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Abstract Due to increasing application of nanofibers inmany
research fields, comprehensive knowledge of the
electrospinning process as the most popular method of fiber
production is essential. Modeling techniques are valuable
tools for managing contributing factors in the electrospinning
process, prior to the more expensive experimental techniques.
In the present research, effective parameters on the diameter of
electrospun polycaprolactone (PCL) nanofibers are analyzed
using artificial neural networks (ANN) and response surface
methodology (RSM). The assessed parameters include poly-
mer concentration, voltage, and nozzle-to-collector distance.
Response surface methodology based on the Box-Behnken
design is utilized to develop a mathematical model as well
as to determine the optimum condition for production of nano-
fiber with minimum diameter. In addition, multilayer
perceptron neural networks are designed and trained by the
sets of input-output patterns using the Levenberg-Marquardt
backpropagation algorithm. The high regression coefficient
value (R2 ≥ 0.97) and low root-mean-square error (RMSE
≤3.81) of the two models indicate that both models performed
well in predicting PCL fiber diameter, although the RSM

model slightly outperformed the ANN model in accuracy.
The represented models could assist researchers in fabricating
electrospun scaffolds with a defined fiber diameter, thus spe-
cializing such scaffolds in particular applications.

Keywords Electrospining . Nanofiber . Artificial neural
networks . Response surface methodology . Polycaprolactone

1 Introduction

During the past decade, polycaprolactone (PCL) has attracted
considerable attention in the biomaterial field. PCL is a semi-
crystalline hydrophobic polymer, which is biodegradable and
has long-term degradation. Some of the advantages of PCL
are relatively inexpensive production, ease of manipulation,
suitable and tailor-made physico-mechanical properties, flex-
ibility in surface modification, and FDA approval [1]. Such
special characteristics make PCL and its blends well suited for
applications including tissue engineering, drug delivery,
wound dressing, and fixation devices [2–5]. To date, PCL in
the form of nano- and microsphere [3, 6], micelle [7], foam
[8], nanofiber, and microfiber [9, 10] has been fabricated,
which a nanofiber structure seems to be the most common
form of PCL.

Although several available methods, such as phase separa-
tion [11] and template synthesis [12], have been developed for
the fabrication of nanofibers, electrospinning has remained the
most popular technique of nanofiber production.
Electrospinning is the process of continuous fiber production
by exploiting an electric field that affects a polymer solution or
a melt extruding through a needle. Ease of use, low cost,
versatility, and fiber production frommanymaterials are some
of the major advantages of electrospinning technique [13].
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Electrospun nanofibers are advanced materials that intro-
duce some individual characteristics, such as large surface
area, good mechanical performance, and high porosity, which
are properties largely dependent on the diameter and morphol-
ogy of fibers [14]. Approximation of fiber diameter before the
process of electrospinning is challenging because of the com-
plicated patterns of variables affected process output.
Electrospinning variables include polymer solution factors
like concentration and conductivity, along with processing
parameters such as voltage, tip-to-collector distance, feed rate,
and ambient condition [15]. Exploring the quantitative rela-
tionship between process variables and their output could be
performed through modeling techniques.

Response surface methodology (RSM) is very popular for
modeling a process and for optimization studies. RSM is a
collection of mathematical and statistical techniques that are
extensively applied for analyzing and optimizing processes. It
determines the effect of the independent variables, alone or in
combination, on the processes. The major advantage of RSM
is that it minimizes the number of experiments required for
statistically analyzing a process with multiple factors. In this
modeling approach, polynomials are applied as local approx-
imation; subsequently, a mathematical equation expressing
the relationship between the response and the independent
variables is created [16].

Furthermore, artificial neural networks (ANN), a model-
ing tool for solving linear and nonlinear multivariate re-
gression problems, have also been broadly applied for
model ing di fferen t kinds of processes , such as
electrospinning and fabrication of composites [17–20].
This modeling technique is inspired by the biological
brain. In ANN’s first step, a neural network composed of
two or more layers with a defined number of artificial neu-
rons in each layer is created. A simple artificial neuron has
two key components: weight and transfer function. The
weight of an input is multiplied by the input units, and
the weighted input is introduced to the neuron transfer
function to estimate the output. In the next step, by using
several input-response data points, the network is trained to
approximate the relationship between the two sets of
values. In the training approach, the mean square error
(MSE) of experimental and predicted outputs is minimized
by continuously adjusting the weights between neurons.
Validating and testing the data sets, which are necessary
steps for exploring the network performance, are the final
steps of ANN modeling [21].

