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Abstract Despite the extensive use of self-compacting con-
crete in constructions over the last decades, there is not yet a
robust quantitative method, available in the literature, which
can reliably predict its strength based on its mix components.
Τhis limitation is due to the highly nonlinear relation between
the self-compacting concrete’s compressive strength and the
mixed components. In this paper, the application of artificial
neural networks for predicting the mechanical characteristics
of self-compacting concrete has been investigated.
Specifically, surrogate models (such as artificial neural net-
workmodels and a new proposed normalization method) have
been used for predicting the 28-day compressive strength of
admixture-based self-compacting concrete (based on experi-
mental data available in the literature). The comparison of the
derived results with the experimental findings demonstrates
the ability of artificial neural networks to approximate the
compressive strength of self-compacting concrete in a reliable
and robust manner. Furthermore, the proposed formula for the
normalization of data has been proven effective and robust
compared to available ones.

Keywords Artificial neural networks . Back propagation
neural networks . Compressive strength . Self-compacting
concrete

1 Introduction

Among numerous trends and developments in constructions
area over the last decades, the introduction of self-compacting
concrete (SCC) is of high interest for the exploitation of alter-
native raw materials, by-products, wastes and secondary ma-
terials as mineral additives. It is commonly characterized as a
special concrete with enhanced fluid properties such as in-
creased flowability and good segregation resistance and can
settle by its own weight even at the presence of congested
reinforcement at deep and narrow element sections of noncon-
ventional geometry. Therefore, SCC can consolidate itself
without requiring the use of internal or external vibration dur-
ing the placing process, thus avoiding segregation and bleed-
ing and at the same time maintaining its stability [4, 23].
Moreover, the potential use of SCC in lightweight applica-
tions has drawn significant attention [32].

Due to its complex composition, a proper mix design pro-
cess is necessary for SCC in order to accomplish its desirable
properties. For this design process, the available materials
must be taken into account, proportioned with one or more
mineral as well as chemical admixtures. The challenge of
enhancing grain size distribution and particle packing, thus
ensuring greater cohesiveness for SCC, is addressed by seek-
ing optimum balance between coarse and fine materials and
the chemical admixtures. According to [18], variations in ce-
ment and/or mineral additives due to changes in the produc-
tion process as well as in the aggregate type may cause large
variations on the properties of fresh SCC. Therefore, it is of
great importance to have a robust mixture, which is minimally
affected by the external sources of variability. Towards this
direction, the utilization of powder industrial by-products
and wastes as environmental friendly mineral additives for
the production of lightweight SCC has attracted the attention
of researchers [11, 32, 35, 37]. Furthermore, a wide variety of
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secondary materials exists for the mix design process, such as
limestone powder (LP), fly ash (FA), ground granulated blast
furnace slag (GGBFS), silica fume (SF), rice husk ash (RHA)
and, as chemical admixtures, new generation superplasticizers
(SP) and viscosity-modifying admixtures (VMA) [4, 11, 17,
18, 23, 32, 35, 37, 56, 67].

Artificial neural networks (ANNs) have emerged the last
decades as an attractive meta-modelling technique applicable
to a vast number of scientific fields including material science,
among others. The main characteristic of this method is that a
surrogate model can be constructed after a training process
with only a few available data, which can be used in order to
predict pre-selected model parameters, reducing the need for
time- and money-consuming experiments. So far, literature
includes publications in which ANNswere used for predicting
the compressive strength andmodulus of elasticity [22, 39, 63,
64] and for modelling the characteristics of concrete materials
[1, 13, 44, 66]. Moreover, similar methods such as fuzzy logic
and genetic algorithms have also been used for modelling the
compressive strength of concrete materials [3, 12, 46].
Detailed and in-depth state of the art report can be found in
[2, 42, 43, 57].

In this context, in the present work, the application of prop-
erly trained ANN models for the prediction of the 28-day
compressive strength of admixture-based self-compacting
concrete is presented. The database consists of 205 specimens
(taken from the literature) having mixture composition with
comparable physical and chemical properties. The developed
ANN models take into consideration 11 SCC composition
parameters in order to predict the compressive strength and
have been proven to be very successful, exhibiting very reli-
able predictions.

2 Artificial neural networks

This section summarizes the mathematical and computational
aspects of artificial neural networks. In general, ANNs are
information-processing models configured for a specific ap-
plication through a training process. A trained ANN maps a
given input into a specific output and thereby can be consid-
ered to be similar to a response surface method. This main
advantage of a trained ANN over conventional numerical
analysis procedures (e.g. regression analysis) is that the results
can be produced with much less computational effort [2, 5–8,
30, 33, 51–53].

2.1 General

The concept of an artificial neural network is based on the
concept of the biological neural network of the human brain.
The basic building block of the ANN is the artificial neuron,
which is a mathematical model trying to mimic the behaviour

of the biological neuron. Information is passed into the artifi-
cial neuron as input, and it is processed with a mathematical
function leading to an output which determines the behaviour
of the neuron (similar to fire or not situation for the biological
neuron). Before the information enters the neuron, it is weight-
ed in order to approximate the random nature of the biological
neuron. A group of such neurons consists of an ANN in a
manner similar to biological neural networks. In order to set
up an ANN, one needs to define (i) the architecture of the
ANN, (ii) the training algorithm, which will be used for the
ANN learning phase, and (iii) the mathematical functions de-
scribing the mathematical model. The architecture or topology
of the ANN describes the way the artificial neurons are orga-
nized in the group and how information flows within the net-
work. For example, if the neurons are organized in more than
one layer, then the network is called a multilayer ANN.
Regarding the training phase of the ANN, it can be considered
as a function minimization problem in which the optimum
value of weights needs to be determined by minimizing an
error function. Depending on the optimization algorithms
used for this purpose, different types of ANN exist. Finally,
the two mathematical functions that define the behaviour of
each neuron are the summation function and the activation
function. In the present study, we use a back-propagation neu-
ral network (BPNN) which is described in the next section.

2.2 Architecture of BPNN

A BPNN is a feed-forward, multilayer network i.e. informa-
tion flows only from the input towards the output with no back
loops and the neurons of the same layer are not connected to
each other, but they are connected with all the neurons of the
previous and subsequent layer. A BPNN has a standard struc-
ture that can be written as

N−H1−H2−⋯−HNHL−M ð1Þ
whereN is the number of input neurons (input parameters),Hi

is the number of neurons in the ith hidden layer for i = 1 , … ,
NHL, NHL is the number of hidden layers andM is the num-
ber of output neurons (output parameters). Figure 1 depicts an
example of a BPNN composed of an input layer with five
neurons, two hidden layers with four and three neurons re-
spectively and an output layer with two neurons, i.e. a 5-4-3-
2 BPNN.

