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Extreme learning machine model for water network management
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Abstract A novel failure rate prediction model is developed
by the extreme learning machine (ELM) to provide key infor-
mation needed for optimum ongoing maintenance/
rehabilitation of a water network, meaning the estimated times
for the next failures of individual pipes within the network.
The developed ELM model is trained using more than 9500
instances of pipe failure in the Greater Toronto Area, Canada
from 1920 to 2005 with pipe attributes as inputs, including
pipe length, diameter, material, and previously recorded fail-
ures. The models show recent, extensive usage of pipe coating
with cement mortar and cathodic protection has significantly
increased their lifespan. The predictive model includes the
pipe protection method as pipe attributes and can reflect in

its predictions, the effect of different pipe protection methods
on the expected time to the next pipe failure. The developed
ELM has a superior prediction accuracy relative to other avail-
able machine learning algorithms such as feed-forward artifi-
cial neural network that is trained by backpropagation, support
vector regression, and non-linear regression. The utility of the
models provides useful inputs when planning and budgeting
for watermain inspection, maintenance, and rehabilitation.

Keywords Water pipe network . Pipe failure . Extreme
machine learning .Management tool

1 Introduction

Many pipes within water distribution networks in large cities
around the world are in their final stages of design life. These
aged infrastructures are prone to frequent major failures and/or
leaks that may lead to water losses, interruption in delivery of
essential service, and allow contaminated water ingress
resulting in hazardous exposure to water consumers. The on-
going cost of repair of the aging water pipe network has
reached billions of dollars per year in the North American
cities alone [1, 2].

In response, many researchers have developed watermain
failure models to predict potential failures and help munici-
palities forecast the cost of maintenance of water networks.
Nishiyama and Filion [3] reviewed several existing watermain
failure models and reported that all models have low coeffi-
cient of determination. Datasets of pipe failures used in these
studies were not large and ranged from 50 to 2000 break
instances.

Kleiner et al. [4] was one of the first studies to use machine-
learning techniques for prediction of the next pipe break fail-
ure. They used the feed-forward backpropagation artificial
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neural networks that trained by backpropagation (FFBP-
ANN) for deriving complex relations between variables.
However, the main disadvantage of traditional ANN methods
is that often the solution is caught in a local minimum not
reaching the optimum solution. As an alternative, the extreme
learning machine (ELM) calculates optimum weights in a sin-
gle hidden layer feed-forward artificial neural network [5].
Hence, ELM-ANN differs from the traditional FFBP-ANN
method, as the optimum weights in the network are calculated
analytically, resulting in high performance capacity and fast
training for large data sets [6–18]. However, although having
many desirable features, the authors have not identified any
application of ELM-ANN to water pipe networks.

It has been a challenge for many municipalities to gain
knowledge about the frequency and expected timing of future
pipe failures. While general guidelines on expected service
life gathered from the literature play a major role in develop-
ing asset management plans, decision makers need more ac-
curate tools to help provide specific information on the ex-
pected cost to maintain/rehabilitate water pipe networks. On
this basis, the extreme learningmachine (ELM) is described in
a novel application to predict time to failure of distribution
pipes, including important attributes such as the pipe protec-
tive coatings effect, material of pipes, length, and diameter. It
is demonstrated how the new evolutionary model can serve as
an alternative to ANN and other machine learning models for
application on prioritizing rehabilitation of water pipe
networks.

2 Materials and methods

2.1 Extreme learning machine

The ELM is a training method for a single hidden layer neural
network. It has many advantages over a traditional
backpropagation (BP) algorithm. In a BP algorithm, a gradient
descent-based learning method, each network weight or bias,
is determined by tuning. Due to the nature of tuning, the learn-
ing speed in BP is slow and has a tendency to converge to
local minima. Determining the network parameters such as the
hidden neuron, transfer function, training method, and perfor-
mance criteria are other disadvantages of BP [12]. The ELM
has three layers, one input layer, one output layer, and a hid-
den layer (Fig.1). These layers form a single hidden layer
forward network where linear algebra is utilized to solve the
equations for achieving optimal weights in the output layer. In
the ELM, weights of the input layer are randomly assigned.
The output weights are calculated analytically using a pre-
defined training procedure. Based on the calculation scheme

of weights and biases in ELM, its training stage is extremely
fast and its generalization capacity is high [5, 19].

