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Abstract The present study is about under-reamed pile sub-
jected to uplift forces. They are known to be very effective
especially against uplift forces. The objective is to develop a
simple design formula based on an optimized artificial neural
network (ANN) predictive approach model. This formula can
calculate the ultimate uplift capacity of under-reamed piles
(Pul) embedded in dry cohesionless soil with excellent accu-
racy. The new generated ANN model was developed by tak-
ing into account the key factors such as under-reamed base
diameter, angle of enlarged base to the vertical axis, shaft
diameter, and embedment ratio. The proposed approach
shows excellent agreement with a mean absolute error
(MAE) less than 0.262, which is better than previous theories.
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1 Introduction

Generally, high rise structures like mooring systems for surface,
transmission towers, or even high rise/tall buildings are subject-
ed to large lateral loads, huge overturning moments due to
waves, wind, or even both, in addition to vertical compressive
load. Therefore, the usual bored piles (normally constructed
from reinforced concrete) supporting these structures have to

struggle with large uplift and lateral moments and loads. In
most cases, these moments and loads (lateral, compressive,
and uplift) act on the single piles simultaneously [1–3]. There
are many theoretical methods available to assess pile behavior
under different independent, lateral, vertical uplift, and vertical
compressive loadings [4–6]. Under-reamed and/or enlarged ba-
se piles are normally constructed from concrete, with amechan-
ically formed under-reamed (also called belled pile) designed to
increase bearing capacity of the pile. Typically, pile base geom-
etry is in the form of an inverted cone. It can be used to provide
uplift capacity by forcing a passive failure wedge of soil (nor-
mally because of weight of the soil placed above under-reamed
pile) to mobilize for failure to occur and increase the compres-
sive base capacity (end bearing capacity) [7].

Numerous field and laboratory works were performed to
study the behavior of uplift loaded base pier. However, there
are relatively few papers in the technical literature which deal
with an under-reamed pier or belled pier resisting uplift load in
sand [8–11]. For analyzing purposes, the limiting capacity of
under-reamed pier embedded in sand can be carried out based
on theoretical and semi empirical work [12, 13]. Full scale tests
and laboratory tests on small models were performed in order
to obtain appropriate solution [14, 15]. Furthermore, some-
times, a full-scale test was employed to verify the results based
on laboratory tests [16]. Sego et al. [9] investigated on end
bearing and total capacities of a pile after enlarging base of
the pile. The pile was located on ice-rich permafrost. The re-
sults clearly proved that total capacity can be substantially im-
proved through the use of belled piles. Honda et al. [17] applied
a two-dimensional distinct element (DE) analysis to evaluate
the uplift resistance of belled and multi-belled piles embedded
in dense sand. As a result and based on the soil movements in
DE analysis, a theoretical solution for predicting the uplift re-
sistance of belled and multi-belled piles was generated from an
upper bound limit analysis [17]. Chae et al. [18] investigated on
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the uplift capacity of belled pile in weathered sandstones in a
coastal development on the Persian Gulf. They have conducted
a series of full-scale pullout load test on belled tension piles in
Abu Dhabi, the United Arab Emirates. After comparison of
results from field, 3D finite element analysis, and the theoreti-
cal methods, it is found that common theoretical methods over-
estimate ultimate pull out resistance of the belled pile regardless
of bell-shape considerations [18]. Yao and Chen [19]
established an elastic-plastic analytical solutions for the uplift
belled pile. Through the comparison between obtained results
from generated solutions and results of theoretical calculation,
it was found that elastic-plastic analytical solutions revealed a
good approach to the field test results. Lin et al. [20] introduced
a new method for estimating the ultimate uplift resistance of
under-reamed pile embedded in sandy soil. The differences of
new method with conventional methods is that the elastic/
plastic behavior of soil around belled pile is being taken into
account. Lin et al. [20] performed a series of experimental/field
tests to gain development of the failure surface with curved
slip-surface. Results illustrated that the starting location of fail-
ure surface is developed at a distance away from the pile sur-
face. In several cases, researchers used extra reinforcement ma-
terials such as various types of geosynthetics to enhance the
rate of uplift bearing capacity [21–23]. For instance, Tafreshi
et al. [24] investigated on the enhancement of geocell reinforce-
ment on uplift resistance of belled piles and also in the perfor-
mance improvement of the uplift bearing capacity of belled pile
under repeated tensile and compressive loads. It is observed
that the geocell material allowed higher tensile loads or in-
creased cycling. In addition, Tafreshi et al. [24] noted that re-
quired length of pile shaft can be reduced using the geocell
reinforcement causes to reduce required pile’s material, back-
fill, and excavation.