In recent years, several studies have focused on the
analysis of electrospinning process using RSM and
ANN. Table 1 shows the summary of researchers’ studies
on modeling of electrospinning aimed at predicting the
diameter of nanofiber. Although several polymers have
been studied thus far, no attempt has been made to model
electrospinning process of PCL nanofiber, which is

widely used in biomedical applications. The fiber diame-
ter has a major role in the mechanical properties and po-
rosity of the PCL scaffold as well as in attachment and
proliferation of cells on the scaffold [39].

In the present study, two modeling techniques are
employed to describe the nonlinear effect of selected
electrospinning factors on the diameter of PCL, which is one
of the most utilized polymers in biomaterials research. The
assessed parameters of electrospinning are polymer concen-
tration, voltage, and tip-to-collector distance. During this
study, different conditions of fiber production are evaluated
using the Box-Behnken design (BBD) method. Subsequently,
the relationship between the diameter of polymer fibers and
the above-mentioned factors is analyzed using RSM andANN
methods. Additionally, the two proposed models are com-
pared and discussed in this paper.

2 Materials and methods

2.1 Materials

PCL (Mw = 80,000) and chloroform were obtained from
Sigma-Aldrich, andN,N-dimethylformamide (DMF) was pur-
chased from Merck.

2.2 Preparation of PCL solution

PCL was dissolved in a chloroform/DMF solution (9:1) at
concentrations of 8, 10, and 12%. Each solution was stirred
via magnetic stirrer for 3 h.

Table 1 Summary of studies in modeling of electrspinning process to
predict nanofiber diameter

Nanofiber Method Reference

Polyacrylonitrile RSM, ANN [18, 22, 23]

Polymethyl methacrylate RSM, ANN [24, 25]

Polyethylene oxide ANN [26]

Polyurethan RSM, ANN [27]

Titanium dioxide RSM, ANN [28, 29]

Nylon-6,6 ANN [30]

Carbon RSM [31]

Poly(D,L-lactide) RSM [32]

Gelatin ANN [33]

Gelatin/cellulose acetate ANN [34]

Polycaprolacton/gelatin RSM [35]

Poly(vinyl alcohol)/chitosan ANN [36]

Chitosan/polyethylene oxide ANN [37]

Chitosan/polylactide RSM [38]
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2.3 Electrospinning setup

Electrospun PCL scaffolds were fabricated using an
electrospinning device (Nanoazma Co., Tehran, Iran). The
prepared solution was extruded from a 5-ml syringe attached
to a 21-G blunted needle. The feed rate was 0.5 ml/h, and a
speed of 100 RPM was selected for collecting fibers. The
e lec t rosp inning was per formed at 25 °C. Af te r
electrospinning, the fibrous mats were dried for 48 h. Other
electrospinning parameters to prepare different samples ac-
cording to the Box-Behnken method are summarized in
Table 2.

2.4 Characterization

The morphology of electrospun fibers was assessed by scan-
ning electron microscope (SEM; TESCAN, Brno,
Czech Republic) at an accelerating voltage of 30 kV under
magnification of ×1500 after sputter coating with a gold sput-
ter coater. The average fiber diameter was measured from the
SEM micrographs using ImageJ2 software (maintained by C.
Rueden on GitHub). Fifty fibers in each sample were mea-
sured. A typical SEM photograph of the electrospun nanofiber
mat and its corresponding histogram of fiber diameter distri-
bution are shown in Fig. 1a, b.

2.5 Design of experiments

In this study, the selected design of experiments (DOE) was
RSM coupled with Box-Behnken design. Among different
types of DOE methods, Box-Behnken design has maximum
efficiency and needs fewer experiments when three factors
with three levels are involved [40, 41].

The initial step in the RSM study is the determination of the
input parameters and their levels. This step was performed
applying previous reports [38, 42]. Based on the literature,
three independent variables were detected as more effective
parameters on PCL fiber’s diameter, including concentration,
voltage, and needle-to-collector distance. In addition, the
range of each variable was defined in such a way to produce
PCL fiber with no bead.

Since the parameters have different units, the factors were
first normalized according to Eq. 1:

x ¼ x− xmax þ xminð Þ=2
xmax−xminð Þ=2 ð1Þ

where x is the coded variable, x is the natural variable, and
xmax and xmin are the maximum and minimum values of the
natural variable. Each of the coded variables is forced to range
from −1 to 1. The resultant coded and actual values are listed
in Table 2.

Then a three-level, three-variable Box-Behnken designwas
performed and, consequently, 17 experiments were obtained,
as shown in Table 3. The number of required experiment is
given by:

N ¼ 2k k−1ð Þ þ C0 ð2Þ

where N, k, and C0 are the number of experiments, vari-
ables, and center points, respectively.