The output of a single hidden layer feed-forward neural
network can be calculated by:

y ¼ ∑
m

j¼1
β jg ∑

n

i¼1
wi; jxi þ bj

� �
ð1Þ

where y is output of the network, x shows inputs of
network, n represents the features and equal to the num-
ber of input variables, m is the number of the hidden
layer neurons and equal to the output variables of the
problem considered, wi , j denotes input weights that con-
nect the ith neuron of the input layer of the neural net-
works model to the jth neuron of the hidden layer, βj is a
coefficient that connects the jth neuron of the network
hidden layer to the related neuron in the output layer, bj
symbolizes biases of the neurons in the hidden layer, and
g( ) indicates the activation function. The output of a
single hidden layer feed-forward neural network is cal-
culated in two stages. Initially, a single hidden layer net-
work is formed based on user-defined network parame-
ters. These parameters are equal to the number of neu-
rons in the hidden layer linked by the transfer function.
The number of neurons that exist in the hidden layer (m)
is chosen such that it is less than or equal to the number
of data observations. Moreover, the activation function
(g( )) can be any piece of infinitely differentiable func-
tion [5]. Following the formation of the neurons in the
hidden layer, the weights in the output layer are calcu-
lated. This is achieved by arbitrary assignments of the
weights wi , j in the input layer and the biases bj.

Thus, Eq. (1) can be written as follows:

Hβ ¼ y ð2Þ
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Fig. 1 Basic structure of a single-layer ELM network



where H defines the ELM feature mapping matrix [5]:

H wi; j; b j; xi
� � ¼

H1;1 ⋯ H1;m

⋮ ⋱ ⋮
Hn;1 ⋯ Hn;m

2
4

3
5

¼
g w1;1x1 þ b1
� �

⋯ g w1;mxm þ bm
� �

⋮ ⋱ ⋮
g wn;1xn þ b1
� �

⋯ g wn;mxm þ bm
� �

2
4

3
5 ð3Þ

here, y and β can be defined as:
y ¼ y1½ y2 ⋮ ym� and β ¼ β1½ β2 ⋮ βn� (4)
The weights βj are found by minimizing error in the ap-

proximation by the Moore–Penrose generalized inverse meth-
od [20] such that:

β̂ ¼ Hþy ð5Þ

whereH+ symbolizes the generalized Moore–Penrose inverse
matrix of H. Huang et al. [5] showed that relying only on
determining optimal output weights is sufficient to achieve
high accuracy and calculating the output weights instead of
tuning, is the fundamental rationale behind the speed and the
generalization capacity.

Three more versions of the ELM are employed in this
study; backpropagation ELM (tELM), linear regression
ELM (ELMr), and self-adaptive ELM (SaELM). In tELM,
the output weights are calculated by tuning, while the weights
in the input layer and related biases are assigned randomly
[12]. The weights in the output layer are optimized by back-

propagating the mean square error (MSE ¼ 1
2 ∑

N

i¼1
di−yið Þ 2 )

and changed by:

Δβ j;k ¼ η∑N
i¼1 di−yið ÞH j ð6Þ

where N indicates the dataset length, η shows the learning rate
parameter, and di and yi are the desired and actual outputs,
respectively. In ELMr, the weights in the output layer are
calculated by linear regression and an error term is added such
that Eq. (2) is written as follows:

y ¼ Hβ þ ε ð7Þ

where ε is an error matrix. On the other hand, the SaELM
employs the differential evolution (DE)method for optimizing
network parameters [19]. In the SaELM method, the self-

adaptive DE is utilized to determine the input weights and
hidden node biases with the ELM method being used to de-
velop the output weights. Initially, the self-adaptive DE algo-
rithm is used to generate random NP vectors θk ,G as popula-
tions in the first generation. In the Gth generation, the ith
parameter vector can be written as:

θkG ¼ θ1kG; θ
2
ikG;…; θDkG

� � ð8Þ

where i = 1, 2, …, NP, and vectors are generated randomly
through the following:

θk;G ¼ θmin þ rand 0; 1ð Þ: θmax−θminð Þ ð9Þ

where

θmin ¼ θ1min; θ
2
min;…; θDmin

� �

θmax ¼ θ1max; θ
2
max;…; θDmax

� �
8<
: ð10Þ

In this equation, θmin and θmax are the bounds of the con-
sidered parameters.

The weight matrix for the output is determined by the fol-
lowing equation:

βk;G ¼ H‐1
k;GT ð11Þ

whereH‐1
k;G = the generalized inverse ofHk ,G and can be writ-

ten as:

Hk;G ¼
g a1; k;Gð Þ; b1; k;Gð Þ; x1
� �

⋯ g aL; k;Gð Þ; bL; k;Gð Þ; x1
� �

⋮ ⋱ ⋮
g a1; k;Gð Þ; b1; k;Gð Þ; xN
� �

⋯ g aL; k;Gð Þ; bL; k;Gð Þ; xN
� �

2
4

3
5

ð12Þ

In addition, the root mean squared error (RMSE) of each
individual is calculated as:

RMSEk;G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
∑
L

j¼1
β jg a j; k;Gð Þ; bj; k;Gð Þ; xi

� �
−ti

					
					

m� N

vuuuut ð13Þ

The population vector with the best RMSE is stored
in the first generation. In subsequent generations, the
parameter vectors are evaluated using the following
equation

θk;Gþ1 ¼
uk;Gþ1 if RMSEθk;G−RMSEθk;Gþ1 > ε:RMSEθk;G

uk;Gþ1 if RMSEθk;G−RMSEθk;Gþ1

		 		 < ε:RMSEθk;G and βuk;Gþ1

			 			 < βθk;

			 			
θk;G else

8><
>: ð14Þ
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In the self-adaptive DE algorithm utilized herein, the trial
vectors are generated by using one of the following four mu-
tation strategies [21]:

Strategy 1:

νi;G ¼ θri1;G þ F: θri2;G−θri3;G

 �

ð15Þ

Strategy 2:

νi;G ¼ θri1;G þ F: θbest;G−θri1;G

 �

þ F: θri2;G−θri3;G

 �

þ F: θri4;G−θri5;G

 �

ð16Þ

Strategy 3:

νi;G ¼ θri1;G þ F: θri2;G−θri3;G

 �

þ F: θri4;G−θri5;G

 �

ð17Þ

Strategy 4:

νi;G ¼ θi;G þ F: θri1;G−θi;G

 �

þ F: θri2;G−θri3;G

 �

ð18Þ

whererik are integers obtained randomly within the range [1, 2,
…, NP] interval. The strategy choice at each generation is
accomplished according to a probability procedure Pl,G. The
Pl,G is the probability that the lth strategy is selected in theGth
generation. In the developed model, l can be 1, 2, 3, or 4. The
Pl,G is updated such that ifG is less than or equal P (number of
generated vectors in each population), the four considered
strategies have equal probabilities and Pl,G = 0.25. Else, if G
is bigger than P, then Pl,G is obtained from the following
equation:

Pl;G ¼ Sl;G
∑4

l¼1Sl;G
ð19Þ

Where

Sl;G ¼ ∑G−1
g¼G−Pnsl;g

∑G−1
g¼G−Pnsl;g þ ∑G−1

g¼G−Pnf l;g
þ ε ð20Þ

where nfl , g is the trial vectors that are entered in the coming
generations, nsl , g is the number of trial vectors that are
discarded from the coming generations, and ε is a positive
constant to prevent the zero improvement rate. The F and
CR parameters are chosen for each target vector by selection
from the normal distribution function. The generation of the
trial vectors for the next generation is accomplished by using
the θk ,G + 1 equation that is presented before. In the SaELM,
the evolution continues until the specified fitness is achieved.

