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Abstract This paper proposes a novel-efficient evolutionary-
based multi-objective optimization (MOO) approaches for
solving the optimal power flow (OPF) problem using the con-
cept of incremental load flowmodel based on sensitivities and
some heuristics. This paper is useful in robust decision-
making for the system operator. The main disadvantage of
meta-heuristic-based MOO approach is computationally bur-
densome. The motivation of this paper is to overcome this
drawback. By using the proposed efficient MOO approach,
the number of load flows to be performed is reduced substan-
tially, resulting to the solution speed up. Here, three objective
functions, i.e., generator fuel cost minimization, loss minimi-
zation, and L index minimization are considered. The pro-
posed approach can effectively handle the complex non-line-
arities, discontinuities, discrete variables, and multiple objec-
tives. The potential and suitability of the proposed efficient
MOO approach is tested on the IEEE 30 bus system. The
results obtained with the proposed efficient MOO approach
are also compared with the meta-heuristic-based non-
dominated sorting genetic algorithm-2 (NSGA-II) technique.
In this paper, the proposed efficient MOO approach is imple-
mented using the differential evolutionary (DE) algorithm.
However, it is a generic one and can be implemented with
any type of evolutionary algorithm.

Keywords Multi-objective optimization . Optimal power
flow . Pareto optimal solutions . Sensitivity . Fuel cost .

Transmission loss . Voltage stability

1 Introduction

Optimal power flow (OPF) refers to the calculation of optimal
settings for electrical control variables in power system con-
trol that are a trade-off between the economy and system se-
curity. The basic task is to determine a set of optimal system
states within a region defined by the operating constraints like
branch flow and voltage limits while optimizing an objective
function such as cost function within this region. Modern
power systems are very large in size and may be monitored
and controlled in real time using energy management system
(EMS) functions. The common shortcomings of conventional
OPF include non-convergence due to infeasibility. Other prob-
lems involve discrete vs. continuous control, local minima,
and problems with equivalents. Therefore, it is imperative to
develop the optimization approaches that are able to overcome
these drawbacks. Recently, meta-heuristic/evolutionary opti-
mization techniques have been used to overcome the draw-
backs of conventional optimization methods. Various evolu-
tionary algorithms and their variants have been proposed in
the literature for solving the OPF problem, e.g., genetic algo-
rithm (GA) [1], enhanced GA (EGA) [2, 3], particle swarm
optimization (PSO) [4], improved evolutionary programming
(IEP) [5], differential evolutionary (DE) algorithm [6], bacte-
rial foraging algorithm (BFA) [7], gravitational search algo-
rithm (GSA) [8], simulated annealing (SA) algorithm [9],
biogeography-based optimization (BBO) [10], and tabu
search (TS) algorithm [11]. On the other hand, the main draw-
back of meta-heuristic-based OPF is the excessive execution
time, i.e., computationally burdensome, because of the large
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number of load flows needed in the solution process. Hence, it
is important to develop an efficient optimization algorithm
that will overcome this drawback. References [12] and [13]
have made an attempt in this regard. To make the OPF more
attractive to the industry and users and to guide the decision-
making of power system operators, the OPF should have the
following features:

& OPF solution should not be sensitive to the starting point
selection.

& Changes in solution point should be consistent with
changes in the operating constraints.

& OPF programs must be user-friendly.
& Complexity of OPF problem must be reduced.

For solving the MOO-based OPF, there are many tech-
niques available in the literature. In reference [14], the MOO
problem can be converted into a single-objective optimization
and then solved by using the ε constraint method. Reference
[15] proposes an approach to minimize the generation cost
and use environmental impact index as a constraint. The dif-
ficulty of this approach is to choose a suitable upper bound for
the environmental impact index.Most of theMOOmethods in
the literature use the evolutionary-based algorithms and their
variants. In [16], a strength Pareto evolutionary algorithm
(SPEA) is developed to solve the problem as a true MOO
problem with competing and non-commensurable objectives.
In reference [17], a multi-objective PSO (MOPSO) algorithm
is proposed for solving the OPF problem. A multi-objective
OPF technique using PSO considering two conflicting objec-
tives, i.e., minimization of generation cost, and environmental
pollution simultaneously is proposed in [18]. Reference [19]
proposes an improved PSO (IPSO) for solving the MO-OPF
problem. References [20–22] propose a multi-objective DE
(MO-DE)-based algorithm to solve the OPF problem.
Reference [23] presents the review of recent advancements
in the OPF problem since 2010 and also identifies the chal-
lenges that are required to adapt to the transition toward
smarter electrical grids, and indicates the ways to address
these challenges. In [24], an efficient and simple nature-
inspired search based on differential search technique has
been presented to solve the OPF problem. An adaptive group
search optimization algorithm for the solution of OPF problem
is proposed in [25]. In [26], a new backtracking search opti-
mization technique is proposed for solving the OPF problem.
Reference [27] proposes an improved colliding bodies optimi-
zation algorithm for solving the OPF problem efficiently.

Reference [28] proposes a bi-objective DC-OPF model by
minimizing the network losses and generation costs and they
can be converted into a single objective model via the weight-
ed summation approach. An artificial bee colony algorithm
with dynamic population which synergizes the idea of extend-
ed life cycle evolving model to balance the exploration and

exploitation tradeoff is proposed in [29]. Reference [30] pro-
poses a modified multi-objective evolutionary algorithm-
based decomposition method to solve the OPF problem with
multiple and competing objectives, i.e., fuel cost, emissions,
voltage magnitude deviations, and power losses. A multi-
objective multi-population ant colony optimization for contin-
uous domain to solve the economic and emission dispatch
problem considering power system security is proposed in
reference [31]. Reference [32] proposes an improved-
strength Pareto evolutionary algorithm to solve the MO-OPF
problem considering the fuel cost and emission objectives. An
improved artificial bee colony algorithm to solve the OPF
problem in electric power grids is proposed in [33].
Reference [34] proposes a new multi-objective day-ahead
market clearing mechanism with demand response offers,
considering realistic voltage-dependent load modeling.
Reference [35] proposes a biogeography-based optimization
algorithm for solving various constrained economic dispatch
problems combined with economic emission aspects in power
system. An archive-based multi-objective artificial bee colony
optimization algorithm in which an external archive is used to
preserve the current obtained non-dominated best solutions is
proposed in [36]. An improved multi-objective PSO based on
Pareto-optimal solutions is proposed in [37] to maximize the
amount of the final product while reducing the amount of the
by-product in batch process.