There are also many studies on using artificial neural net-
work (ANN) in order to predict bearing capacity of pile foun-
dation [25–30], pile dynamic capacity [31, 32], pile setup [33,
34], and pile settlements [35, 36]. For example, Suman et al.
[25] used artificial intelligence techniques to predict friction
resistance of driven piles in clay using. The prediction models
were presented using two recently developed artificial intelli-
gence techniques, functional networks (FN) and multivariate
adaptive regression splines (MARS). The models predict fric-
tion resistance of piles in clay soils based on experimental test
results. Based on statistical performances, MARS and FN
models are found to have a better predictive resistance than
existing models. Rahman et al. [37] developed an ANNmodel
to predict the uplift capacity of suction foundations using a
database containing the results from a number of model and
centrifuge tests. Ardalan et al. [38] optimized a group of data
handling (GMDH) type neural networks using genetic algo-
rithms (Gas). The model have been used to explore effects of
effective cone point resistance and cone sleeve friction as in-
put parameters on pile unit shaft resistance. Alavi et al. [39]

utilized a classical tree-based genetic programming (TGP),
linear genetic programming (LGP), and gene expression pro-
gramming (GEP) to develop and formulate new prediction
equations for the uplift capacity of suction caissons using an
experimental database obtained from published literature.
Cheng et al. [40] developed an intelligent fuzzy radial basis
function (RBF) neural network inference model (IFRIM),
which is a hybrid of RBF neural network, fuzzy logic (FL),
and artificial bee colony (ABC) algorithm and has been used
to predict the uplift capacity of suction caissons.

To ensure serviceability and stability of the structures, bear-
ing capacities against uplift and horizontal forces are taking into
account in the design process of foundations. Unlike the lateral
and compression resistance, the uplift capacities of piles with
under-reamed has not yet been fully investigated; also, such
piles are known to be very effective against uplift force, but
research on their uplift behavior has been limited. In the present
study, an attempt has been made to develop an optimized
ANN-based predictive approach model to calculate the ulti-
mate uplift capacity of under-reamed piles embedded in dry
cohesionless soil. In order to develop the new design model,
dataset consist of an extensive number of small scale laboratory
tests on uplift capacity of under-reamed pile published literature
which have been used. We have proposed a novel ANNmodel
to model and predict ultimate uplift capacity of the under-
reamed piles embedded in dry cohesionless soil. This model
is introduced by us for the first time. This model is an accurate
and very fast tool in comparison with the experimental or nu-
merical methods. Also, using the proposed ANN model, an
equation is proposed for the first time to relate inputs including
base diameter, angle of enlarged base, shaft diameter and em-
bedment ratio, and the output ultimate uplift resistance.

2 Data collection and methodology

Used data to make the ANN model in this study was ob-
tained from the small scale laboratory work conducted in a
geotechnical laboratory, performed by Nazir et al. [13].
The purpose of research carried out by Nazir et al. [12]
was to determine the bearing capability of an enlarged base
pier against uplift forces. Experiments were performed in a
large plexiglass box. A total number of 432 laboratory
experiments were undertaken in both dense and loose sand
condition. Enlarged base piers with base angles of α = 30°,
α = 45°, and α = 60°; base diameters between 75 and
150 mm; and pile diameter ranging from 30 to 50 mm were
tested. An example of under-reamed base pile and key
parameters considered for ANN model is depicted in
Fig. 1 while Table 1 illustrated similar design parameters
used in the small scale experimental plan as well as pro-
posed ANN approach.
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3 Artificial neural network (ANN)