The initialization step is similar in ELM, tELM, and
ELMr, but in ELM, tELM, and ELMr, the output
weights are calcula ted by the Moore–Penrose

generalized inverse method, backpropagation, and linear
regression, respectively (Fig. 2).

2.2 Procedure for predictive model development

The following steps are followed for the predictive model
development using ELM:

1. Non-dimensionalize the input and output variables
2. Specify the number of network features (input variables)
3. Specify the number of neurons in hidden layer (output

variables)
4. Define the network parameters as follows: population

size, weights, mutation rates, crossover constant, hidden
layer neurons biases, and the termination criteria

5. Choose an activation function
6. Initialize the problem by randomly generating the pa-

rameters in the hidden node aj and bj for j = 1 , … , J
7. Construct the H(x)
8. Train the network by calculating the output weights

using either the Moore–Penrose generalized inverse
method (ELM), or backpropagation (tELM) and linear
regression (ELMr), or by DE (SaELM)

9. The trained network weights and biases are utilized to
generate the ELM model

10. The developed ELM model is scored against selected
error indicators. These indicators are the square of the
Pearson product moment correlation coefficient (R2), the
root mean square error (RMSE), coefficient of efficiency
(Esn), and index of agreement (D). The indicators are
calculated by the following equations [22]:

Ri
2 ¼

1
n ∑

n

j¼1
T j−T


 �
P ijð Þ−P


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 T j−T

 �2.

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 P ijð Þ−P

 �2.

n

r
0
BBB@

1
CCCA

2

ð21Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E P−yð Þ2
h ir

ð22Þ

Esn ¼ 1−
∑
n

i¼1
Ti−Pið Þ2

∑
n

i¼1
Ti−Tð Þ2 (23)

D ¼ 1−
∑
n

i¼1
Ti−Pið Þ2

∑
n

i¼1
Pi−T
			 			þ Ti−T

			 			
 �2 ð24Þ

where P ¼ 1=n∑n
j¼1P j, P is the predicted value, and y is the

observed value.
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11. The performance of the developed ELM is validated by
the following measures as utilized by Sattar [23] and
Sattar and Gharabaghi [24]:

k ¼ ∑n
i¼1 Ti � Pið Þ

.
P2
i or k

0 ¼ ∑n
i¼1 Ti � Pið Þ

.
T2
i ≈1 ð25Þ

m ¼ R2−R2
O

� �
=R2 and n ¼ R2−R02

O

� �
=R2 < 0:1 (26)

Rm ¼ R2 � 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−R2

O

		 		q
 �
> 0.5 (27)

where k and k’ are the regression line gradients for observed
versus predicted values, m and n are the regression line coef-

ficient of determination, R2
O and R

02
O are the predicted and

observed values correlation coefficients.

2.3 2.3. Uncertainty analysis of predictions of ELMmodels

Watermain failures are not a uniform process with constant
rate but they are based on various parameters that lead to
substantial variations between water distribution networks
[25]. Therefore, it is expected that there will be some uncer-
tainties in the predictions of any developed model. The avail-
ability of a watermain failure prediction model in addition to
the expected uncertainty range of predictions would be a valu-
able tool for decision makers. Many recent models are report-
ed [26–30] to have less uncertainty than other models. This
can be accomplished by using the developed ELM models
with the Monte Carlo simulation (MCS) method. The MCS
is an easy to implement numerical method to determine the
uncertainty of a model due to the combination of uncertainty
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of various inputs. The MCS is capable of handling various
probability distribution types of uncertain inputs [23, 31].
For running a stochastic analysis using MCS, thousands of
realizations are needed and in each realization, the ELMmod-
el is used to predict a single deterministic output. Therefore,
there are thousands of outputs which can be used to construct
an output distribution and calculate the uncertainty associated
with a parameter’s median. The mean absolute deviation
(MAD) is calculated as follows:

MAD ¼ 1

250000
∑

250000

i¼1
Pi−Median Pð Þj j ð28Þ

where the number of Monte Carlo realizations is taken
250,000 [1] Afterwards, the predictive model uncertainty
can be calculated as [32]:

Uncertainty% ¼ 100�MAD
Median Pð Þ ð29Þ

After calculating the prediction uncertainty, the least
square linearization technique is used to determine the
influence of various parameters on the output (details
can be found in [22]). This is achieved by performing
regression between the model output and each variable
deviation from the mean.

y ¼ w1Δv1 þ w2Δv2 þ…þ wiΔvi þ b ð30Þ

where y is the time to the next pipe failure; vi are the pipe
attribute inputs; Δvi = vi −mvi is the difference between vi,
the random pipe attribute input i, and the mean value of all
specific pipe attribute samples mVi. Initially, random samples
of input variables are used as inputs to the model yielding a
single output y. This output (time to watermain failure for a
particular pipe) is calculated for m Monte Carlo realizations.
Using linear regression analysis, the regression coefficients wi

are calculated between the watermain time to failure and the
input variables. Thus, the influence of each input variable i
(SVi ) can be expressed as:

SVi ¼ 100� w2
i σ

2
ΔVi

.
∑
n

i¼1
w2
i σ

2
Δvi

ð31Þ

where σ2
Δvi

is the variance of ΔVi, and n is the number of

random samples.

3 3. Results and discussions

3.1 Pipe failures in Greater Toronto Area

The Greater Toronto Area has more than 6000 km of drinking
water network. The average age of the pipes is 50 years.
Seventeen percent of the network is reaching 80 years in age

and 6.5% reaching more than 100 years. The data on
watermain failure has been continuously recorded by the dis-
trict of Scarborough, in the eastern part of the Greater Toronto
Area. The data covers pipe failures from 1962 to 2005 with
multiple breaks of the same pipe documented up to the 10th
break for some pipes. The database consists of important data
on pipe failures including the location of the failure, pipe
length and diameter, and year of construction. The database
includes important information regarding pipe coating or ca-
thodic protection and year and the date of successive pipe
failures. The pipe network of the district of Scarborough in
Greater Toronto has 6342 watermains and has a cumulative
length of more than 1000 km and installation began in 1905.
The recording of pipe failures started in the year 1962 and
contains data on successive breaks in an individual pipe till
10th break. The pipe material is either ductile iron (DI), cast
iron (CI), or asbestos cement (AC). Pipe length ranges from
0.50 to 1.6 km and diameter from 30 to 500 mm. There are
3497 pipes that did not fail before, while there are 2845 pipes
that have failed at least one time.

The majority of the Scarborough network pipes are cast
iron (CI), with almost 60% of the network, and 30% for duc-
tile iron (DI) and 10% for asbestos cement (AC). Therefore,
the analysis of failures for cast iron and ductile iron pipes
would cover 90% of the network. The statistics of the pipe
failures are presented in Table 1.

Figure 3 shows the failure rates of watermains made of DI
and CI normalized by specific pipes’ length. The normalized
pipe failure rate for the CI pipes is relatively higher than that
for the DI with an average value of 0.32 for CI compared to
0.14 for DI. A similar value of normalized failure rate of 0.10

Table 1 General statistics of pipe failures database

Attributes Asbestos
cement (AC)

Cast iron
(CI)

Ductile iron
(DI)