This paper selects the differential evolution (DE) algorithm
to implement the proposed efficient approaches. It proposes a
novel efficient evolutionary-based approach for solving the
MOO-based OPF problem using the concept of incremental
power flow model based on sensitivities and some heuristics.
The proposed efficient approach first finds out the optimum
values of each objective function, one at a time, ignoring the
other. In the process, with these optimized solutions, we also
find out the worse values of the other objective functions.
Then, we start from one end of Pareto front and solve two sets
of optimization problems. In each one, the other objective
function value is a constraint relaxed at each step for a new
optimization problem. The proposed approach is executed for
multiple times (one execution for each point on the Pareto
optimal front) to get the entire set of non-dominated Pareto
optimal solutions. The total execution time required for the
multiple runs of proposed efficient approach is much less than
any evolutionary-based MOO technique. The proposed ap-
proach is expected to aid the system operator in robust deci-
sion-making.

The remainder of the paper is organized as follows.
Section 2 of this paper describes the traditional single and
multi-objective based OPF problem formulation. Section 3
presents the proposed efficient approaches for the single and
multi-objective optimization problems. Simulation studies on
IEEE 30 bus test system is given in Section 4. The contribu-
tions with concluding remarks are drawn in Section 5.
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2 Traditional OPF: problem formulation

An energymanagement system (EMS) should help the system
engineers to control and operate the network in real time. This
will include facilities to capture the current state of electrical
system and study proposed changes a few hours or days in
advance. The engineer can determine the effects of an actual
or potential fault or a proposed switching operation. The busi-
ness objective is to operate the network at low cost for a given
level of security. This is precisely what OPF algorithms are
designed to solve [12, 13].

2.1 Objective functions

As mentioned earlier, in this paper, three objectives, i.e., gen-
erator fuel cost minimization, transmission/active power loss
minimization, and L index minimization are considered, and
they are described next:

2.1.1 Fuel cost minimization

The main objective of an OPF is to meet the load demand at
minimum system operating cost while satisfying all the gen-
erating units and system’s operating constraints [12, 13, 38].
For the active power optimization problem, the fuel cost (FC)
of generating units is considered as the objective function. The
minimization function in the quadratic cost characteristics can
be obtained as the sum of fuel costs of all the generators, and it
is expressed as

J 1 ¼ ∑
NG

i¼1
ai þ biPGi þ ciP2

Gi

� �
US=h ð1Þ

The fuel cost function considering the non-convex and dis-
continuous characteristics is presented next:

The fuel cost function considering the valve point loading
(VPL) effect is expressed as [12],

J 1 ¼ ∑
NG

i¼1
ai þ biPGi þ ciP2

Gi þ di � sin ei � Pmin
Gi −PGi

� �� ��� ��� �
US=h

ð2Þ

A generator with prohibited operating zones (POZs) has
discontinuous input-output characteristics, and it is difficult
to find the actual POZ by real operating records or perfor-
mance testing. Generally, the optimum cost can be obtained
by avoiding the operation in areas that are in actual operation.
The feasible operating zones of ith generator can be represent-
ed as [12, 13],

PGi∈
Pmin
Gi ≤PGi≤Pl

Gi;1

Pu
Gi;k−1≤PGi≤Pl

Gi;k k ¼ 2;…;N zið Þ
Pu
Gi;N zi

≤PGi≤Pmax
Gi

8<
: ð3Þ

2.1.2 Transmission loss minimization [12, 13]

For solving the reactive power optimization problem, trans-
mission loss (TL)/active power loss minimization is consid-
ered as the objective function. The transmission loss in each
line can be calculated from the power flow solution. The total
active power loss is the sum of power loss in each line, and it is
expressed as [12]

J 2 ¼ ∑
k¼1

Nl

Gk V2
i þ V2

j−2ViV jcos θi−θ j
� �h i

MW ð4Þ

2.1.3 Voltage stability enhancement index or L index
minimization

In this paper, voltage stability enhancement index (VSEI)/L
index is selected to monitor the voltage stability in power
system [12, 13]. It uses the information from a normal power
flow and it varies in the range of 0 (no load) to 1 (voltage
collapse). The L index of the system is formulated as [12, 13],

J 3 ¼ ∑
n

j¼NGþ1
L2j ¼ VSEI ð5Þ

where

Lj ¼ 1− ∑
NG

i¼1
Fji

V i

V j

����
���� j ¼ NGþ 1;…; n ð6Þ

The VSEI/L indices for the given loading condition are
computed for all the load busses and the maximum of L indi-
ces gives the proximity of the system to voltage collapse.

2.2 OPF problem: constraints

2.2.1 Equality constraints

These constraints reflect the physics of the power system and
they are the typical load flow equations. These constraints are
formulated as,

Pi ¼ PGi−PDi ¼ ∑
n

k¼1
ViVk Gikcosθik þ Biksinθikð Þ ð7Þ

Qi ¼ QGi−QDi ¼ ∑
n

k¼1
ViVk Giksinθij−Bikcosθik

� � ð8Þ

In Eqs. (10) and (11), i = 1, 2, 3, ..., n, and θik = θi − θk.

2.2.2 Inequality constraints for the OPF problem

These constraints represent system operating limits.
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A. Generating unit constraints Generator-active, reactive
power outputs and voltage magnitudes are limited by their
minimum and maximum constraints, and they are represented
as,

Pmin
Gi ≤PGi≤Pmax

Gi i ¼ 1; 2; 3;…;NG ð9Þ
Qmin

Gi ≤QGi≤Q
max
Gi i ¼ 1; 2; 3;…;NG ð10Þ

Vmin
Gi ≤VGi≤Vmax

Gi i ¼ 1; 2; 3;…;NG ð11Þ

B. Transformer constraints Transformer taps have mini-
mum and maximum setting limits and they are expressed as,

Tmin
i ≤Ti≤Tmax

i i ¼ 1; 2;…;NT ð12Þ

C. Switchable VAR sources The switchable VAR sources
have restrictions as follows,

Qmin
Ci ≤QCi≤Q

max
Ci i ¼ 1; 2; 3; …;NC ð13Þ

D. Security constraints These constraints include the limits
on load bus voltage magnitudes and thermal power flow limits
of transmission lines and they are represented as,

Vmin
Li ≤VLi≤Vmax

Li i ¼ 1; 2;…;NL ð14Þ
SLi≤Smax

Li i ¼ 1; 2;…;Nl ð15Þ

The above equations, i.e., (17) and (18), do not include the
N-1 contingency criterion. Including the N-1 criteria is a scope
for the future research work.