The statistical software Design-Expert® (trial version of v.
7.0.0, Stat-Ease Inc., Minneapolis, MN, USA) was utilized for
the design and regression analysis of the experimental data
and for plotting the subsequent graphs.

2.6 Artificial neural network

In this study, multilayer perceptron ANN with two hidden
layers and one output layer according to Kolmogorov’s theo-
rem was applied [43]. To achieve the optimum topology of the
network, different numbers of hidden layers and neurons were
examined using a trial and error approach. The optimal struc-
ture was obtained based on the lowest value of MSE and the
highest correlation coefficient (R) of the data set.

Table 2 Actual and coded values of the selected parameters

Coded value

−1 0 1

A. Concentration (% w/v) 8 10 12

B. Voltage (kV) 15 18 21

C. Tip-to-collector distance (cm) 8 10 12
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Fig. 1 SEM micrograph of electrospun PCL nanofibers and their
diameter distribution



Among the algorithms that have been recommended for
learning MLP networks, back propagation (BP) in conju-
gation with the Levenberg-Marquardt method was select-
ed. BP is the fastest algorithm, although it requires more
memory than the others [43]. The hyperbolic tangent sig-
moid transfer function and the linear transfer function were
employed for the hidden layers and output layer, respec-
tively (Eqs. 3 and 4).

f xð Þ ¼ ex−e−x

ex þ ex
ð3Þ

g xð Þ ¼ x ð4Þ

The experimental data were randomly divided into
three groups, including training, validating, and testing
sets, containing 70, 15, and 15% of the samples, respec-
tively. All experimental data were normalized before
ANN modeling. The calculations were performed in
MATLAB mathematical software (v. 7.1) using the ANN
toolbox.

In order to compare the adequacy of ANN and RSM
models, the R2, root-mean-square error (RMSE), model pre-
dictive error (MPE(%)), andmean absolute error (MAE), were
calculated according to Eqs. 5 to 8:

R2 ¼ ∑n
i¼1 Y io−Y ip

� �2−∑n
i¼1 Y io−Y ip

� �

∑n
i¼1 Y io−Y ip

� �2 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Y io−Y ip
� �2

n

s

ð6Þ

MPE %ð Þ ¼ 100

n
∑
n

i¼1

Y io−Y ip

Y ip

����

���� ð7Þ

MAE ¼ i
n
∑n

i¼1

���Y io−Y ip

��� ð8Þ

where Yio and Yip are the observed and predicted values of
fiber diameter and n represents the number of experiments.

Table 3 Experimental conditions
designed by Box-Behnken design
and corresponding responses

Sample Coded value of A Coded value of B Coded value of C Response
Fiber diameter (nm)

1 0 0 0 324

2 1 0 1 402

3 1 0 −1 485

4 −1 −1 0 127

5 1 1 0 397

6 −1 1 0 197

7 −1 0 −1 191

8 0 1 1 372

9 0 0 0 314

10 −1 0 1 320

11 0 0 0 317

12 0 −1 −1 287

13 0 0 0 324

14 0 −1 1 298

15 1 -1 0 359

16 0 0 0 313

17 0 1 -1 348

A polymer concentration, B applied voltage, C tip-to-collector distance

Table 4 Analysis of variance (ANOVA) for response surface quadratic
model of PCL fiber diameter

Source Sum of squares df Mean square F value Prob. > F

Model 1.144 e5 7 16,349.54 161.75 <0.0001*

A 81,608 1 81,608 807.38 <0.0001*

B 7381.13 1 7381.13 73.02 <0.0001*

C 820.13 1 820.13 8.11 0.0191*

AC 11,236 1 11,236 111.16 <0.0001*

A2 665.81 1 665.81 6.59 0.0304*

B2 5403.92 1 5403.92 53.46 <0.0001*

C2 8031.60 1 8031.6 79.46 <0.0001*

Lack of fit 796.5 5 159.3 5.63 0.0595**

Pure error 113.2 4 28.3

*Significant at 95% confidence interval; **not significant at 95% confi-
dence interval
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3 Results and discussion

3.1 Statistical results obtained by RSM

To evaluate the experimental results, we examined multiple
regression models. The best model, which fits all the design

points was a quadratic model. Analysis of variance (ANOVA)
was used to estimate the variables’ effects and their interac-
tions, as displayed in Table 4.