Total number of pipes 463 3793 1747

Construction year 1950–1991 1921–2000 1905–1996

Pipe length (m) 1–831 0.3–978 0.3–1634

Average pipe length (m) 194 153 171

Total pipe length (km) 90 582 299

Diameter (mm) 150–400 42–1500 100–600

Number of pipes in
sand/gravel

173 589 209

Number of pipes in silt/clay 290 3204 1538

Number of pipes with CP 9 514 785

Number of pipes with CML 0 1801 137

Number of pipes with zero
failures

337 1530 1300

Number of pipes with at least
one failure

126 2263 447

Number of pipe failures in
total

248 8204 1454
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for DI has been reported in Canada [33]. While both pipe
types experienced an increase in normalized failure rate with
age, the gradient was steeper for DI pipes within the first
10 years after installation and remained steady afterwards until
1990. Moreover, a similar trend of decrease in normalized
failure rates is observed for both pipe types starting from
1990, reaching to normalized rates of 40 years ago in 1960.

The city of Scarborough started implementing cathodic
protection (CP) in 1986; this was accompanied by the appli-
cation of cement mortar lining (CML) the following year. The
CML process involves the cleaning of the rust from the inside
of a pipe and applying a cement coating layer on the internal
pipe surface. On the other hand, the CP attaches zinc anodes to
the metallic surface of the pipes. The number of watermain
failures started to decrease starting from 1990 after
implementing these protection methods as shown in Fig. 4.
The findings also show that these protection techniques are
more effective in decreasing the DI pipe failure as compared
to CI pipes with 80 and 60%, respectively.

Figure 5 shows the number of watermain failures per kilo-
meter for DI and CI pipes versus the number of multiple pipe
breaks for each pipe. The first pipe break is denoted by B1 and
the second break by B2 and so forth. It is observed that the
circumferential failure is the main failure type for CI pipes,
while the hole failure is the main in DI pipes constituting more
than 90% of the failure types in the network. The CI pipes tend
to show higher failure rates in winter months, January and
February [29, 34]. This is due to the external applied circum-
ferential pressure exerted on the pipe circumference under the
effect of frozen ground, where pipes tend to break more easily.
Unlike the nonhomogeneous CI pipes, the DI pipes can resist
externally applied pressure and thus experience fewer circum-
ferential failures. DI pipes tend to break in localized areas
caused by corrosion pitting and weakening the pipe material
[34].

Considering the average age of various pipes when they
first failed (Fig. 6), it can be seen that the DI has a lower age

at first failure than that of the CI. The DI pipe average age of
16 years was recorded versus 22 years for CI pipe. Folkman
[33] and Rajani et al. [34] reported similar findings in other
networks in the Greater Toronto. This finding is due to the
nature of the soil around the pipes that triggers the pipe cor-
rosion that mainly affects DI pipes leading to pitting and hole
failures. This average age at the first recorded failure implies
that the soil has moderate corrosion [34]. Figure 6 also shows
that the average time between subsequent failures for CI is
2.5 years, which is relatively larger than that of 1 year for
DI. This indicates that, when a DI breaks for the first time,

Neural Comput & Applic (2019) 31:157–169 163

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

# 
of

 B
re

ak
s /

 Y
ea

r /
 K

ilo
m

et
er

Year

DI Pipes CI Pipe

Fig. 3 The total number of DI and CI pipe failure rates per kilometer in
Scarborough network

0

30

60

90

120

150

180

0

20

40

60

80

100

120

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Le
ng

th
 (k

m
)

N
um

be
r o

f B
re

ak
s p

er
 Y

ea
r

Year

Break rate Pipes with CP and CML protec�on

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Le
ng

th
 (k

m
)

N
um

be
r o

f B
re

ak
s p

er
 Y

ea
r

Year

Break rate Pipes with CP and CML protec�on

a) 

b) 

Fig. 4 Impact of CML and CP on the total number of watermain failures
each year in Scarborough for a DI pipes and b CI pipes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

#
 o

f 
p

ip
e 

fa
il

u
re

s 
/ 

k
m

Number of Subsequent Pipe Breakages

CI - CIRC Failure
DI - HOLE Failure

Fig. 5 Number of pipe failures per kilometer for main failure types in
Scarborough network



the frequency of subsequent breaks per year exceeds that of a
CI in the same network.