2.3 Traditional multi-objective optimization

A multi-objective optimization (MOO) problem has many
objectives which are to be optimized simultaneously. This
MOO optimization problem is subjected to a number of equal-
ity and inequality constraints which the solution should satis-
fy. The MOO problem is represented by [12],

Maximize=minimize J i xð Þ i

¼ 1; 2; 3; …;Nobj ð16Þ
Subjected to g j xð Þ ¼ 0 j

¼ 1; 2; 3; …;M eq ð17Þ
hk xð Þ≤0 k ¼ 1; 2; 3; …;N ineq ð18Þ

where x is a vector of decision variables. Equation (19) repre-
sents the objective function vector. Equations (20) and (21)
represent the set of equality and inequality constraints, respec-
tively. The principle of an ideal MOO is to determine multiple

trade-off optimal solutions/Pareto optimal solutions with a
wide range of values for objectives and select one of these
solutions using the higher level information. This higher-
level information is generally taken from the domain
expertise.

2.3.1 Pareto optimality

The MOO problem is solved to determine a set of decision
variables x* = (x1*, x2*, x3*, ..., xn*) in the set of all vectors J
which provides optimal objective functions (Eq. (19)), satisfying
equality and inequality constraints (Eqs. (20) and (21)) [39, 40].
The vector of x*∈J is said to be Pareto optimal if there does not
exist any other x∈J such that Ji(x) ≤ Ji(x*) for all i = 1, ...,Nobj and
Ji(x) < Ji(x*) for at least one i. The definition of Pareto optimality
means that x* is Pareto optimal solution if there exists no feasible
vector of decision variables x∈J which would decrease some
objective function without causing a simultaneous increase in
any one of other objectives. This concept always leads to a set
of solutions called Pareto optimal set. The obtained plot of Pareto
optimal set is called Pareto optimal front.

2.3.2 Pareto-based approaches for solving the MOO
problems

A number of Pareto-based approaches have been proposed in
the literature [39, 40]. The first-generation Pareto-based ap-
proaches are (i) niched Pareto genetic algorithm (NPGA), (ii)
non-dominated sorting genetic algorithm (NSGA), (iii) multi-
objective genetic algorithm (MOGA). The second generation
of multi-objective (MO) algorithms introduced elitism into the
optimization process. Elitism in MOO refers to the use of an
external population to retain the non-dominated solutions. The
second-generation MO evolutionary algorithms are (i)
strength Pareto evolutionary algorithm (SPEA), (ii) strength
Pareto evolutionary algorithms-2 (SPEA2), (iii) Pareto ar-
chived evolution strategy (PAES), (iv) non-dominated sorting
genetic algorithm-2 (NSGA-II), (v) niched Pareto genetic
algorithm-2 (NPGA2), (vi) Pareto envelope-based selection
algorithm (PESA), and (vii) micro genetic algorithm (MGA).

3 Proposed approach for solving the OPF withMOO

A general MOO problem solves two or more conflicting objec-
tives simultaneously subjected to all the equality and inequality
constraints. As mentioned earlier, in this paper, we have consid-
ered generation cost, transmission loss minimization, and VSEI
as multiple objectives to be optimized. However, there is no
requirement for solving these three objectives simultaneously.
Fuel cost minimization is an important objective under all oper-
ating conditions. The loss minimization objective is appropriate
only at unstressed loading condition. The VSEI is used as a
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supplementary objective to ensure that appropriate stability mar-
gin is available and it is used at stressed loading condition.
Therefore, in this paper, fuel cost and loss minimization objec-
tives are optimized simultaneously at normal/unstressed loading
condition and fuel cost andVSEI objectives are optimized simul-
taneously at stressed loading condition. Therefore, at any time,
two objective functions are optimized simultaneously, and they
are represented as,

Minimize J 1 xð Þ; J 2 xð Þ½ � orð Þ J 1 xð Þ; J 3 xð Þ½ � ð19Þ
Subjected to g xð Þ ¼ 0 ð20Þ
hmin≤h xð Þ≤hmax ð21Þ

here, J1is fuel cost minimization function, J2 is the loss min-
imization function, and J3 is the L index minimization func-
tion. From the literature, it is clear that the best way to solve
this problem is by using the any evolutionary-based MOO
technique with Pareto optimal front. But, as mentioned earlier,
this approach is computationally expensive. Therefore, this
paper proposes an efficient MOO approach to obtain the
Pareto optimal front.

3.1 Obtaining the Pareto optimal front using the proposed
efficient MOO approach

In the proposed MOO approach, the first half of specified
number of Pareto optimal solutions are determined by opti-
mizing the fuel cost minimization (J1) function considering
the other objective (i.e., transmission loss (J2) or L index
(J3)) as constraint. The second half of Pareto optimal solutions
can be obtained in a vice versa manner. Therefore, in the first
variant, the generator cost minimization (J1) is considered as
the objective function and loss or L index is considered as the
constraint. Mathematically, this first variant is formulated as,

Minimize J 1 xð Þ ð22Þ
Subjected to J 2 xð Þ≤ J specified2 orð Þ J 3 xð Þ≤ J specified3 ð23Þ
g xð Þ ¼ 0 ð24Þ
hmin≤h xð Þ≤hmax ð25Þ

In the second variant, transmission loss (J2) or L index (J3)
is considered as the objective function and generator fuel cost
function (J1) as a constraint. This can be formulated as,

Minimize J 2 xð Þ orð Þ J 3 xð Þ ð26Þ
Subjected to J 1 xð Þ≤ J specified1 ð27Þ
g xð Þ ¼ 0 ð28Þ
hmin≤h xð Þ≤hmax ð29Þ

From the literature, it can be observed that the second gen-
eration of multi-objective (MO) evolutionary algorithms

introduces elitism into the optimization process. Elitism in
MOO refers to the use of an external population to retain the
non-dominated solutions. Let us assume this externally main-
taining population size is 2N. This population stores a fixed
number of non-dominated solutions. In every iteration, the
newly found, non-dominated solutions are compared with
the existing external population and resulting solutions are
preserved. However, in the proposed efficientMOO approach,
these 2N non-dominated Pareto optimal solutions are gener-
ated by executing the proposed efficient differential evolution
(DE) algorithm for 2N times. The first and 2Nth solutions are
the two extreme points on the Pareto optimal front. These
extreme solutions can be obtained by solving the Eqs. (25)
and (29) by relaxing the constraints (26) and (30), respective-
ly. Therefore, for the first point on the Pareto optimal front,
generator fuel cost function (J1) attains minimum/optimum

value (Jmin
1 ), whereas loss (J2) or L index (J3) attains maxi-

mum value (Jmax
2 or Jmax

3 ). This can be represented as
First point on the Pareto optimal front:

Jmin
1 ; Jmax

2 orð Þ Jmax
3

� � ð30Þ

Similarly, for the last or 2Nth point on the Pareto optimal
front, transmission loss (J2) or L index (J3) attains minimum/

optimum value (Jmin
2 orð Þ Jmin

3 ), whereas fuel cost (J1) at-
tains maximum value (Jmax

1 ). This can be represented as
2Nth point on the Pareto optimal front:

Jmax
1 ; Jmin

2 orð Þ Jmin
3

� � ð31Þ

The remaining (2N-2) points on the Pareto optimal front
can be determined by solving the equations (25) and (29), N-1

times with different J specified2 (or) J specified3 and J specified1 values,
respectively, in each run. For the N-1 runs of Eq. (25), the

J specified2 varies as

J specified2 orð Þ J specified3

¼ Jmax
2 orð Þ Jmax

3

� �
−
t Jmax

2 orð Þ Jmax
3

� �
− Jmin

2 orð Þ Jmin
3

� �� �
N

t ¼ 1; 2;…; N−1 ð32Þ

Similarly, for the N-1 runs of Eq. (29), the J specified1 varies as

J specified1 ¼ Jmax
1 −

t Jmax
1 −Jmin

1

� �
N

t ¼ 1; 2;…; N−1 ð33Þ

After obtaining these 2N points/solutions, sort in the as-
cending order of J 1 value obtained for each solution leads to
the Pareto optimal set/front. After obtaining the Pareto optimal
front, the best compromise solution can be determined by the
system operator/decision maker using the fuzzy min-max ap-
proach. The description of fuzzy min-max approach is pre-
sented in [12, 13, 41].
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3.2 Implementation of proposed efficient approach

From Section 3.1, it is clear that we need to run the single-
objective optimization for each point on the Pareto optimal
front. In this paper, efficient differential evolution (DE) algo-
rithm is used to solve this single-objective optimization prob-
lem. The efficient DE is implemented using the algorithm
presented in reference [13]. The efficient DE algorithm uses
the concept of incremental load flow model based on the sen-
sitivities and lower and upper bounds of objective function
values [12, 13]. By using this approach, the number of power
flows to be executed is reduced substantially, resulting in the
solution seed up. All the benefits of evolutionary algorithms,

such as handling of discrete variables, ability to handle non-
convex, discontinuities in the objective function, and the
MOO are still available in the proposed efficient DE approach.

As mentioned earlier, the efficient approach uses the incre-
mental variables and the quadratic generator fuel cost function
with incremental variables is formulated as [12],

J 1 ¼ ∑
NG

i¼1
ai þ bi P0

Gi þΔPGi

� �þ ci P0
Gi þΔPGi

� �2h i
US =h ð34Þ

The generator fuel cost minimization function considering
the valve point loading (VPL) effect in terms of incremental
variables is expressed as [12],

J 1 ¼ ∑
NG

i¼1
ai þ bi P0

Gi þΔPGi

� �þ ci P0
Gi þΔPGi

� �2 þ disin ei Pmin
Gi − P0

Gi þΔPGi

� �� �� ��� ��h i
US=h ð35Þ

The transmission loss minimization function in terms of
incremental variables is represented as [12],

J 2 ¼ Gkk V0
k þΔVk

� �2 þ ∑
n

j≠k
V0
k þΔVk

� �
V0

j þΔV j

� �
Ykjcos θkj þ δ0j þΔδ j

� �
− δ0k þΔδk
� �h i

ð36Þ

The above Eqs. (38) and (39) are non-linear, non-convex
and they can be solved using the proposed efficient DE
approach.

3.3 Constraints

All the objective functions mentioned in this paper are sub-
jected to the equality constraints mentioned in Section 2.2.1
(i.e., Eqs. (10) and (11)).

3.3.1 Constraints on control variables

The ΔPGi, ΔVGi, ΔTi, and ΔBsh , i are constrained by their lower
and upper limits, and they are expressed as,

Pmin
Gi −P

0
Gi

� �
≤ΔPGi≤ Pmax

Gi −P0
Gi

� �
Pmin
Gi −P

0
Gi

� �
≤ΔPGi≤ Pmax

Gi −P0
Gi

� � ð37Þ

Vmin
Gi −V

0
Gi

� �
≤ΔVGi≤ Vmax

Gi −V0
Gi

� � ð38Þ

Tmin
i −T 0

i

� �
≤ΔVi≤ Tmax

i −T0
i

� � ð39Þ

Bmin
sh;i−B

0
sh;i

� �
≤ΔBsh;i≤ Bmax

sh;i −B
0
sh;i

� �
ð40Þ

3.3.2 Constraint on reactive power generation

The changes in reactive power generation (ΔQGi) is limited by,

Qmin
Gi −Q

0
Gi

� �
≤ΔQGi≤ Qmax

Gi −Q0
Gi

� � ð41Þ
3.3.3 Transmission line flow constraints

The power flow through each line (Pij) is limited by,

−Pmax
ij −P0

ij

� �
≤ΔPij≤ Pmax

ij −P0
ij

� �
ð42Þ

3.3.4 Power balance constraint inside the DE optimization

The power balance constraint inside the DE algorithm in terms
of incremental variables is expressed as,

∑
i¼1

NG

ΔPGi−ΔPloss ¼ 0 ð43Þ

3.4 Incremental function/variable evaluation

The solution for the dependent voltages and angle changes
(ΔX) can be obtained from the converged power flow, and it
can be expressed as,

ΔX½ � ¼ Δδ
ΔV

	 

ð44Þ

S514 Neural Comput & Applic (2019) 31 (Suppl 1):S509–S522



The effect of changes in control variables on the mis-
matches are reflected as [42],

ΔX½ � ¼ J−1
� � ΔP

ΔQ

	 

¼ J−1 MΔUpq−AΔΔG−BΔT−CΔBsh

� �
ð45Þ

whereM, A, B, andC are the sensitivity matrices with respect to
Upq, VG , T, and Bsh, respectively, and they are represented as