A notation for a single node (with the corresponding R-
element input vector) of a hidden layer is presented in Fig. 2.

For each neuron i, the individual element inputs p1 ,
… , pR are multiplied by the corresponding weights wi , 1 ,
… ,wi , R and the weighted values are fed to the junction of the
summation function in which the dot product (W ∙ p) of the
weight vector W = [wi , 1, … , wi , R] and the input vector
p = [p1, …, pR]

T is generated. The threshold b (bias) is added
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to the dot product forming the net input n which is the argu-
ment of the transfer function ƒ:

n ¼ W⋅p ¼ wi;1p1 þ wi;2p2 þ…þ wi;RpR þ b ð2Þ

The choice of the transfer (or activation) function f may
strongly influence the complexity and performance of the
ANN. Although sigmoidal transfer functions are the most
commonly used, one may use different types of functions.
Previous studies [9, 36] have proposed a large number of
alternative transfer functions. In the present study, the logistic
sigmoid and the hyperbolic tangent transfer functions were
found to be appropriate for the problem investigated. During
the training phase, the training data are fed into the network
which tries to create a mapping between the input and the
output values. This mapping is achieved by adjusting the
weights by minimizing the following error function

E ¼ ∑ ti−oið Þ2 ð3Þ
where ti and oi are the exact value and the prediction of the
network, respectively, within an optimization framework. The

training algorithm used for the optimization plays a crucial
role in building a quality mapping, and an exhaustive investi-
gation was performed in order to find the most suitable for this
problem. The most common method used in literature is the
back-propagation technique in which, as stated by its name,
the information propagates to the network in a backward man-
ner in order to adjust the weights and minimize the error func-
tion. To adjust the weights properly, a general method called
gradient descent is applied in which the gradients of the error
function with respect to the network weights are calculated.
Further discussion on the training algorithms is made in the
numerical example section.

2.3 Dealing with overfitting

One of the most common problems that occur during the
training phase of an ANN is the overfitting. In this stage, the
network has learned the available training data very well (very
small value for the error function), but when new data are
provided to the network, this error increases significantly
and the network’s prediction is poor. In order to prevent
overfitting, several techniques/algorithms and criteria have
been proposed for determining the number of hidden layers
as well the number of neurons of each layer. Furthermore, the
training of the ANN can be terminated before the network has
the opportunity to learn the data very well and a regularization
term can be added in the objective function in order to smooth
the mapping [7, 8, 14–16, 20, 30, 38, 47].

2.4 Proposed algorithm

In the present work, a simple heuristic algorithm is proposed
in order to obtain a reliable and robust ANN for predicting the
28-day compressive strength of admixture-based self-
compacting concrete. The steps of the proposed algorithm
are the following:

Step 1. Normalization of data: The normalization is a pre-
processing phase which has been proved to be the
most crucial step of any type of problem in the field
of soft computing techniques such as the artificial
neural network techniques.

Step 2. Development and training of several ANNs: The
development and training of the ANNs occurs with
a number of hidden layers ranging from 1 to 2 and
with a number of neurons ranging from 4 to 20.
Each one of the ANNs is developed and trained
for a number (nf) of different activation functions
as well as with and without the use of data pre-
processing techniques (step 1).

Step 3. Determination of the mean square error: For each
one of the above trained NNs, the mean square error
(MSE) is computed for a set of data (validation
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data), which have not been used during the training
phase (training data) of the ANNs.

Step 4. Establishment of upper and lower limits: Upper and
lower limits are introduced for each one of the output
parameters based on experimental or numerical data
as well as reasonable estimations by the users.

Step 5. Selection of optimum architecture: The optimum ar-
chitecture is the one that gives the minimum mean
square error while all the computed output parame-
ters for all the validation data are between the upper
and lower limits.

It should be emphasized that the importance of the limits
established at step 4 is based on the user’s expertise and ex-
perience to the specific field for making reasonable
assumptions.

3 Results and discussion

In this section, the above proposed algorithm is presented step
by step for tuning optimum ANNs used for the prediction of
the 28-day compressive strength of admixture-based self-
compacting concrete based on availability in the literature
experimental data.

3.1 Experimental

The database used herein consists of 205 mixes obtained from
literature ([10, 19, 23–29, 31, 32, 45, 50, 54, 55, 58–62, 65,
67]) (Table 1).

Each input training vector p is of dimension 1 × 11 and
consists the values of the 11 fillers (R = 11) namely, the cement
(C), the coarse aggregate (CA), the fine aggregate (FA), the
water (W), the limestone powder (LP), the fly ash (FA), the
ground granulated blast furnace slag (GGBFS), the silica fume
(SF), the rice husk ash (RHA) and, as chemical admixtures,
the new generation superplasticizers (SP) and the viscosity
modifying admixtures (VMA). The corresponding output
training vectors are of dimension 1 × 1 and consist the value
of the 28-day compressive strength of the SCC specimens.
Their mean values together with the minimum and maximum
values are listed in Table 2.

3.2 Sensitivity analysis

In general, sensitivity analysis of a numerical model is a tech-
nique used to determine if the output of the model (response,
stress, deformation, stresses, etc.) is affected by changes in the
assumptions of the inputs (Young’s modulus, fillers, etc.).
During the development of an ANN, it is of high importance
to know the effect of each one of the above 11 composition
parameters (network inputs) on the compressive strength of

SCC (network output). This will provide feedback as to which
input parameters are the most significant, and thus, by remov-
ing the insignificant ones, the input space will be reduced and
subsequently the complexity of the ANN as well as the train-
ing times required for its training will be also reduced. The
results obtained from the sensitivity analysis are presented in
Fig. 1. Based on these results, the viscosity-modifying admix-
tures (VMA) parameter has the strongest impact on the com-
pressive strength while the fine aggregate (FA) parameter has
the weakest impact (Fig. 3).