3.2 Development of new predictive equation

For pipe failure rate prediction, the objective is to construct an
intelligent model employing the ELM algorithm that can per-
form better than available prediction models. The instances of
watermain failures have been collected using pipes installed
from 1946 up to 2005. Pipe failures are collected from the
recorded dataset as per Harvey et al. [35–37] and Sattar
et al. [1]. A total of 9508 watermain failures have been col-
lected including all pipes that have failed at least one time
during the period where data were collected. The watermain
pipes types with their attributes are presented in Table 2.

According to Sattar et al. [1], the watermain failure is a
function of the following variables:

Watermain time to failure ¼ f L;D;NB;CML;CPð Þ ð32Þ
where L is the pipe length, D is the pipe diameter, NB is the
number of previous pipe breaks, CML is the cement lining

Table 2 Pipe-specific attributes
used in ELM model development Material Attribute Type Range

Asbestos cement (248 instances of failure) Diameter Numeric 150–400 mm

Length Numeric 18.79–828.55 m

Construction year Numeric 1952–1984

Soil type Nominal 0—Sand/gravel (109
instances)

1—Silt/clay (139 instances)

Previous failures Numeric 0–9 Failures

Time to failure Numeric 0–48 years

Cast iron (7795 instances of failure) Diameter Numeric 50–600 mm

Length Numeric 1.82–970.29 m

Construction year Numeric 1946–1985

Soil type Nominal 0—Sand/gravel (598
instances)

1—Silt/clay (7197 instances)

CML protection Nominal 0—no CML (7414 instances)

1—CML (381 instances)

Cathodic
protection

Nominal 0—No CP (7744 instances)

1—CP (51 instances)

Previous failures Numeric 0–9 Failures

Time to failure Numeric 0–56 years

Ductile iron (1453 instances of failure) Diameter Numeric 100–400 mm

Length Numeric 1.98–1260.10 m

Construction year Numeric 1957–1985

Soil type Nominal 0—Sand/gravel (99 instances)

1—Silt/clay (1354 instances)

CML protection Nominal 0—No CML (1446 instances)

1—CML (7 instances)

Cathodic
protection

Nominal 0—No CP (1377 instances)

1—CP (76 instances)

Previous failures Numeric 0–9 Failures

Time to failure Numeric 0–32 years
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protection, and CP is the cathodic protection. These are con-
sidered the input variables to the ELM network as shown in
Fig. 7. The pipe failure recorded dataset has been split into
training and test sets. Of the 9508 pipe break instance, 7131
(75%) were used to train the ELM network and 2377 (25%)
were used to test and validate the developed model. Fourfold
cross validation was utilized to validate the developed ELM.

3.3 Finding optimal ELM parameters

The optimum ELM network parameters can be grouped in the
hidden layer neurons and the transfer function. Choice of such
parameters is based on the user experience and the statistical
performance of the developed model. The increase in the
number of neurons increases the complexity of the developed
model and, many times, it is at the expense of accuracy. The
ELM models for failure time of AC and DI pipes were found
to give the best results with a number of neurons less than 20,

while it required 50 neurons to produce the best results for DI.
Regarding the transfer function, the hard limit function gave
the least accurate ELM models, while the triangular basis
function gave the best results. Other transfer functions such
as the sin, the sigmoid, and the radial basis gave comparable or
better results than the hard limit function. The chosen ELM
model for predicting failure time of AC pipes had five neurons
and based on the radial basis transfer function. However, the
ELM models for predicting failure time for CI and DI pipes
were based on the triangular basis transfer function with 50
and 20 neurons, respectively.