M ¼
∂P
∂U pq

∂Q
∂U pq

2
664

3
775; A ¼

∂P
∂VG
∂Q
∂VG

2
664

3
775; B ¼

∂P
∂T
∂Q
∂T

2
64

3
75; C ¼ 0

∂Q
∂Bsh

2
664

3
775

Let Y = J−1. Then, the [ΔX] can be modified as,

ΔX½ � ¼ YMΔUpq−YAΔVG−YBΔT−YCΔBsh
� �

¼ A1ΔUpq−A2ΔVG−A3ΔT−A4ΔBsh
� � ð46Þ

where A1 = [YM], A2 = [YA], A3 = [YB], and A4 = [YC].
From the above equation, the changes in voltage magni-

tudes and angles are represented as [12],

Δδi ¼ ∑
n

j¼1
A

0
1;ijΔU j

h i
− ∑

j¼1

NG

A
0
2;ijΔVGj

h i
− ∑

NT

j¼1
A

0
3;ijΔT j

h i
− ∑

j¼1

NC

A
0
4;ijΔBsh; j

h i
ð47Þ

ΔVi ¼ ∑
2n

j¼nþ1
A

0 0
1;ijΔU j

h i
− ∑

j¼1

NG

A
0 0
2;ijΔVGj

h i
− ∑

NT

j¼1
A

0 0
3;ijΔT j

h i
− ∑

j¼1

NC

A
0 0
4;ijΔBsh; j

h i

ð48Þ

3.4.1 Updating the control variables

All the control variables are updated using,

Ptþ1
Gi ¼ Pt

Gi þΔPGi ð49Þ
Vtþ1
Gi ¼ Vt

Gi þΔVGi ð50Þ
Ttþ1
i ¼ Tt

i þΔTi ð51Þ
Btþ1
sh;i ¼ Bt

sh;i þΔBsh;i ð52Þ

By using these updated control variables, transmission loss,
fuel cost, L index, reactive power generation, and power flow
through each transmission line can be evaluated. The trans-
mission loss (Ploss) in terms of incremental state variables
using the updated X can be evaluated using

Ploss ¼ 1

2
∑
n

i¼1
∑
n

j≠i
Gij V0

i þΔVi
� �2 þ V0

j þΔV j

� �2
−2 V0

i þΔVi
� �

V0
j þΔV j

� �
cos δ0i þΔδi

� �
− δ0j þΔδ j

� �h i	 

ð53Þ

hence, ΔPloss ¼ Ploss−P0
loss. The reactive power generation (QGi) in terms of incremen-

tal state variables using the updated X can be evaluated using,

QGi ¼ − Bii V0
i þΔVi

� �2 þ ∑
n

j≠i
V0
i þΔVi

� �
V0

j þΔV j

� �
Y ijsin θij þ δ0j þΔδ j

� �
− δ0i þΔδi
� �h i" #

ð54Þ

hence, ΔQGi ¼ QGi−Q0
Gi. The power flow through the transmission line (Pij) in terms

of incremental state variables using the updated X can be eval-
uated using,

Pij ¼ −Gij V0
i þΔVi

� �2 þ V0
i þΔVi

� �
V0

j þΔV j

� �
Y ijcos θij þ δ0j þΔδ j

� �
− δ0i þΔδi
� �h ih i

ð55Þ

hence, ΔPij ¼ Pij−P0
ij. From the above discussion, it can be concluded that all the

objective functions, Ploss, QG, and Pij are still non-linear.
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By using this incremental variable model the computation-
al burden can be reduced substantially by performing the
much lesser load flows. The computational burden can be
reduced further by determining the minimum and maximum
bounds for the generation cost (i.e., objective function value).
The lower/minimum bound can be determined by performing
the economic dispatch (ED) problem. The optimum fuel cost
obtained using the ED, will serve as a lower bound. The upper
bound can be determined by performing the OPF using the
gradient method or any other software packages such as
General Algebraic Modeling System (GAMS). By determin-
ing these lower and upper bounds, the individuals in the dif-
ferential evolution (DE) population are selected, whose opti-
mum fuel cost falls between these bounds. In every iteration,
the individuals whose objective function values lies between
these lower and upper cost bounds are selected, and all other
individuals will be rejected. This will reduce the total number
of individuals, and hence the total number of power flows to
be performed in the OPF problem. Hence, the execution time
per iteration is reduced substantially [13]. The step-by-step
procedure for solving the MOO problem is described next:

3.5 Algorithm for the proposed efficient MOO approach 1

Step 1: Select the desired number of non-dominated Pareto
optimal solutions to form the Pareto optimal front.
Let 2N be the required number of Pareto optimal
solutions.

Step 2: Solve Eqs. (25) and (29), and determine the two
extreme points on the Pareto optimal front.

Step 3: Determine the remaining 2N-2 points on the Pareto
optimal front by solving Eqs. (25) and (29), N-1

times with different J specified2 (or) J specified3 and

J specified1 , respectively, in each run. For N-1 execu-

tions of Eq. (25), the J specified2 (or) J specified3 is varied
using Eq. (35). Similarly, for N-1 executions of

Eq. (29), the J specified1 is varied using Eq. (36).
Step 4: Steps 5 to 15 are used to solve Eqs. (25) and (29)

with less execution time.
Step 5: Neglecting the network constraints and losses, find

the economic dispatch solution (PGi
0) using the DE

algorithm.
Step 6: Run the base case load flow with the PGi

0s obtained
in step 5, and with initial guesses for the reactive
control variables.

Step 7: Determine the lower and upper bounds of objective
function value (such as generation cost, and trans-
mission loss). The lower bound can be determined
by executing the economic dispatch (ED) problem.
The optimum fuel cost obtained using the EDwill be
the lower bound for the objective function under
consideration. The upper bound can be determined

by executing the OPF using any gradient based ap-
proach or any other software package.

Step 8: Generate the individuals, whose optimum objective
function values are between the determined lower
and upper bounds.

Step 9: In every generation, the individuals whose objec-
tive function values lies between the lower and
upper bounds are selected, and all other individ-
uals are rejected. From the second iteration on-
wards, run the power flow only for the best-fit
individual. Determine the sensitivities after the
converged power flow solution. Reader may refer
to references [12] and [13] for more details of
sensitivity analysis.

Step 10: Find the load flow solution for the individuals
whose objective function values are between the
lower and upper bounds using the sensitivities
from this power flow in a non-linear approxima-
tion of variables in each iteration.

Step 11: Determine the changes in dependent voltages and
angles using the sensitivities calculated in step 9.
Update the control variables.

Step 12: Using these updated variables, determine the objec-
tive function value.

Step 13: Check the convergence criteria, i.e., if fitness (first
individual) = fitness(last individual). If the conver-
gence criteria is satisfied, then calculate the opti-
mum objective function value and then STOP.
Otherwise, apply the DE operators and then gener-
ate the new population from old one.

Step 14: Update the iteration count.
Step 15: Check if iteration count > maximum number of

iterations. If yes, STOP. Otherwise, repeat from
step 9.

3.6 Algorithm for the proposed efficient MOO: Approach
2

Step 1:Implement steps 2 and 3 of Section 3.5 using the suc-
cessive, non-linear-based gradient OPF (i.e., SOPF; in this
paper, we used the MATLAB optimization toolbox
(FMINCON function), to get the lower and upper bounds
for every point on the Pareto front including the extreme
points. Then, the meta-heuristic based DE algorithm corrects
the points on the Pareto optimal front.