3.3 Normalization of data

As mentioned previously, the normalization of the input and
output parameters has a significant impact on the ANN train-
ing. In the present study, during the pre-processing stage, the
min–max [21] and the z-score normalization methods have
been used. In particular, the 11 input parameters (Table 1) as
well as the single output parameter have been normalized
using the min–max normalization method. As stated in [34],
in order to avoid problems associated with low learning rates
of the ANN, the normalization of the data should be made
within a range defined by appropriate upper and lower limit
values of the corresponding parameter. In this work, the input
and output parameters have been normalized in the range [0,
1] and [−1, 1], respectively. Moreover, in this work, a trans-
formation technique calledCentral has been applied, in which
the origin of the training data is shifted to the centre of the data
with the following formula:

zi ¼ xi−
max xð Þ þmin xð Þ

2
ð4Þ

where x (x1, x2, … , xn) are the original data and zi is the i
th

transformed data. The results obtained using this technique for
pre-processing the data were better compared to the results
obtained by other known normalization techniques found in
literature, as will be demonstrated in the section of the numer-
ical examples.

3.4 Training algorithms

In order to find the training algorithm that is more suitable to
tackle the nonlinear behaviour of the SCC’s compressive
strength, the performance of various optimization techniques
such as the quasi-Newton, resilient, one-step secant, gradient
descent with momentum and adaptive learning rate and the
Levenberg-Marquardt method have been investigated. It
should be mentioned that all the ANNs under study (they will
be presented in the next section) have been investigated by
means of all the aforementioned training algorithms. Among
these algorithms, the best—by far—ANN prediction of the
output parameter was achieved by using the Levenberg-
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Table 1 Experimental data/results and input and output parameters of BPNNs

Sample Input Output Comments

Cement Limestone
powder

Fly
ash

GGBS Silica
fume

RHA Coarse
aggregate

Fine
aggregate

Water SP VMA Compressive
strength

1 225 0 225 0 0 0 865 898 179 4.5 0.315 33.94 T

2 231 0 231 0 0 0 862 864 175 4.62 0.37 38.9 T

3 258 0 258 0 0 0 835 836 176 5.16 0.413 41.21 V

4 330 0 220 0 0 0 826 827 176 5.5 0.44 45.95 T

5 360 0 240 0 0 0 797 796 180 6 0.48 53 T

6 360 0 240 0 0 0 812 813 168 6 0.48 56 Test

7 400 0 250 0 0 0 785 785 172 9.75 0.46 61.64 T

8 450 0 250 0 0 0 760 760 174 11.2 0.49 66.29 T

9 390 0 58 0 0 0 881 874 156 9.75 0 25.5 V

10 384 0 0 0 38 0 863 836 211.2 9.216 0 29 T

11 310 189 0 0 0 0 667 1018 170 6 0 51.2 T

12 315 164 0 0 0 0 673 1025 173 5.51 0 50.7 Test

13 320 153 0 0 0 0 687 1016 174 5.21 0 53.6 T

14 330.36 0 178.6 0 0 0 739.44 875.16 179.74 5.97 0.92 48.4 T

15 330.85 0 180.56 0 0 0 739.44 857.57 180.05 6.02 0.97 57.3 V

16 331.33 0 182.47 0 0 0 739.44 840 180.38 6.08 1.03 63.8 T

17 330.36 0 180.56 0 0 0 754.18 875.16 180.05 6.08 1.03 61.3 T

18 330.85 0 182.47 0 0 0 754.18 857.57 180.38 5.97 0.92 50.45 Test

19 331.33 0 178.6 0 0 0 754.18 840 179.74 6.02 0.97 53.1 T

20 330.85 0 178.6 0 0 0 768.88 875.16 180.38 6.02 1.03 61.1 T

21 331.33 0 180.56 0 0 0 768.88 857.57 179.74 6.08 0.92 55.9 V

22 330.36 0 182.47 0 0 0 768.88 840 180.05 5.97 0.97 55.3 T

23 331.33 0 182.47 0 0 0 739.44 875.16 180.05 6.02 0.92 57.3 T

24 330.36 0 187.6 0 0 0 739.44 857.57 180.38 6.08 0.97 65.6 Test

25 330.85 0 180.56 0 0 0 739.44 840 179.74 5.97 1.03 53.6 T

26 330.85 0 182.47 0 0 0 754.18 875.16 179.74 6.08 0.97 52.9 T

27 331.33 0 178.6 0 0 0 754.18 857.57 180.05 5.97 1.03 47.3 V

28 330.36 0 180.56 0 0 0 754.18 840 180.38 6.02 0.92 59.26 T

29 331.33 0 180.56 0 0 0 768.88 875.16 180.38 5.97 0.97 51.53 T

30 330.36 0 182.47 0 0 0 768.88 857.57 179.74 6.02 1.03 56.6 Test

31 330.85 0 178.6 0 0 0 768.88 840 180.05 6.08 0.92 58.45 T

32 540 0 60 0 0 0 750 900 200 12 0 78.05 T

33 420 0 180 0 0 0 750 900 192 12 0 79.19 V

34 570 0 0 0 30 0 750 900 200 12 0 80.42 T

35 540 0 0 0 60 0 750 900 192 12 0 79.18 T

36 540 0 0 0 0 60 750 900 209 12 0 77.82 Test

37 510 0 0 0 0 90 750 900 209 12 0 77.15 T

38 360 0 180 0 60 0 750 900 200 12 0 70.67 T

39 360 0 180 0 0 60 750 900 200 12 0 73.7 V

40 407 0 244 0 0 0 761 815 181 7.5 0 70.4 T

41 428 0 257 0 0 0 736 788 188 7.9 0 74.5 T

42 438 0 263 0 0 0 723 774 191 8.1 0 69.5 Test

43 458 0 275 0 0 0 698 748 190 8.4 0 68.2 T

44 350 0 0 0 150 0 600 900 175 7.35 0 48.88 T

45 300 0 0 0 200 0 600 900 175 6.21 0 42.23 V

46 250 0 0 0 250 0 600 900 175 5 0 35.14 T
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Table 1 (continued)