In the current paper, we optimized an ANN method to model
and predict the ultimate uplift capacity of the under-reamed
piles embedded in dense and loose dry sand. The new generat-
ed ANN model was developed by taking into account the key
factors such as base diameter Db, angle of enlarged base (α),
shaft diameter (Ds), and embedment ratio (L/Db) as the inputs
and ultimate uplift resistance (Pul) as the output. For this means,
a special type of feed forward network called the multi-layer
perceptron (MLP) neural network is used, which is the most
widely used ANN. Figure 2a shows the proposed MLP net-
work used in this study. This structure consists of three layers as
the input layer, the hidden layer, and the output layer. Each
layer basically consists of interconnected neurons (basic pro-
cessing elements of ANN), in which the synapses of biological
neurons are modeled as the weights. The mathematic model of
a neuron is shown in Fig. 2b, where U1 ,U2 , . . . . ,Ut are
inputs, b is the bias term, f is the transfer function, and W1 , 1 ,
W1 , 2 , . . . . ,W1 , t are the connection weights. The output of
this neuron is also given by the following equation [41, 42]:

O ¼ f ∑
t

i¼1
UiW1;i
� �þ b

� �
ð1Þ

The neurons in input layer transfer inputs to the next layer
without any changes. Also, in output layer, the transfer func-
tion f is equal to 1. For the hidden layers, the transfer function f
is usually tansig function, which is given by the following
equation for variable x:

Tansig xð Þ ¼ 2

1þ e−2x
−1 ð2Þ

The connection weights and bias can be adjusted during the
training process using back-propagation training algorithm,
which is an error-minimization technique.

In order to find the optimized ANN model, many
ANN structures (i.e., using MLP) were tested using 1,
2, and 3 hidden layers. Different number of neurons
were considered in each hidden layer. This process con-
tinued to obtain an accurate ANN model with the min-
imum error in both training and testing data set.
Besides, the optimized ANN model should have a sim-
ple and less complicated structure. After testing large
number of ANN structures, the best ANN model struc-
ture is found with one hidden layer and 10 neurons in
its hidden layer. Noteworthy, developed model possesses
5 neurons in input layer, while 10 neurons in hidden
layer, and 1 neurons in output layer. To train and test
the proposed ANN model, required data set was obtain-
ed from the small scale laboratory tests. These data
were divided into two sets, i.e., about 70% for training
MLP models and the rest (about 30%) considered for
testing the trained network. MATLAB 7.0.4 software
was used for this process. Therefore, the most appropri-
ate proposed ANN model is shown in Fig. 2a.

(a) under reamed pile (b) belling bucket 

Fig. 1 An example of under-
reamed pile. a Key parameters. b
Belling bucket

Table 1 Physical quantities for the uplift resistance used in both ANN
model and laboratory work

Material parameters Symbol values Units

Soil

Dry unit weight γ 14.7, 18.0 kN/m3

Relative density Id Dense—85% %
Loose—35%

Pile

Shaft diameter Ds 30-40-50 mm

Base diameter Db 75-100-125-125 mm

Base angle α 30-45-60 °

Embedment ratio L/Db 0-1-2-3-4-5 –
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4 Results and discussion

As stated earlier, in training process algorithm, many dif-
ferent MLP structure were tested and trained by changing
number of epochs, number of hidden layers, number of
neurons in each hidden layer, and the training algorithm.
Results from the predicted and measured data for both
training and testing dataset are compared. At the end of

this process, the most suitable ANN model was selected
with respect to the minimum error calculated from three
common error evaluation methods: (i) root mean square
error (RMSE), (ii) mean absolute error (MAE), and (iii)
correlation factor (CF). In addition, the connection weights
and bias were thoroughly adjusted. Therefore, by using
Eqs. (1) and (2), we can obtain an equation between base
diameter Db, angle of enlarged base (α), shaft diameter

Fig. 2 a Proposed ANN model.
b Mathematic model of a neuron

Fig. 3 Training and testing
results of the proposed ANN
model
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(Ds), and embedment ratio (L/Db) as inputs and ultimate
uplift resistance (Pul) as output. The following terms are
shown in Eq. (3); DS, alpha (α), DT, ER, Db, and Pul stand

for the shaft diameter (mm), angle of enlarged base (de-
gree), density condition (dense and/or loose), embedment
ratio (L/Db), base diameter (Db), and ultimate uplift

