of Solids and Structures 11(8):1349–
1362

40. Walton S, Hassan O, Morgan K et al (2011) Modified cuckoo
search: a new gradient free optimisation algorithm. Chaos,
Solitons Fractals 44(9):710–718

41. Karaboga D, Akay B (2009) A comparative study of artificial bee
colony algorithm. Appl Math Comput 214(1):108–132

42. Hedar AR, Fukushima M (2006) Tabu search directed by direct
search methods for nonlinear global optimization. Eur J Oper Res
170(2):329–349

43. Wang L, Zou F, Hei X et al (2014) A hybridization of teaching-
learning-based optimization and differential evolution for chaotic

Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670 S669

time series prediction. Neural Computing and Application 25(6):
1407–1422

44. Suganthan PN, Hansen N, Liang JJ, et al (2005) Problem definitions
and evaluation criteria for the CEC 2005 special session on real
parameter optimization. Technical Report, Nanyang Technological
University, Singapore and KanGAL Report Number 2005005

45. Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering
optimization problems with the simple constrained particle swarm
optimizer. Informatica 32(3):319–326

46. Bazaraa MS, Sherali HD, Shetty CM (1979) Nonlinear program-
ming, theory and algorithm. Academic Press, New York

47. Belegundu AD (1985) A study of mathematical programming
methods for structural optimization, PhD thesis, Department of
Civil and Environmental Engineering, University of Iowa, Iowa

48. Coello CAC, Montes EM (2002) Constraint-handling in genetic
algorithms through the use of dominance-based tournament selec-
tion. Adv Eng Inform 16(3):193–203

49. Eskandar H, Sadollah A, Bahreininejad A et al (2012) Water cycle
algorithm–a novel metaheuristic optimization method for solving
constrained engineering optimization problems. Computers &
Structures, vol 110-111:151–166

50. Ma W, Wang M, Zhu X (2014) Improved particle swarm
optimization based approach for bilevel programming prob-
lem—an application on supply chain model. Int J Mach
Learn Cybern 5(2):281–292

S670 Neural Comput & Applic (2019) 31 (Suppl 1):S653–S670

	A hybridization of cuckoo search and particle swarm optimization for solving optimization problems
	Abstract
	Introduction
	The original PSO and original CS
	The original PSO
	The original CS
	Cuckoo breeding behavior and Lévy flight
	Cuckoo search implementation

	The hybrid CSPSO algorithm
	Selection method of initial population
	Dynamic step size
	The hybrid CSPSO procedure

	Experimental studies on benchmark functions
	Benchmark functions
	Algorithms used for comparison and parametric studies
	Simulation and comparison

	Application studies on two engineering cases
	Constraint handing technique
	Tension/compression spring design problem
	Welded beam design optimization problem

	Discussion and conclusion
	References