Sample Input Output Comments

Cement Limestone
powder

Fly
ash

GGBS Silica
fume

RHA Coarse
aggregate

Fine
aggregate

Water SP VMA Compressive
strength

47 500 71 0 0 0 0 639 967 173.5 6.75 0 62.2 T

48 350 69.2 150 0 0 0 621 939 173.5 6.75 0 57.3 Test

49 300 68.3 200 0 0 0 613 927 175.5 6.75 0 59.1 T

50 250 67.8 250 0 0 0 608 920 173.9 6.75 0 40.8 T

51 200 67.1 300 0 0 0 603 912 173.5 6.75 0 38.1 V

52 150 66.4 350 0 0 0 597 902 173.5 6.75 0 34.4 T

53 350 69 150 0 0 0 620 937 169 6.75 0 52.4 T

54 300 68.9 200 0 0 0 618 935 162 6.75 0 52.3 Test

55 250 69.3 250 0 0 0 622 941 149.5 6.75 0 47.5 T

56 200 68.4 300 0 0 0 614 929 149.5 6.75 0 39.9 T

57 150 68.2 350 0 0 0 613 927 142.8 6.75 0 32.8 V

58 467 0 83 0 0 0 762 865 182 8.53 0 74.2 T

59 412 0 138 0 0 0 752 887 182 8.25 0 73.4 T

60 357 0 193 0 0 0 742 878 182 7.98 0 67.5 Test

61 440 0 0 110 0 0 775 866 182 9.35 0 77.9 T

62 330 0 0 220 0 0 772 863 182 9.08 0 74.8 T

63 220 0 0 330 0 0 769 861 182 8.8 0 71.6 V

64 495 55 0 0 0 0 775 866 182 9.08 0 69.3 T

65 440 110 0 0 0 0 771 863 182 8.8 0 65.2 T

66 385 165 0 0 0 0 768 860 182 8.53 0 60.2 Test

67 377 239 0 0 0 0 562 861 227 3.7 0 56.1 T

68 376 246 0 0 0 0 577 886 203 6.5 0 49.7 T

69 377 247 0 0 0 0 593 898 181 7.9 0 46.8 V

70 376 263 0 0 0 0 609 932 158 9 0 42.8 T

71 377 272 0 0 0 0 630 963 140 13 0 36.3 T

72 290 0 100 0 0 0 837 913 130.5 2.32 0 42.7 Test

73 250 0 261 0 0 0 837 478 137.5 1.25 0 17 T

74 210 0 100 0 0 0 837 910 136.5 1.68 0 19.1 T

75 250 0 160 0 0 0 837 742 137.5 1.25 0 24.1 V

76 210 0 220 0 0 0 837 786 94.5 1.68 0 26.7 T

77 290 0 100 0 0 0 837 709 188.5 0.58 0 26.6 T

78 290 0 220 0 0 0 837 625 130.5 0.58 0 32.9 Test

79 250 0 160 0 0 0 837 742 137.5 1.25 0 26 T

80 250 0 160 0 0 0 837 742 137.5 1.25 0 28.5 T

81 250 0 160 0 0 0 837 742 137.5 1.25 0 26.4 V

82 250 0 160 0 0 0 837 739 137.5 0 0 27.3 T

83 210 0 100 0 0 0 837 1066 94.5 0.42 0 54.3 T

84 317 0 160 0 0 0 837 594 174.35 1.585 0 29.1 Test

85 210 0 220 0 0 0 837 562 136.5 0.42 0 10.2 T

86 250 0 160 0 0 0 837 742 137.5 1.25 0 25.3 T

87 250 0 160 0 0 0 837 919 95 1.25 0 36.3 V

88 250 0 160 0 0 0 837 746 137.5 2.5 0 26.7 T

89 250 0 160 0 0 0 837 566 180 1.25 0 11 T

90 183 0 160 0 0 0 837 891 100.65 0.915 0 22.1 Test

91 500 0 150 0 50 0 769.85 740.8 154 10.5 0.56 83.15 T

92 500 0 125 0 75 0 769.52 740.48 154 10.5 0.56 90.99 T

Neural Comput & Applic (2019) 31 (Suppl 1):S409–S424S414



Table 1 (continued)