Table 2 Measured and predicted (ANN) ultimate uplift resistance, Pul (kN), for various Ds, Db, and L/Db in dense sand

Ds

(mm)
Alpha
(α°)

Embedment
ratio, L/Db

Db = 150 mm Db = 125 mm Db = 100 mm Db = 75 mm

Db = 150-
LAB

Db = 150-
ANN

Db = 125-
LAB

Db = 125-
ANN

Db = 100-
LAB

Db = 100-
ANN

Db = 75-
LAB

Db = 75-
ANN

30 45 0 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00
30 45 1 0.13 0.15 0.10 0.09 0.05 0.06 0.02 0.01
30 45 2 0.67 0.67 0.39 0.39 0.19 0.19 0.08 0.09
30 45 3 1.72 1.71 0.99 0.99 0.50 0.53 0.21 0.22
30 45 4 3.28 3.26 2.01 2.01 1.04 1.04 0.44 0.41
30 45 5 4.34 4.32 3.08 3.06 1.87 1.84 0.78 0.79
40 45 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
40 45 1 0.13 0.14 0.10 0.09 0.04 0.06 0.02 0.01
40 45 2 0.64 0.65 0.38 0.37 0.18 0.18 0.08 0.08
40 45 3 1.66 1.68 0.98 0.96 0.55 0.55 0.20 0.22
40 45 4 3.18 3.19 1.95 1.96 1.02 1.01 0.42 0.43
40 45 5 4.43 4.45 2.98 2.99 1.82 1.79 0.75 0.76
50 45 0 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
50 45 1 0.12 0.13 0.10 0.09 0.04 0.06 0.02 0.02
50 45 2 0.63 0.64 0.36 0.36 0.17 0.17 0.08 0.08
50 45 3 1.62 1.62 0.94 0.94 0.55 0.55 0.19 0.21
50 45 4 3.05 3.08 1.88 1.90 0.99 0.99 0.41 0.43
50 45 5 3.89 3.91 2.91 2.92 1.77 1.74 0.74 0.73
30 30 0 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
30 30 1 0.13 0.15 0.11 0.09 0.05 0.06 0.02 0.02
30 30 2 0.70 0.69 0.40 0.41 0.20 0.20 0.09 0.11
30 30 3 1.81 1.79 1.03 1.03 0.50 0.50 0.22 0.23
30 30 4 3.41 3.40 2.08 2.08 1.06 1.05 0.45 0.43
30 30 5 5.42 5.37 3.68 3.68 1.87 1.89 0.82 0.85
40 30 0 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00
40 30 1 0.13 0.14 0.12 0.09 0.05 0.06 0.02 0.02
40 30 2 0.68 0.67 0.39 0.39 0.19 0.20 0.09 0.09
40 30 3 1.76 1.77 1.00 1.00 0.50 0.50 0.22 0.22
40 30 4 3.33 3.33 2.03 2.02 1.04 1.04 0.44 0.43
40 30 5 5.35 3.60 3.61 1.82 1.85 0.81 0.81
50 30 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 30 1 0.13 0.13 0.11 0.09 0.04 0.07 0.02 0.02
50 30 2 0.66 0.66 0.38 0.38 0.18 0.20 0.08 0.08
50 30 3 1.72 1.71 0.98 0.97 0.50 0.50 0.21 0.21
50 30 4 3.22 3.22 1.98 1.97 1.01 1.01 0.43 0.43
50 30 5 5.31 5.29 3.56 3.55 1.79 1.80 0.79 0.78
30 60 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 60 1 0.13 0.12 0.10 0.09 0.04 0.06 0.02 0.01
30 60 2 0.65 0.66 0.37 0.37 0.18 0.18 0.08 0.07
30 60 3 1.68 1.67 0.96 0.96 0.50 0.50 0.21 0.20
30 60 4 3.20 3.20 1.95 1.97 1.00 1.00 0.42 0.41
30 60 5 3.97 3.96 3.45 3.44 1.76 1.77 0.74 0.74
40 60 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
40 60 1 0.12 0.12 0.09 0.09 0.04 0.06 0.02 0.01
40 60 2 0.63 0.63 0.36 0.36 0.18 0.17 0.08 0.06
40 60 3 1.64 1.65 0.93 0.94 0.50 0.50 0.20 0.19
40 60 4 3.12 3.13 1.91 1.91 0.97 0.98 0.38 0.40
40 60 5 3.93 3.95 3.32 3.34 1.69 1.71 0.71 0.71
50 60 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 60 1 0.12 0.11 0.09 0.09 0.04 0.06 0.02 0.01
50 60 2 0.61 0.60 0.35 0.35 0.17 0.17 0.08 0.05
50 60 3 1.59 1.59 0.90 0.92 0.50 0.50 0.19 0.17
50 60 4 3.04 3.01 1.88 1.86 0.95 0.95 0.37 0.39
50 60 5 3.91 3.89 3.24 3.23 1.65 1.66 0.68 0.67
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resistance (kN), respectively. Noteworthy, the term
DT = 10 is used to represent for loose sand where
DT = 20 is used to introduce dense sand. Also, Btansig^