Step 2: First consider the extreme points of Pareto front
(one at a time). Obtain the lower and upper bounds by using
the gradient based OPF and then correct the same using the
meta-heuristic algorithm. Then, move to the other points
(again one by one) using the similar procedure. SOPF is al-
ways part of the gradient based OPF, and the incremental
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variable approach is always used for the meta-heuristic
algorithm.

4 Results and discussion

The performance of proposed efficient algorithm for solving
the MOO problem is tested on standard IEEE 30 bus system.
It is implemented using MATLAB R2008a software on a i7,
3.10GHz processor with 3.24 GB of RAM. Here, DE algo-
rithm is selected for implementing the proposed efficient
MOO algorithm. However, the proposed approach is generic
enough to implement with any other evolutionary algorithm.
The selected control parameters of DE are mutation constant
is 0.9, crossover constant is 0.5, population size is 50, and the
maximum number of iterations is 500. These control parame-
ters are selected after some trials and the experience of many
researchers, for a wide variety of problems. These are not
depending on the operating condition of the problem. The
number of non-dominated solutions, i.e., desired number of
points on the Pareto optimal front selected are 50 (i.e., for the
proposed efficient MOO approach, N = 25).

The system data, maximum, and minimum limits of control
variables and initial operating points are taken from [6], [12,
13]. The control variables considered in this active and reac-
tive power OPF are generator active power outputs, generator
voltage magnitudes, transformer taps and the bus shunt
susceptances. The IEEE 30 bus test system has six generating
units located at busses 1, 2, 5, 8, 11, and 13; and nine shunt
VAR compensators located at busses 10, 12, 15, 17, 20, 21,
23, 24, and 29. In addition, four tap-setting transformers with
off-nominal tap ratio at lines 6–9, 6–10, 4–12, and 28–27 [2]
are considered. In this paper, the Pareto optimal front obtained
with proposed efficient MOO algorithm is compared with the
evolutionary-based, non-dominated sorting genetic algorithm-
2 (NSGA-II) algorithm. To demonstrate the suitability and
effectiveness of proposed efficient MOO approach, various
case studies are performed and they are presented next:

4.1 Case 1: solving the MO-OPF problem with quadratic
cost function at base case or unstressed loading condition

As explained earlier, at base case/unstressed loading condi-
tion, the generation cost and transmission loss minimizations
are considered as the two conflicting objective functions to be
optimized simultaneously. Because there is no need to opti-
mize L index/VSEI objective as the value of L index is much
away from the system voltage collapse point. Figure 1 depicts
the distribution of non-dominated/Pareto optimal solutions in
the Pareto optimal front obtained using the proposed efficient
MOO approaches 1 and 2 and the evolutionary-based NSGA-
II algorithm. In the proposed efficient MOO approach 1, the
proposed efficient single-objective optimization considering

cost minimization objective with transmission loss constraint
is run for 25 times and the loss minimization objective func-
tion with cost constraint is run for 25 times. These 50 runs of
proposed efficient approach 1 give the entire Pareto optimal
front.

As mentioned earlier in Section 3.6, determine the lower
and upper bounds of every point on the Pareto front using the
gradient-based OPF and then correct the same using the pro-
posed efficient DE algorithm. The obtained Pareto optimal
front using this proposed efficient MOO approach 2 is
depicted in Fig. 1. From Fig. 1, it can be observed that the
Pareto optimal solutions obtained with proposed efficient
MOO approaches 1 and 2 are diverse and well distributed over
the entire Pareto optimal front.

Whereas the evolutionary algorithms are population based,
and the reproduction operation causes new generations by
recombination of old solutions. This enables determining sev-
eral members of Pareto optimal set in a single run, instead of
performing a series of separate runs. Figure 1 also shows the
best Pareto optimal front obtained using the NSGA-II algo-
rithm in a single run. However, as explained earlier the diffi-
culty of this evolutionary-based NSGA-II algorithm is the
excessive computational time.

After obtaining the Pareto optimal front, the best compro-
mise solution can be found using the fuzzy min-max ap-
proach. Table 1 presents the control variable settings and the
best compromise solution obtained by using the proposed ef-
ficient approaches 1 and 2 and the evolutionary-based NSGA-
II approach. From this table, it is clear that the minimum
generation cost and transmission loss obtained by using the
proposed efficient MOO approaches are better than the
NSGA-II algorithm. The computational/ execution time re-
quired for solving case 1 using the proposed efficient MOO
approaches and the NSGA-II approach is 17.0209, 13.7538,
and 183.2058s, respectively, i.e., the proposed efficient MOO
approach 1 is 10.76 times faster than the NSGA-II approach,
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and the proposed efficient approach 2 is 13.32 times faster
than the NSGA-II algorithm. Overall, it can be concluded that
the proposed efficient MOO approaches provides good qual-
ity Pareto optimal fronts as compared to evolutionary based
NSGA-II approach in an extremely efficient manner.

4.2 Case 2: solving the MO-OPF problem considering
the cost minimization function with VPL and POZs effects
at base case or unstressed loading condition

In this case also, the base case/unstressed loading condition is
considered, hence, the system operating cost minimization

and loss minimization are considered as the two conflicting
objective functions to be optimized. As mentioned earlier,
there is no need to optimize the VSEI objective function as
the L index value is much away from the voltage collapse
point. Figure 2 shows the Pareto optimal fronts obtained by
using the proposed efficient MOO approach (i.e., approach 1)
and the NSGA-II algorithm. From this figure, it can be seen
that the Pareto optimal solutions obtained using the proposed
efficient MOO approach are diverse and well distributed over
the entire Pareto optimal front. As mentioned earlier, after
obtaining the Pareto optimal fronts, the best compromise so-
lution can be obtained using the fuzzy min-max approach.
Table 2 presents the optimum control variables settings and
the best compromise solution obtained by using the proposed
efficient MOO approach and the NSGA-II algorithm.

From Table 2, it can be clear that the best compromise
solutions (i.e., system operating cost and loss) obtained using
proposed efficient MOO algorithm and the NSGA-II algo-
rithm are (US$863.31/h and 10.29 MW) and (US$863.20/h
and 10.49 MW), respectively. This shows that the best com-
promise solution obtained with the proposed efficient MOO
approach is better than the NSGA-II algorithm. The time re-
quired for the execution for solving case 2 using the proposed
efficient MOO algorithm and NSGA-II algorithm is 19.0856
and 189.915 s, respectively; i.e., the proposed efficient MOO
algorithm is approximately 10 times faster than the
evolutionary-based NSGA-II approach.