Sample Input Output Comments

Cement Limestone
powder

Fly
ash

GGBS Silica
fume

RHA Coarse
aggregate

Fine
aggregate

Water SP VMA Compressive
strength

93 500 0 100 0 100 0 769.18 740.16 154 10.5 0.56 86.99 V

94 500 0 125 0 75 0 769.52 740.48 154 10.5 0.56 99.84 T

95 500 0 125 0 75 0 769.63 740.59 154 10.5 0.56 99.76 T

96 500 0 125 0 75 0 788.07 758.33 140 10.5 0.56 88.98 Test

97 500 0 100 0 100 0 787.73 758.01 140 10.5 0.56 83.94 T

98 500 0 125 0 75 0 788.07 758.33 140 10.5 0.56 85.37 T

99 500 0 125 0 75 0 790.4 781.44 140 13.3 0.35 91.13 V

100 500 0 125 0 75 0 774.98 766.19 154 11.2 0.35 117.03 T

101 408.5 0 21.5 0 0 0 630 1135 200 3.68 0 53.006 T

102 387 0 43 0 0 0 630 1135 200 3.29 0 51.039 Test

103 365.5 0 64.5 0 0 0 630 1135 200 3.11 0 50.982 T

104 344 0 86 0 0 0 630 1135 200 2.75 0 50.37 T

105 322.5 0 107.5 0 0 0 630 1135 200 2.58 0 43.984 V

106 301 0 129 0 0 0 630 1135 200 2.26 0 44.003 T

107 279.5 0 150.5 0 0 0 630 1135 200 2.10 0 44.344 T

108 258 0 172 0 0 0 630 1135 200 1.68 0 43.184 Test

109 350 175 0 0 0 0 500 1050 126 11.7 0 61.3 T

110 350 175 0 0 0 0 500 1050 143.5 8.9 0 60.1 T

111 350 175 0 0 0 0 500 1050 161 6.9 0 58.7 V

112 350 175 0 0 0 0 500 1050 178.5 3.8 0 49.5 T

113 350 175 0 0 0 0 500 1050 196 3.2 0 43 T

114 333 175 0 0 17 0 500 1050 158 7.3 0 52.9 Test

115 326 175 0 0 24 0 500 1050 158 5.1 0 54.3 T

116 319 175 0 0 31 0 500 1050 158 5.2 0 58.4 T

117 313 175 0 0 37 0 500 1050 158 6.8 0 63.3 V

118 307 175 0 0 43 0 500 1050 158 6.1 0 59.1 T

119 301 175 0 0 49 0 500 1050 158 8.8 0 65.5 T

120 500 0 0 0 0 25 750 875 200 17.5 0 38 Test

121 500 0 0 0 0 25 750 875 200 20 0 37.8 T

122 500 0 0 0 0 25 750 875 200 22.5 0 22.2 T

123 500 0 0 0 0 50 750 875 200 17.5 0 36.2 V

124 500 0 0 0 0 50 750 875 200 20 0 41.4 T

125 500 0 0 0 0 50 750 875 200 22.5 0 48.5 T

126 360 0 90 0 0 0 855 813 198 3.2 0 68 Test

127 270 0 180 0 0 0 842 801 198 2.9 0 60.3 T

128 180 0 270 0 0 0 829 788 198 3 0 42.5 T

129 360 0 0 90 0 0 866 824 198 3.7 0 72.6 V

130 270 0 0 180 0 0 863 821 198 3.4 0 74.9 T

131 180 0 0 270 0 0 861 819 198 2.8 0 65.7 T

132 428 0 0 0 22.5 0 865 823 198 4.9 0 71.2 Test

133 405 0 0 0 45 0 861 819 198 5.2 0 76.1 T

134 383 0 0 0 67.5 0 858 816 198 7.8 0 74.8 T

135 360 0 67.5 0 22.5 0 855 813 198 4.2 0 67.2 V

136 270 0 135 0 45 0 841 801 198 4.5 0 57.6 T

137 180 0 202.5 0 67.5 0 828 788 198 4.8 0 44.9 T

138 360 0 0 67.5 22.5 0 863 821 198 4 0 68 Test
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Table 1 (continued)

Sample Input Output Comments

Cement Limestone
powder

Fly
ash

GGBS Silica
fume

RHA Coarse
aggregate

Fine
aggregate

Water SP VMA Compressive
strength

139 270 0 0 135 45 0 857 816 198 4.6 0 68.2 T

140 180 0 0 202.5 67.5 0 852 810 198 5.8 0 70.7 T

141 360 0 45 45 0 0 861 819 198 3.2 0 78 V

142 270 0 90 90 0 0 853 811 198 3.2 0 69.2 T

143 180 0 135 135 0 0 845 803 198 2.8 0 60.6 T

144 360 0 33.8 33.8 22.5 0 859 817 198 4.2 0 76 Test

145 270 0 67.5 67.5 45 0 849 808 198 4.2 0 66.8 T

146 180 0 101.3 101.3 67.5 0 840 799 198 5 0 55.2 T

147 400 0 0 0 0 100 700 850 250 14 0 42.9 V

148 350 0 0 0 0 150 700 850 250 12.25 0 40.9 T

149 300 0 0 0 0 200 700 850 250 10.5 0 33.5 T

150 465 0 85 0 0 0 590 910 227.7 10.73 0 35.19 Test

151 440 0 110 0 0 0 590 910 228.6 11.01 0 33.15 T

152 415 0 135 0 0 0 590 910 233.3 9.91 0 31.47 T

153 385 0 165 0 0 0 590 910 234.4 9.91 0 30.66 V

154 355 0 195 0 0 0 590 910 241.6 9.91 0 29.62 T

155 300 125 0 0 0 0 733.6 1072.7 180 5.7 0 40.4 T

156 350 45 0 0 0 0 684.3 1080.1 210 5.25 1.23 36.9 Test

157 350 90 0 0 0 0 726.4 996.5 210 5.08 0 38.7 T

158 440 0 82.5 0 27.5 0 916 713 176 8.22 0 79.2 T

159 330 0 165 0 55 0 898 699 176 9.11 0 67.2 V

160 220 0 247.5 0 82.5 0 880 685 176 8.89 0 59.9 T

161 440 0 0 82.5 27.5 0 927 721 176 9.78 0 79.6 T

162 330 0 0 165 55 0 920 716 176 10.78 0 87.5 Test

163 220 0 0 247.5 82.5 0 912 710 176 10.22 0 84.5 T

164 440 0 55 55 0 0 924 720 176 8 0 76.9 T

165 330 0 110 110 0 0 913 711 176 7.5 0 62.2 V

166 220 0 165 165 0 0 903 703 176 4.44 0 69.3 T

167 440 0 41.3 41.3 27.5 0 922 717 176 6.4 0 78.6 T

168 330 0 82.5 82.5 55 0 909 707 176 6.48 0 72.7 Test

169 220 0 123.8 123.8 82.5 0 896 697 176 8 0 64.3 T

170 374 107 0 0 0 53 968 790 182 2.25 0 93 T

171 366 0 104 0 0 52 968 790 178 1.25 0 97 V

172 336 0 104 0 0 78 968 790 176 1.50 0 101 T

173 308 0 103 0 0 103 968 790 175 1.65 0 103 T

174 397 113 0 0 0 57 968 790 168 3.00 0 99 Test

175 388 0 111 0 0 55 968 790 170 1.50 0 109 T

176 413 0 108 0 0 59 968 790 155 2.00 0 122 T

177 413 0 108 0 59 0 968 790 155 2.00 0 118 V

178 413 0 108 0 59 0 968 790 155 1.75 0 119 T

179 460 0 0 0 0 0 1085.2 693.81 161 1.10 0 68 T

180 368 0 92 0 0 0 1085.2 693.81 161 0.88 0 66 Test

181 322 0 138 0 0 0 1085.2 693.81 161 0.77 0 58 T

182 276 0 184 0 0 0 1085.2 693.81 161 0.66 0 56 T

183 368 0 0 92 0 0 1085.2 693.81 161 0.88 0 66 V

184 322 0 0 138 0 0 1085.2 693.81 161 0.77 0 61.5 T
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Marquardt algorithm as implemented by levmar. This algo-
rithm appears to be optimum for training moderate-sized (up

to several hundred neurons per layer) feedforward neural net-
works dealing with nonlinear problems (Lourakis 2005).