is the tansig function and Babs^ is a MATLAB function that
returns the absolute value. Following Eq. (3), it can be
directly run in MATLAB software.

Table 3 Measured and predicted (ANN) ultimate uplift resistance, Pul (kN), for various Ds, Db, and L/Db in loose sand

Ds

(mm)
Alpha
(α°)

Embedment ratio,
L/Db

Db = 150 mm Db = 125 mm Db = 100 mm Db = 75 mm

Db = 150-
LAB

Db = 150-
ANN

Db = 125-
LAB

Db = 125-
ANN

Db = 100-
LAB

Db = 100-
ANN

Db = 75-
LAB

Db = 75-
ANN

30 45 0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
30 45 1 0.09 0.10 0.05 0.05 0.03 0.03 0.01 0.01
30 45 2 0.35 0.37 0.20 0.21 0.10 0.10 0.04 0.05
30 45 3 0.84 0.83 0.50 0.53 0.25 0.25 0.10 0.10
30 45 4 1.57 1.58 0.94 0.93 0.47 0.46 0.20 0.19
30 45 5 2.67 2.69 1.56 1.57 0.80 0.80 0.36 0.35
40 45 0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
40 45 1 0.09 0.08 0.05 0.05 0.03 0.03 0.01 0.01
40 45 2 0.34 0.34 0.19 0.19 0.10 0.10 0.04 0.05
40 45 3 0.79 0.80 0.48 0.49 0.24 0.24 0.10 0.10
40 45 4 1.51 1.53 0.90 0.90 0.46 0.44 0.19 0.18
40 45 5 2.62 2.60 1.52 1.51 0.76 0.77 0.35 0.33
50 45 0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
50 45 1 0.08 0.08 0.05 0.05 0.02 0.02 0.01 0.01
50 45 2 0.33 0.33 0.17 0.18 0.10 0.09 0.04 0.04
50 45 3 0.76 0.77 0.45 0.48 0.23 0.23 0.09 0.09
50 45 4 1.46 1.47 0.87 0.87 0.45 0.42 0.18 0.18
50 45 5 2.36 2.36 1.46 1.45 0.73 0.74 0.33 0.32
30 30 0 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
30 30 1 0.10 0.10 0.06 0.06 0.03 0.03 0.01 0.01
30 30 2 0.37 0.38 0.21 0.21 0.11 0.11 0.05 0.05
30 30 3 0.87 0.85 0.53 0.55 0.26 0.26 0.11 0.11
30 30 4 1.66 1.65 0.96 0.96 0.49 0.48 0.21 0.20
30 30 5 2.79 2.79 1.62 1.61 0.83 0.83 0.38 0.36
40 30 0 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
40 30 1 0.09 0.09 0.05 0.05 0.03 0.03 0.01 0.01
40 30 2 0.36 0.35 0.20 0.20 0.10 0.10 0.04 0.05
40 30 3 0.82 0.82 0.54 0.56 0.24 0.25 0.10 0.10
40 30 4 1.63 1.63 0.91 0.92 0.46 0.45 0.20 0.19
40 30 5 2.62 2.62 1.56 1.56 0.77 0.78 0.36 0.35
50 30 0 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
50 30 1 0.09 0.09 0.05 0.05 0.03 0.02 0.01 0.01
50 30 2 0.34 0.34 0.19 0.19 0.09 0.10 0.04 0.05
50 30 3 0.80 0.80 0.53 0.56 0.22 0.24 0.10 0.10
50 30 4 1.54 1.54 0.88 0.88 0.43 0.43 0.19 0.18
50 30 5 2.49 2.49 1.47 1.47 0.72 0.72 0.34 0.32
30 60 0 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
30 60 1 0.09 0.10 0.05 0.05 0.03 0.03 0.01 0.01
30 60 2 0.34 0.36 0.20 0.20 0.10 0.10 0.04 0.05
30 60 3 0.81 0.80 0.52 0.53 0.24 0.24 0.10 0.10
30 60 4 1.54 1.54 0.89 0.90 0.45 0.44 0.19 0.18
30 60 5 2.60 2.60 1.50 1.50 0.77 0.77 0.34 0.33
40 60 0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
40 60 1 0.09 0.08 0.05 0.05 0.02 0.02 0.01 0.01
40 60 2 0.34 0.33 0.19 0.18 0.10 0.09 0.04 0.04
40 60 3 0.78 0.78 0.47 0.49 0.23 0.23 0.09 0.09
40 60 4 1.51 1.49 0.85 0.86 0.41 0.42 0.19 0.18
40 60 5 2.50 2.51 1.43 1.43 0.74 0.72 0.33 0.32
50 60 0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
50 60 1 0.08 0.08 0.05 0.05 0.02 0.02 0.01 0.01
50 60 2 0.32 0.32 0.17 0.17 0.09 0.09 0.04 0.04
50 60 3 0.74 0.75 0.52 0.53 0.22 0.22 0.09 0.09
50 60 4 1.45 1.43 0.83 0.83 0.37 0.40 0.18 0.17
50 60 5 2.40 2.39 1.33 1.34 0.69 0.68 0.31 0.30
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Ds ¼ 50 ;
Alpha ¼ 60;
DT ¼ 20 ;
ER ¼ 5 ;
Db ¼ 150 ;