4.3 Case 3: solving the MO-OPF problem with quadratic
fuel cost function considering stressed loading condition

In this case, the stressed loading condition is created by
taking the transmission line 36 out (i.e., the line connect-
ed between busses 27 and 28), which is considered as the

Table 1 Optimum control variable settings and the objective function
values for case 1 using proposed efficient MOO approaches and the
evolutionary-based NSGA-II approach

Control
variables and
objective
function values

Case 1 using
proposed
efficient MOO
approach 1

Case 1 using
proposed
efficient MOO
approach 2

Case 1 using
evolutionary-
based NSGA-II
approach

PG1 (MW) 130.24 129.86 128.87

PG2 (MW) 51.12 52.34 49.74

PG5 (MW) 29.85 29.15 28.80

PG8 (MW) 34.85 34.82 34.99

PG11 (MW) 23.64 24.33 28.39

PG13 (MW) 19.38 18.52 18.29

V1 (p.u.) 1.1 1.1 1.0965

V2 (p.u.) 1.0912 1.0871 1.0835

V5 (p.u.) 1.0671 1.0624 1.0523

V8 (p.u.) 1.0718 1.075 1.0594

V11 (p.u.) 1.0765 1.0652 1.0870

V13 (p.u.) 1.0959 1.0811 1.0729

T6,9 (p.u.) 0.9625 1.0375 0.95

T6,10 (p.u.) 1.05 0.95 1.0375

T4,12 (p.u.) 0.975 1.05 0.9625

T28,27 (p.u.) 1.0125 0.9625 1.00

bsh,10 (p.u.) 0.05 0.05 0.05

bsh,12 (p.u.) 0.04 0.02 0.02

bsh,15 (p.u.) 0.02 0.02 0.04

bsh,17 (p.u.) 0.05 0.02 0.02

bsh,20 (p.u.) 0.04 0.02 0.02

bsh,21 (p.u.) 0.05 0.05 0.03

bsh,23 (p.u.) 0.02 0.05 0.05

bsh,24 (p.u.) 0.01 0.03 0.05

bsh,29 (p.u.) 0.05 0.00 0.05

Fuel cost
(US$/h)

822.43 823.04 824.72

System loss
(MW)

5.687 5.616 5.684

VSEI 0.1123 0.1109 0.1119

Computational
time (s)

17.0209 13.7538 183.2058
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worst contingency in this test system, and by increasing
the base case load demand. At this stressed/critical load-
ing condition, the total load of the system is 357.084 MW.
As mentioned earlier, the generation cost minimization is
an important objective under all the operating/loading
conditions. However, during the stressed loading condi-
tion, the VSEI needs to be optimized as its value is very
close to the system voltage collapse point. Therefore, in
this case, generator fuel cost and the VSEI objectives
need simultaneous optimization. By optimizing the
VSEI, the voltage profile of the system increases, which
in turn results minimum transmission losses. Figure 3 de-
picts the Pareto optimal front of quadratic fuel cost and
VSEI objectives at the stressed loading condition, i.e., for
case 3.

Table 3 presents the optimum control variables settings and
the best compromise solutions obtained using the proposed
efficient MOO algorithm and the evolutionary-based NSGA-
II algorithm. The best compromise solution, i.e., (generation
cost and VSEI) obtained using the proposed efficient MOO
and NSGA-II approaches is (US$1130.07/h and 0.6521) and
(US$1133.25/h and 0.6528), respectively. The computational
time required for solving case 3 using the proposed efficient
MOO and NSGA-II approaches is 19.9614 and 200.844 s,
respectively; i.e., the proposed efficient MOO algorithm is
approximately 10 times faster than the NSGA-II approach.

4.4 Case 4: solving the MO-OPF problem considering
the fuel cost function with VPL and POZs effects
at stressed loading condition

In this case also, the stressed loading condition is considered;
therefore, system operating cost and L index minimizations
are considered as the two conflicting objectives to be opti-
mized. As mentioned earlier, by optimizing the L index, im-
proves the voltage profile, which in turn reduces the transmis-
sion losses. Hence, there is no need to optimize loss minimi-
zation objective. Figure 4 shows the Pareto optimal fronts
obtained using the proposed efficient MOO approach and
the NSGA-II algorithm. From Fig. 4, it is clear that the
Pareto optimal solutions obtained using proposed efficient
MOO algorithm are diverse and well distributed over the en-
tire Pareto optimal front.

Table 4 presents the optimum control variables settings and
the best compromise solutions obtained by using the proposed
efficient MOO algorithm and the NSGA-II algorithm. It
shows that the best compromise solution obtained with pro-
posed efficient MOO algorithm is better than the NSGA-II
algorithm. The execution time required for solving the case
4 using proposed efficient MOO algorithm and evolutionary-

Table 2 Optimum control variable settings and the objective function
values for case 2 using the proposed efficient MOO approach and
evolutionary-based NSGA-II approach

Control variables
and objective
function values

Case 2 using
proposed efficient
MOO approach

Case 2 using
evolutionary-based
NSGA-II approach

PG1 (MW) 123.35 126.19

PG2 (MW) 56.97 57.00

PG5 (MW) 37.54 38.25

PG8 (MW) 22.95 20.67

PG11 (MW) 29.57 29.62

PG13 (MW) 23.31 22.16

V1 (p.u.) 1.0988 1.0965

V2 (p.u.) 1.0876 1.09

V5 (p.u.) 1.0588 1.0688

V8 (p.u.) 1.0812 1.0794

V11 (p.u.) 1.0888 1.0553

V13 (p.u.) 1.0929 1.0947

T6,9 (p.u.) 1.0125 1.1

T6,10 (p.u.) 0.9875 0.975

T4,12 (p.u.) 0.9875 1.0125

T28,27 (p.u.) 0.975 1.0

bsh,10 (p.u.) 0.05 0.05

bsh,12 (p.u.) 0.02 0.05

bsh,15 (p.u.) 0.02 0.03

bsh,17 (p.u.) 0.02 0.05

bsh,20 (p.u.) 0.04 0.04

bsh,21 (p.u.) 0.01 0.01

bsh,23 (p.u.) 0.03 0.00

bsh,24 (p.u.) 0.00 0.00

bsh,29 (p.u.) 0.05 0.02

Fuel cost (US$/h) 863.31 863.20

System loss (MW) 10.29 10.49

VSEI 0.1205 0.1236

Computational time (s) 19.0856 189.9152

Neural Comput & Applic (2019) 31 (Suppl 1):S509–S522 S519

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

 

 

VSEI/L-index

S
ys

te
m

 O
pe

ra
tin

g 
C

os
t (

in
 $

)

X: 0.65
Y: 1130

X: 0.65
Y: 1133

Proposed Efficient MOO Approach
Evolutionary based NSGA-II Approach

Fig. 3 Pareto optimal front of fuel cost and VSEI for case 3 using the
proposed efficient MOO approach and the evolutionary-based NSGA-II
algorithm



based NSGA-II algorithm is 20.3016 and 204.732 s, respec-
tively. This shows that proposed efficient MOO algorithm is
approximately 10 times faster than the NSGA-II approach.