Table 2 The input and output
parameters used in the
development of BPNNs

Code Variable Data used in NN models

Minimum Average Maximum

01 Cement 110.00 348.38 600.00

02 Limestone powder 0.00 25.67 272.00

03 Fly ash 0.00 105.20 440.00

04 GGBS 0.00 17.39 330.00

05 Silica fume 0.00 14.71 250.00

06 RHA 0.00 6.55 200.00

07 Coarse aggregate 500.00 787.67 1600.00

08 Fine aggregate 336.00 827.93 1135.00

09 Water 94.50 178.54 250.00

10 SP 0.00 5.96 22.50

11 VMA 0.00 0.14 1.23

12 Compressive strength (MPa (or N/mm2)) 10.20 58.08 122.00

Table 1 (continued)

Sample Input Output Comments

Cement Limestone
powder

Fly
ash

GGBS Silica
fume

RHA Coarse
aggregate

Fine
aggregate

Water SP VMA Compressive
strength

185 276 0 0 184 0 0 1085.2 693.81 161 0.66 0 58 T

186 319 0 0 0 0 0 1600 368 185 0 0 44.2 Test

187 110 0 440 0 0 0 821 698 246 1.1 0.25 48.3 T

188 500 0 0 0 0 0 1467 337 185 0 0 74.5 T

189 220 0 330 0 0 0 937 796 172 2.64 0.15 73.5 V

190 552 0 0 0 0 0 1486 342 160 5.52 0 91.3 T

191 330 0 220 0 0 0 981 835 144 4.95 0.2 92.6 T

192 600 0 0 0 0 0 1462 336 155 7.2 0 92.3 Test

193 440 0 110 0 0 0 989 841 142 6.6 0.2 94.6 T

194 412.5 0 137.5 0 0 0 520.1 612.7 203.5 0 0 44 T

195 401.5 0 137.5 0 11 0 518.6 610.9 203.5 0 0 50 V

196 385 0 137.5 0 27.5 0 516.8 608.8 203.5 0 0 52 T

197 412.5 0 137.5 0 0 0 523.1 612.7 203.5 0 0 54 T

198 401.5 0 137.5 0 11 0 521.6 610.9 203.5 0 0 62 Test

199 385 0 137.5 0 27.5 0 519.8 608.8 203.5 0 0 65 T

200 337.5 0 112.5 0 0 0 531.9 626.5 225 0 0 30 T

201 328.5 0 112.5 0 9 0 530.6 625.1 225 0 0 32 V

202 315 0 112.5 0 22.5 0 529.2 623.4 225 0 0 33 T

203 337.5 0 112.5 0 0 0 534.9 626.1 225 0 0 34 T

204 328.5 0 112.5 0 9 0 533.7 625.1 225 0 0 40 Test

205 315 0 112.5 0 22.5 0 532.2 623.4 225 0 0 46 T

T training data, V validation data, Test test data

Neural Comput & Applic (2019) 31 (Suppl 1):S409–S424 S417



3.5 BPNN model development

In this work, a total of 91,800 different BPNN models have
been developed and investigated. More specifically, a number
of 18,360 of these involve ANN architectures implemented in
5 different computers in order to investigate the sensitivity of
the ANN results to the very nature of the floating-point arith-
metic of each computer. Each one of these ANN models was
trained over 113 datasets out of a total of 169 datasets (66.86%
of the total number), and the validation and testing of the
trained ANN were performed with the remaining 56 datasets.
More specifically, 28 datasets (16.57%) were used for the
validation of the trained ANN and 28 (16.57%) datasets were
used for the testing (estimating the Pearson’s correlation coef-
ficient R). The parameters used for the ANN training are sum-
marized in Table 3. In order to have a fair comparison of the
various ANNs, the datasets used for their training are manu-
ally divided by the user into training, validation and testing
sets using appropriate indices to state whether the data belongs
to the training, validation or testing set. In the general case, the
division of the datasets into the three groups is made
randomly.

.
The 91,800 developed ANN models were sorted in a de-

creasing order based on Pearson’s correlation coefficient val-
ue, and the architecture of the top 20 models are presented in
Table 4 for the five computers used. Also, Tables 5, 6, 7, 8,
and 9 present the top 20 models for each computer individu-
ally. Based on these results, the optimum BPNN model is that

of 11-11-5-1 (Fig. 4) with Pearson’s correlation coefficient R
equal to 0.9828.

Figures 5 and 6 depict the comparison of the exact exper-
imental values with the predicted values of the optimum
BPNN model with topology 11-11-5-1. These results clearly
show that the 28-day compressive strength of admixture-
based self-compacting concrete predicted from the multilayer
feed-forward neural network are very close to the experimen-
tal results.

From the presented results, we see that the following:

& Among the available literature training algorithms, the
best, by far, ANN prediction of the SCC strength was
achieved by using the Levenberg-Marquardt algorithm.

& The computational environment significantly affects the
performance of the ANN training and subsequently its
performance. This is due to the fact that the algorithms
of the computational units ultimately rely on basic arith-
metic operations that can yield different results when per-
formed in different environments due to the very nature of
floating-point arithmetic. Different optimum ANN archi-
tectures were found in different computers.

& Furthermore, the proposed new formula for the normali-
zation of data proved effective and robust compared to
available ones.

& For the top 20 models, the optimum number of hidden
layers was found to be two.

& The initial values of weights significantly affect the re-
sults; different values of the initial weights result in differ-
ent optimum ANN architectures.

& All 20 ANN models presented in Table 4 have been
trained with a number of epochs between 47 and 73.
This means that the developed multilayer feed-forward
neural network models can predict the 28-day compres-
sive strength of admixture-based self-compacting concrete

Table 3 Training parameters of BBNN models

Parameter Value

Training algorithm Levenberg-Marquardt algorithm

Number of hidden layers 1; 2

Number of neurons per hidden layer 4 to 20 by step 1

Training goal 0

Epochs 1000

Cost function MSE; SSE

Transfer functions Tansig (T); Logsig (L)

Initial weights of hidden layers 0.10; 0.50; 0.90

−0.10; −0.50; −0.90
Initial weights of bias 0.10; 1.00

MSE mean square error, SSE sum square error, Tansig (T) hyperbolic
tangent sigmoid transfer function, Logsig (L) log-sigmoid transfer
function

Fig. 3 Sensitivity analysis of the compressive strength to the
composition parameters of SCC
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with smaller error rates and less computational effort com-
pared to the one presented in the literature. Furthermore,

these ANN models predict the SCC compressive strength
with values of the Pearson’s correlation coefficient R

Table 4 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (all computers)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C03 Min–max [0, 1] MSE T-L-T −0.5 11-11-5-1 0.9828 73