ð3Þ

Pul = abs(−1.3419*tansig(0.012753*Ds − 1.4692*Alpha −-
0 . 1 2898*DT + 1 . 2 804*ER + 0 . 6 5553*Db +

10.8701)−0.010131*tansig(0.27276*Ds−0.0022046*Alpha+
0.4184*DT + 1.1763*ER − 0.16275*D

b
− 5.9077) +

0.00083048*tansig(1.7705*D s − 1.194*Alpha +
2 . 0 9 7 9 *DT − 0 . 1 7 8 2 5 *ER − 0 . 5 7 3 11 *D b +
2 . 3 4 1 9 ) − 1 . 9 96 7* t a n s i g (−0 . 0 0 0 96448*D s +
0.00073819*Alpha − 0.45228*DT − 0.47458*ER +
0 . 0 3 7 4 2 2 *D b − 0 . 1 3 6 8 3 ) + 2 . 7 9 6 3 * t a n s i g
(−0.0030848*Ds − 0.0017212*Alpha − 0.071306*DT +
0.34076*ER + 0.011644*Db − 2.1228) − 1.3461*
tansig(0.002462*Ds + 1.5202*Alpha − 0.26247*DT +
3.2369*ER − 0.98471*Db + 15.6301) − 1.8572*
t a n s i g ( 0 . 0 0080372*D s + 0 . 0 018985*A l pha −
0 .20589*DT − 0 .67674*ER + 0 .035409*D b +
1.6114) − 1.8427*tansig(−0.0033276* Ds − 0.0016549*
Alpha + 0.49151*DT + 0.54666*ER + 0.025507*
Db−10.5262)−1.8289*tansig(−0.00047678*Ds−0.0018453*A-
lpha − 0.20311*DT + 0.62268*ER − 0.038398*Db +
6.8981) − 0.46146*tansig(0.0041671*Ds + 0.0040608
*Alpha + 0.18664*DT − 2.7405*ER − 0.11086*Db +
3.3236) + 2.0822)