The significant terms of the model, as indicated in the
ANOVA table, consist of A, B, C, AC, A2, B2, and C2, which
had P-values less than 0.05. Other model terms showed no
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concentration, b voltage, and c
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significant effect on the electrospun PCL fiber diameter and
thus were eliminated from the model. Afterwards, the follow-
ing second-order polynomial function was determined to ap-
proximate the PCL fiber diameter:

Y ¼ 318:4þ 101 Aþ 30:38 B

þ 10:13 C−53 AC−12:58 A2 −35:83 B2 þ 43:68 C2 ð9Þ

where Y, A, B, and C are the average diameter of PCL fibers,
coded forms of polymer concentration, voltage, and tip-to-
collector distance, respectively.

As shown in the ANOVA table (Table 4), the model P
value (<0.0001) and the insignificant lack of fit (0.059) im-
plied that the experimental data have a suitable agreement
with the model. Additionally, the high adjusted and predicted
R-squared values, which are 0.986 and 0.949, respectively,
validated the goodness of the model.

3.2 Effect of electrospinning variables on diameter

According to the ANOVA results, the response surface model
clearly indicates that the most effective parameter on the PCL
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Fig. 4 Schematic view of the
represented MLP network (a) and
the effect of number of neurons
on the performance of the ANN
(b). (Note that graph (b) is
obtained for one hidden layer
with tansig transfer function)

Fig. 5 Regression analysis
between ANN responses and the
experimental results for a
training, b validation, c test
datasets, and d MSE plot with
respect to the number of epochs
for training, validation, and test
samples for the PCL fiber
diameter response



electrospun fiber diameter is the polymer concentration. As
corroborated in the literature, increasing polymer concentra-
tion will result in greater viscoelastic force, consequently lead-
ing to larger diameter polymer fibers [22]. The dependence
between concentration and diameter, while other parameters
are at their mean point, is shown in Fig. 2a. As can be seen,
any change in the value of concentration is expected to lead to
a significant change in the value of fiber diameter.

There is a less strong dependence between the applied volt-
age and diameter with a mildly increasing trend, although in
the high range of voltage the trend is almost reversed (Fig. 2b).

Furthermore, tip-to-collector distance had only a mild effect
on PCL fiber diameter with concave dependence (Fig. 2c).
However, the interactive effect of distance with concentration
is more important than its main effect. The contour plot and 3D
surface plot of PCL fiber diameter at different values of con-
centration and distance in the middle level of applied voltage
are given in Fig. 3a, b. As indicated in the contour plot, the
simultaneous effect of concentration and distance on the fiber
diameter is similar to conic curves, although in higher range of
variables, the dependence would be stronger.

3.3 Artificial neural network results

ANNs are computational models inspired by biological ner-
vous system. ANN includs several types such as feedforward
network, radial basis function network, fuzzy network, and
more [44–46]. As corroborated by Hornik et al. [43], multi-
layered feedforward networks with a few as one hidden layer
are capable of approximating any function from n dimentions
to m dimentions to any desired degree of accuracy.
Thereupon, this type of ANN was applied.

In this study, the parameter of interest is PCL fiber diameter
as an output variable of electrospinning process, and three
independent variables were selected as input factors, namely
polymer concentration, voltage, and tip-to-collector distance.
The final structure of the ANN model was obtained by exam-
ining a series of different topologies (Fig. 4a). The optimal
model, determined based on the minimum value of MSE of
the training and testing sets, was a three-layered perceptron
feedforward ANN model with 1, 11, and 5 neurons in output,
first, and second hidden layers, respectively. Figure 4b sche-
matically illustrates the proposed ANN structure.

After creation of the network architecture through the
learning process, the weights between the connections were
adjusted until the optimum weights for output prediction were

Table 5 Comparison between experimental and predicted values of
electrospun fiber diameter by RSM and ANN models

Sample Experimental Predicted

RSM ANN

1 324 318 313

2 402 407 363

3 485 493 490

4 127 138 132

5 397 401 398

6 197 199 160

7 191 185 164

8 372 366 368

9 314 318 313

10 320 311 270

11 317 318 313

12 287 285 290

13 324 318 313

14 298 306 302

15 359 252 314

16 313 318 313

17 348 346 349

Coefficient of determination (R2) 0.98 0.97

Root mean square error (RMSE) 3.36 3.81

Model predictive error (%) 4.34 5.91

Mean absolute error 11.29 14.58
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obtained or, in other words, when the mean square error is
minimized in all training experiments. The learning process
was carried out employing the back propagation algorithm in
conjugation with the Levenberg-Marquardt training function.

It is necessary to evaluate the performance of the network
while training is underway. This is done using the validating
data set, which contains 15% of the samples in our study. In
the validating step, the goal is reaching the desirable error.