2 C03 Central MSE T-L-T −0.9 11-19-15-1 0.9825 66

3 C05 z-score MSE T-L-T −0.5 11-14-10-1 0.9824 63

4 C05 Central MSE T-L-T 0.5 11-15-14-1 0.9823 67

5 C01 Min–max [0, 1] SSE T-L-T −0.9 11-16-9-1 0.9820 56

6 C01 z-score SSE T-L-T −0.5 11-20-14-1 0.9819 52

7 C04 Min–max [0, 1] SSE T-L-T −0.9 11-14-6-1 0.9818 51

8 C04 z-score MSE T-L-T −0.5 11-19-4-1 0.9818 58

9 C03 Min–max [0, 1] MSE T-L-T −0.5 11-20-5-1 0.9817 66

10 C05 Min–max [−1, 1] SSE T-L-T −0.5 11-16-16-1 0.9816 69

11 C05 Central SSE T-L-T −0.1 11-11-9-1 0.9815 63

12 C02 Central MSE T-L-T −0.9 11-20-5-1 0.9814 49

13 C02 z-score MSE T-L-T −0.5 11-13-8-1 0.9813 66

14 C01 Min–max [0, 1] MSE T-L-T −0.1 11-20-20-1 0.9812 62

15 C05 Min–max [−1, 1] MSE T-L-T −0.5 11-18-6-1 0.9812 59

16 C01 Central MSE T-L-T −0.9 11-20-5-1 0.9811 60

17 C01 No pre-process SSE T-L-T 0.1 11-9-8-1 0.9810 62

18 C05 Central MSE T-L-T 0.1 11-11-8-1 0.9810 47

19 C01 Min–max [−1, 1] MSE T-L-T −0.5 11-20-8-1 0.9809 53

20 C04 Min–max [0, 1] MSE T-L-T −0.5 11-19-10-1 0.9808 51

Table 5 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (computer C01)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C01 Min–max [0, 1] SSE T-L-T −0.9 11-16-9-1 0.9820 56

2 C01 z-score SSE T-L-T −0.5 11-20-14-1 0.9819 52

3 C01 Min–max [0, 1] MSE T-L-T −0.1 11-20-20-1 0.9812 62

4 C01 Central MSE T-L-T −0.9 11-20-5-1 0.9811 60

5 C01 No pre-process SSE T-L-T 0.1 11-9-8-1 0.9810 62

6 C01 Min–max [−1, 1] MSE T-L-T −0.5 11-20-8-1 0.9809 53

7 C01 Min–max [0, 1] MSE T-T-T −0.5 11-10-8-1 0.9807 53

8 C01 z-score MSE T-L-T −0.5 11-20-5-1 0.9803 70

9 C01 Min–max [−1, 1] SSE T-L-T −0.5 11-17-14-1 0.9803 51

10 C01 Central MSE T-L-T −0.9 11-20-8-1 0.9802 64

11 C01 Min–max [−1, 1] SSE T-L-T −0.5 11-20-6-1 0.9798 47

12 C01 No pre-process MSE T-L-T −0.9 11-20-5-1 0.9797 67

13 C01 z-score SSE T-L-T −0.5 11-20-13-1 0.9796 69

14 C01 Min–max [−1, 1] SSE T-L-T −0.9 11-17-10-1 0.9793 49

15 C01 z-score SSE T-L-T −0.5 11-19-18-1 0.9792 62

16 C01 Central MSE T-T-T 0.9 11-9-5-1 0.9790 234

17 C01 z-score MSE T-L-T −0.5 11-18-9-1 0.9789 66

18 C01 z-score MSE T-L-T −0.5 11-20-4-1 0.9789 62

19 C01 Min–max [−1, 1] MSE T-L-T −0.5 11-19-9-1 0.9789 62

20 C01 z-score SSE T-T-T −0.1 11-14-13-1 0.9788 103
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between 0.98083 and 0.98275 (for the optimum one, see
Table 4) while the best values in the literature is 0.97 for

ANN and 0.98 for the case of using fuzzy logic models
[41].

Table 6 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (computer C02)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C02 Central MSE T-L-T −0.9 11-20-5-1 0.9814 59

2 C02 z-score MSE T-L-T −0.5 11-13-8-1 0.9813 66

3 C02 z-score MSE T-L-T −0.9 11-10-5-1 0.9806 69

4 C02 Min–max [0, 1] MSE T-L-T −0.9 11-6-5-1 0.9805 116

5 C02 Min–max [0, 1] MSE T-L-T −0.5 11-9-9-1 0.9805 49

6 C02 z-score MSE T-L-T −0.9 11-12-5-1 0.9804 58

7 C02 Min–max [−1, 1] MSE T-L-T −0.5 11-13-5-1 0.9804 48

8 C02 z-score SSE T-L-T 0.1 11-10-7-1 0.9801 78

9 C02 Central MSE T-L-T −0.5 11-11-9-1 0.9800 55

10 C02 z-score MSE T-L-T −0.9 11-15-6-1 0.9799 64

11 C02 No pre-process MSE T-T-T −0.1 11-10-8-1 0.9798 100

12 C02 Min–max [0, 1] MSE T-L-T −0.5 11-20-5-1 0.9797 63

13 C02 Min–max [−1, 1] SSE T-L-T 0.9 11-16-11-1 0.9796 151

14 C02 z-score SSE T-L-T 0.9 11-18-4-1 0.9796 107

15 C02 Central SSE T-T-T 0.9 11-13-7-1 0.9794 108

16 C02 Min–max [0, 1] MSE T-L-T −0.5 11-20-17-1 0.9792 65

17 C02 Min–max [0, 1] SSE T-L-T −0.9 11-16-8-1 0.9792 54

18 C02 Min–max [−1, 1] MSE T-L-T −0.5 11-19-4-1 0.9792 62

19 C02 Min–max [−1, 1] SSE T-L-T −0.9 11-20-17-1 0.9791 70

20 C02 z-score SSE T-L-T −0.5 11-20-14-1 0.9789 52

Table 7 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (computer C03)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C03 Min–max [0, 1] MSE T-L-T −0.5 11-11-5-1 0.9828 73