4.1 Discussion on ANN data

Figure 3 shows the training and testing results of proposed
ANN model in comparison with the experimental data. In
Fig. 3, the blue line is a reference line to show the equal
relation between the measured and predicted (ANN) results
and the square markers reveal exact relation between them.
The absolute error (AE) is given by the following equation:

AE ¼ X i Expð Þ−X i Predð Þj j ð4Þ

where BX(Exp)^ and BX(Pred)^ stand for the experimental and
predicted values, respectively. Also, RMSE,MAE, and CF are
given by:

(a) Db=75mm

(b) Db=100mm
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�Fig. 4 Comparison between measured and predicted results for various
Db in dense sand. a Db = 75 mm. b Db = 100 mm. c Db = 125 mm. d
Db = 150 mm
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where N is the number of data. For the proposed ANN model,
the obtained minimum and maximum AE for training data are
0.00003 and 0.2037, respectively. Also, for the testing data,
the obtained minimum and maximum AE are 0.00059 and
0.262, respectively. From these results, it is clear that the pro-
posed ANN model results are close to the experimental with a
minimum error.

4.2 Discussion on measured data

In this section, results of uplift load capacity for a single under-
reamed pile embedded in dense and loose sand are presented.
The measured uplift resistance (Pul) from the laboratory tests
(also called LAB) along with the predicted values from the
ANN approach are tabulated in Tables 2 and 3, respectively.
The dataset is provided for various shaft diameter (Ds), enlarged
base diameter (Db), and L/Db in dense and loose sand are. From
these two tables, it can be found that the ultimate upload capacity
of the pile (Pul) increases as the L/Db and Db increases. These
two terms are dominant factor on the uplift capacity of the under-
reamed pile.Moreover, results reveal that the embedment ratio of
the under-reamed pile is almost the most significant parameters.
For instance, for the ANN model with Db = 150 mm and
Ds = 30 mm, the uplift load capacity of L/Db = 1, 2, 3, 4, and
5, in dense and loose sand were 0.15, 0.67, 1.71, 3.26, and 4.32,
and 0.10, 0.37, 0.83, 1.58, and 2.69 kN, respectively. The under-
reamed piles are very effective way to improve the pullout
forces. The presented data in Tables 2 and 3 is a good evidence
to prove that the new ANN approach method shows very good
agreement with measured data.

4.3 Comparison of ANN model performance

This section illustrates evaluation of ANN performance of the
developed model for calculation of the uplift capacity (Pul).
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�Fig. 5 Comparison between measured and predicted results for various
Db in loose sand. a Db = 75 mm. b Db = 100 mm. c Db = 125 mm. d
Db = 150 mm
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Figures 4 and 5 present basis of comparison where results from
ANN were directly compared and related to the measured data.
The ultimate uplift force (Pul) for measured and predicted model,
based on the change in various key parameters such as shaft
diameter (Ds), under-reamed base diameter (Db), and angle
(α = 30°, α = 45°, and α = 60°) along with different L/Db ratio,
are shown and compared for both of the dense and loose sand.
Hence, it is first a comparison between LAB and ANN outputs
for Db equal to 75, 100, 125, and 150 mm in dense and loose
sand, respectively. A simple regression on the predicted andmea-
sured results for both loose and dense sand presents R-square of
almost 1.0. This reveals the accuracy of the provided ANNmod-
el. The presented model is reliable and simple where excellent
agreement with the measured output in which proved that this
method can be used as reliable and flexible tools to predict the
ultimate uplift capacity (Pul) of under-reamed base piles.

5 Conclusions

In this paper, the effects of shaft diameter, base diameter, angle
of enlarged base, and embedment ratio on performance of the
under-reamed single concrete piles were investigated using
computational intelligence. For this purpose, a particular
ANN (MLP) structure was developed. The main objective
was to estimate the ultimate uplift capacity through the above
input parameters with an optimized ANNmodel. Based on the
obtained results, proposed ANNmodel was able to accurately
predict the output with least error. The maximum AE for the
training and testing data were obtained 0.2037 and 3.5000,
respectively. The findings from this study prove that generated
ANN model can be used as flexible and reliable solution due
to their fast speed and high accuracy; therefore, it can be
applied to predict the experiments precisely.
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