To test the performance of the trained network in training
and validating processes, the experimental values were com-
pared with the output of ANN. The correlation between

experimental data and training, and validating and testing sets,
is depicted in Figs. 5 and 6. The perfect correlation (output
exactly equal to target) is indicated by slope and y-intercept of
the parity plot, equal to one and zero, respectively. The corre-
lation coefficients (R value) for the training, validating, and
testing sets were 0.987, 0.989, and 0.998, respectively, which
demonstrated a good fit.

The MSE plot for all 17 samples is shown in Fig. 5d. As
can be seen, the MSE of the network has a descending trend
that indicates the network is learning. The best validation per-
formance was at MSE of 471.11, obtained at epoch one.

Table 6 Validation study of
RSM and ANN models using
different levels of input variables

Sample Values of the variables PCL fiber diameter (nm)

Concentration (% w/v) Voltage (kV) Distance (cm) Experimental RSM ANN

a 8 17 9 165 171 165

b 8 20 11 189 188 181

c 12 17 11 349 381 370
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3.4 Comparison between RSM and ANN models

In this section, the aim is to determine which modeling tech-
nique shows better predictive accuracy. Hence, the experi-
mental data and predicted values obtained via RSM and
ANNs were compared to obtain the goodness of fitting. For
this purpose, error analysis was carried out and R2, RMSE,
MPE, and MAE were calculated according to the formulas
mentioned in the previous section. As shown in Table 5, both
models had good agreement with experimental data, which
indicated by R2 value, equal to 0.98 and 0.97 for RSM and
ANN, respectively. The RSM model had slightly greater R2

value and lower error than the ANN model (Fig. 6). This fact
implied more predictive accuracy of RSMmodel. On the other
hand, the ANN model itself provides little information about
the input parameters and their contribution to the response if
further analysis has not been done, whereas the main advan-
tage of RSM is its ability to exhibit the factor contributions via
coefficients in the regression model.

As the last step, to confirm the validity of the models, we
carried out a validation study. Accordingly, additional exper-
iments with different levels of input factors (polymer concen-
tration, voltage, and distance) were conducted and the obtain-
ed responses were compared with predicted values. As shown
in Table 6, there is no remarkable difference between experi-
mental data and corresponding predicted values (Fig. 7a–c).

3.5 Optimization of electrospun PCL fiber

In a response surface optimization study, the objective is to
find a desirable location in the design space. The demanded
point could be a minimum, a maximum, or a special region
where response is stable. In our study, the goal was to mini-
mize the polymer diameter, which may provide maximum
fiber surface area. The conditions for obtaining the finest
PCL fiber diameter as determined by RSM model were poly-
mer concentration = 8% (w/v), voltage = 15 kV, and
distance = 8 cm.

Figure 7d shows the nanofiber morphology acquired in the
optimized condition. The average fiber diameter was 129 nm,
and the predicted fiber diameter under similar conditions esti-
mated using RSM was 120 nm with a desirability value of 1.
Comparison of the experimental value and the response pro-
vided by the model shows that the RSM model has an accept-
able performance in the optimization study.

4 Conclusion

This paper presents a study on the effect of electrospinning
variables including polymer concentration, voltage, and
nozzle-to-collector distance on the average diameter of PCL
nanofibers. Box-Behnken design has been carried out to create

minimum number of experiment needed for analysis of all the
given parameters. RSM and ANN are applied in order to
model and optimize nanofiber diameter. RSM analysis indi-
cates that polymer concentration is the most effective factor on
PCL fiber diameter.

Voltage and distance are in the next level of importance and
the distance effect depends on the range of concentration. The
optimum structure of ANN, based on the smallest MSE, is
determined to be a three-layer network with Levenberg-
Marquardt back-propagation learning algorithm, tangent sig-
moid transfer function in the hidden layers containing 11 and
5 neurons, and linear transfer function in the output layer. The
high regression coefficient between the experimental and pre-
dicted values reveals excellent evaluation of the data sets via
the ANN and RSM models. Owing to the lower error of the
RSM model, the performance of this model is better than that
of the ANNmodel. In the optimization study, the condition for
achieving the minimum diameter is defined. The observed
diameter (129 nm) and the theoretical value predicted by
RSM (120 nm) are very close, and the error percentage is very
low. In addition, the validation study is performed as the last
step to confirm the performance of both models. Overall, the
collected results suggest that modeling techniques such as
ANN and RSM can be useful tools for controlling the diam-
eter of electrospun fibers, which is a key factor in determining
properties of nanofibrous scaffolds.
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