2 C03 Central MSE T-L-T −0.9 11-19-15-1 0.9825 66

3 C03 Min–max [0, 1] MSE T-L-T −0.5 11-20-5-1 0.9817 66

4 C03 z-score MSE T-L-T −0.5 11-19-6-1 0.9808 51

5 C03 Min–max [0, 1] MSE T-L-T −0.5 11-19-7-1 0.9807 57

6 C03 Min–max [0, 1] MSE T-L-T −0.1 11-15-4-1 0.9807 61

7 C03 Min–max [−1, 1] MSE T-L-T −0.5 11-13-9-1 0.9803 43

8 C03 Min–max [0, 1] MSE T-L-T −0.5 11-8-5-1 0.9801 73

9 C03 Min–max [−1, 1] SSE T-L-T −0.5 11-18-5-1 0.9801 60

10 C03 Central SSE T-T-T −0.1 11-19-7-1 0.9799 104

11 C03 z-score SSE T-T-T −0.1 11-8-4-1 0.9797 65

12 C03 Min–max [−1, 1] SSE T-L-T −0.5 11-16-9-1 0.9797 47

13 C03 Min–max [−1, 1] SSE T-L-T −0.9 11-20-16-1 0.9796 52

14 C03 Min–max [0, 1] MSE T-L-T −0.5 11-18-10-1 0.9795 71

15 C03 z-score MSE T-L-T 0.5 11-18-9-1 0.9794 79

16 C03 z-score MSE T-L-T −0.5 11-14-10-1 0.9793 45

17 C03 z-score MSE T-L-T −0.9 11-13-5-1 0.9793 60

18 C03 z-score SSE T-T-T −0.1 11-14-10-1 0.9792 81

19 C03 No pre-process MSE T-L-T −0.9 11-18-4-1 0.9791 46

20 C03 Min–max [0, 2] MSE T-L-T −0.5 11-19-5-1 0.9790 74
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Table 8 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (computer C04)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C04 Min–max [0, 1] SSE T-L-T −0.9 11-14-6-1 0.9818 51

2 C04 z-score MSE T-L-T −0.5 11-19-4-1 0.9818 58

3 C04 Min–max [0, 1] MSE T-L-T −0.5 11-19-10-1 0.9808 51

4 C04 z-score MSE T-L-T −0.5 11-14-8-1 0.9808 69

5 C04 Central MSE T-L-T −0.9 11-20-5-1 0.9805 58

6 C04 z-score SSE T-L-T −0.5 11-20-13-1 0.9803 72

7 C04 Min–max [0, 1] SSE T-L-T −0.9 11-10-4-1 0.9803 181

8 C04 z-score MSE T-L-T −0.5 11-20-10-1 0.9802 67

9 C04 Min–max [0, 1] SSE T-L-T −0.5 11-17-9-1 0.9802 54

10 C04 z-score MSE T-L-T −0.5 11-19-10-1 0.9801 75

11 C04 Min–max [−1, 1] SSE T-L-T −0.5 11-15-6-1 0.9799 50

12 C04 z-score SSE T-L-T −0.9 11-14-6-1 0.9799 58

13 C04 z-score MSE T-L-T −0.5 11-14-10-1 0.9799 54

14 C04 Min–max [−1, 1] SSE T-L-T −0.9 11-19-8-1 0.9797 58

15 C04 Min–max [−1, 1] MSE T-T-T −0.1 11-16-7-1 0.9797 83

16 C04 Min–max [0, 1] MSE T-L-T −0.5 11-18-5-1 0.9796 60

17 C04 Min–max [0, 1] MSE T-L-T −0.5 11-11-4-1 0.9795 57

18 C04 Central MSE T-T-T −0.1 11-14-11-1 0.9795 72

19 C04 z-score MSE T-L-T 0.1 11-20-11-1 0.9792 61

20 C04 Min–max [0, 1] MSE T-L-T −0.1 11-13-10-1 0.9792 72

Table 9 Ranking of the top twenty best architectures of BPNNs based on Pearson’s correlation coefficient R (computer C05)

Ranking Computer Pre-process Cost function Training functions Initial weights Architecture (code) Pearson’s R Number of epochs

1 C05 z-score MSE T-L-T −0.5 11-14-10-1 0.9824 63

2 C05 Central MSE T-L-T 0.5 11-15-14-1 0.9823 67

3 C05 Min–max [−1, 1] SSE T-L-T −0.5 11-16-16-1 0.9816 69

4 C05 Central SSE T-L-T −0.1 11-11-9-1 0.9815 63

5 C05 Min–max [−1, 1] MSE T-L-T −0.5 11-18-6-1 0.9812 59

6 C05 Central MSE T-L-T 0.1 11-11-8-1 0.9810 47

7 C05 z-score MSE T-L-T −0.5 11-20-9-1 0.9805 55

8 C05 Min–max [−1, 1] MSE T-L-T −0.5 11-18-4-1 0.9803 70

9 C05 z-score MSE T-L-T 0.9 11-11-5-1 0.9803 123

10 C05 Min–max [0, 1] SSE T-L-T −0.5 11-18-8-1 0.9801 68

11 C05 Min–max [0, 1] SSE T-L-T 0.1 11-16-5-1 0.9799 88

12 C05 Central MSE T-T-T 0.1 11-17-16-1 0.9798 104

13 C05 z-score MSE T-L-T −0.9 11-14-10-1 0.9797 82

14 C05 Min–max [0, 1] MSE T-L-T −0.5 11-15-4-1 0.9795 70

15 C05 z-score SSE T-L-T −0.9 11-16-16-1 0.9793 79

16 C05 Central MSE T-T-T 0.1 11-12-6-1 0.9792 102

17 C05 No pre-process MSE T-L-T −0.9 11-15-11-1 0.9791 54

18 C05 No pre-process SSE T-L-T 0.1 11-17-16-1 0.9791 54

19 C05 Min–max [0, 1] MSE T-L-T −0.5 11-13-4-1 0.9789 61

20 C05 z-score MSE T-L-T −0.5 11-18-8-1 0.9789 65
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4 Conclusions

In this paper, artificial neural networks were trained in order to
investigate their capability in predicting the 28-day compres-
sive strength of admixture-based self-compacting concrete. In
order to achieve that, a novel heuristic algorithmwas proposed
in order to find the optimum architectures for a set of

multilayered feed-forward back-propagation neural networks
based on the value of Pearson’s correlation coefficient. The
results showed that the prediction of the compressive strengths
of admixture-based self-compacting concrete value obtained
with the trained ANNs is very close to the experimental results
making ANN a very promising metamodel for predicting the
28-day compressive strength of SCC mixtures. Furthermore,
the proposed new formula for the normalization of data
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BPNN (11-11-5-1)

Fig. 6 Experimental vs predicted values of compressive strength for the
best with two hidden layers BPNN (11-115-1)
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proved effective and robust compared to available ones in the
literature.

In a subsequent work, the reverse problem will be investi-
gated in which the identification of the optimum ANN con-
figuration will be the target when the compressive SCC
strength will be the input and the 11 compositional parameters
will be the output.
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