From the above simulation studies, it can be observed that
proposed efficient MOO approach overcomes the main

drawback, i.e., excessive execution time of the evolutionary-
based MOO algorithms. The proposed efficient MOO ap-
proach is approximately 10 times faster than the
evolutionary-based MOO approaches.

5 Conclusions

In this paper, a novel efficient multi-objective optimization
algorithm is proposed to solve the multi-objective optimal
power flow (MO-OPF) problem. It uses the incremental pow-
er flow methodology based on the sensitivities; and the lower
and upper bounds of objective function values. In this paper,
the MOO problem is solved considering the system operating
cost, transmission losses, and L index as the objectives to be

Table 3 Optimum control variable settings and the objective function
values for case 3 using the proposed efficient MOO approach and the
evolutionary-based NSGA-II approach

Control variables
and objective
function values

Case 3 using
proposed efficient
MOO approach

Case 3 using
evolutionary-based
NSGA-II approach

PG1 (MW) 192.25 193.84
PG2 (MW) 72.51 72.03
PG5 (MW) 24.88 25.62
PG8 (MW) 34.75 35.00
PG11 (MW) 20.91 22.03
PG13 (MW) 26.50 23.68
V1 (p.u.) 1.0817 1.0892
V2 (p.u.) 1.0594 1.0658
V5 (p.u.) 1.0276 1.0371
V8 (p.u.) 1.0152 1.0817
V11 (p.u.) 1.0624 1.0829
V13 (p.u.) 1.0271 1.0187
T6,9 (p.u.) 1.0125 1.025
T6,10 (p.u.) 0.925 1.0
T4,12 (p.u.) 0.9625 0.9625
T28,27 (p.u.) 1.0375 0.975
bsh,10 (p.u.) 0.05 0.05
bsh,12 (p.u.) 0.05 0.02
bsh,15 (p.u.) 0.02 0.04
bsh,17 (p.u.) 0.04 0.05
bsh,20 (p.u.) 0.05 0.01
bsh,21 (p.u.) 0.01 0.01
bsh,23 (p.u.) 0.02 0.05
bsh,24 (p.u.) 0.00 0.02
bsh,29 (p.u.) 0.02 0.05
Fuel cost (US$/h) 1130.07 1133.25
System loss (MW) 14.7204 15.1159
VSEI 0.6521 0.6528
Computational time (s) 19.9614 200.844

Table 4 Optimum control variable settings and the objective function
values for case 4 using the proposed efficient MOO approach and the
evolutionary-based NSGA-II approach

Control variables
and objective
function values

Case 4 using
proposed efficient
MOO approach

Case 4 using
evolutionary-based
NSGA-II approach

PG1 (MW) 156.42 152.91

PG2 (MW) 79.98 80.00

PG5 (MW) 41.27 38.43

PG8 (MW) 34.96 34.85

PG11 (MW) 28.44 29.98

PG13 (MW) 32.18 37.25

V1 (p.u.) 1.0371 1.0194

V2 (p.u.) 1.0547 1.0359

V5 (p.u.) 1.0125 1.0312

V8 (p.u.) 1.0617 1.0535

V11 (p.u.) 1.0805 1.0254

V13 (p.u.) 1.0229 1.0106

T6,9 (p.u.) 0.9625 0.9375

T6,10 (p.u.) 1.0625 1.0375

T4,12 (p.u.) 1.0625 0.925

T28,27 (p.u.) 1.0375 0.9

bsh,10 (p.u.) 0.05 0.03

bsh,12 (p.u.) 0.01 0.03

bsh,15 (p.u.) 0.05 0.03

bsh,17 (p.u.) 0.05 0.03

bsh,20 (p.u.) 0.00 0.03

bsh,21 (p.u.) 0.04 0.04

bsh,23 (p.u.) 0.05 0.04

bsh,24 (p.u.) 0.01 0.04

bsh,29 (p.u.) 0.05 0.01

Fuel cost (US$/h) 1206.249 1207.2914

System loss (MW) 16.1652 16.3445

VSEI 0.6552 0.6622

Computational time (s) 20.3016 204.7329
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optimized while satisfying all the equality and inequality con-
straints. It also highlights the need for selecting judiciously, a
combination of objectives that is best-suited for a given
loading/operating condition. In the present paper, the pro-
posed efficient MOO approach is implemented using the dif-
ferential evolution (DE) algorithm. The simulation studies are
performed on IEEE 30 bus system to demonstrate the effec-
tiveness of the proposed efficient MOO approach. The simu-
lation results shows that the Pareto optimal solutions obtained
with proposed efficient MOO approach are diverse and well
distributed over the entire Pareto optimal front. All the simu-
lation studies indicate that the proposed efficient MOO algo-
rithm is approximately 10 times faster than the evolutionary
based MOO algorithms. Solving the proposed efficient MOO
approach by including the N-1 contingency criteria is a scope
for the future research work.

ΔPGi, Changes in the generator active power;ΔBsh,i, Changes
in bus shunt susceptances;ΔVGi, Changes in the voltage mag-
nitudes of generators; ΔTi, Changes in transformer tap posi-
tions; ai, bi, ci, Fuel cost coefficients of ith generator; PGi,
Active power generation of ith generating unit; 2N, Number
of non-dominated Pareto optimal solutions; NG, Number of
generating units; NT, Number of tap changing transformers;
NC, Number of shunt VAR compensators; NL, Number of
load busses; Nl, Number of transmission lines; n, Number of
busses in the system; Nobj, Number of objectives to be opti-
mized simultaneously; PGi, QGi, Active and reactive power
generations at bus i; PDi, QDi, Active and reactive power load
demands at bus i; θik, Phase angle difference between the
voltages at busses i and k;Gk, Conductance of a line k between

bus i and j; J, Jacobian matrix; J specified1 , Some specified value

of fuel cost; J specified2 , Some specified value of transmission

loss; J specified3 , Some specified value of L index/voltage stabil-
ity enhancement index (VSEI)
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