The developed ELM models performed well (Table 3),
with R2 of 0.46, 0.43, and 0.64 for AC, CI, and DI, respec-
tively in training, and 0.43, 0.41, and 0.63 in testing. Testing
R2 and RMSE were based on fourfold cross validation where
the ELM model is validated on the testing dataset (25% of
total data) and then validated on the other three equal sets
(each 25%). The RMSE associated with ELM models range

Table 3 Statistics of developed
ELM and ELM variants on
training and testing datasets

Pipe type Error terms ELM SaELM tELM ELMr

Train Test Train Test Train Test Train Test

AC R2 0.459 0.388 0.435 0.368 0.446 0.377 0.403 0.304

RMSE 0.173 0.187 0.180 0.192 0.175 0.183 0.189 0.203

CI R2 0.426 0.418 0.416 0.381 0.399 0.366 0.384 0.377

RMSE 0.134 0.135 0.148 0.156 0.157 0.177 0.151 0.169

DI R2 0.646 0.633 0.635 0.587 0.653 0.587 0.625 0.567

RMSE 0.085 0.087 0.090 0.098 0.092 0.099 0.099 0.117
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from 0.09 to 0.17, which are low and similar for both training
and testing datasets. The R2 and RMSE for training and testing
cases are low and also similar for training and testing. These
values indicate that the ELM model has an acceptable predic-
tive performance. Other variants of the ELM have also been
used. Accuracies obtained by SaELM, tELM, and ELMr are
as shown in the same table. It is observed that the ELM scored
the highest R2 values and lowest RMSEs. For AC pipes, the
tELM had the closest score to the ELM model, while the
SaELM had close values to the ELM model in the case of
CI pipe. In the case of DI pipe, tELM had higher R2 than the
chosen ELMmodel. On the other hand, the Esn andD showed
very good values for the ELM models compared to ANN and
other methods with values of 0.44 (Esn) and 0.82 (D) for AC,
DI, and CI pipes.

Further testing and validation for the developed ELM
models has been performed with results presented in
Table 4. While the ELM model is considered a good one if
it satisfied, one or more of the required validation conditions,
it is observed that the developed ELM models for all pipe
types satisfied all of the proposed tests confirming they have
good prediction ability.

Consider now the performance of the developed ELM
models in comparison with other machine learning methods,
namely artificial neural networks (ANN), support vector ma-
chines (SVMs), and non-linear regression (NNR), as present-
ed in Table 5. The developed ELM models show better per-
formance than other machine learning models applied on the
same dataset in terms of not only R2 and RMSE but also,
process time. All tests were completed in MATLAB with an
Intel Core i7-2600 CPU, 3.4 GHz, 4 GB RAM, PC. SVM
analysis was performed using the toolbox PrTools (www.
prtools.org).

3.4 Sensitivity analysis

Further analysis is performed to test the sensitivity of various
input parameters to the pipe failure time prediction ELMmod-
el. These inputs are the L,D, CP, CML, P, andNB. These input
parameters are fitted to probability distribution and unreal var-
iables have been removed by truncating distributions. The
truncated distribution limits have been constructed from the
current dataset values. Various distributions for input variables

are ranked based on the Anderson Darling and chi-squared
tests [31]. This resulted in using the exponential distribution
for modeling L andD, and the Poisson distribution for CP and
CML. Following the calculation of various realizations for
time to failure, the multiple regression analysis is used to
construct the following equation:

T f ¼ w1ΔLþ w2ΔDþ w3ΔCP þ w4ΔCML

þ w5ΔNB þ b ð33Þ

Results showed that using the developed ELMmodels, the
predictions of time to next failure shows aMAD of 3, which is
36% of the median value. This is an acceptable uncertainty in
model predictions according to Verbeeck et al. [38] and Sattar
[23], with values up to 40% accepted.

Using the least square linearization to determine the param-
eter sensitivity showed the various input parameters impor-
tance (Table 6). The highest influential parameter on the
ELM model prediction is shown to the number of previous
pipe breaks. This agrees with what has been reported by
Goulter and Kazemi [39], Asnaashari et al. [40–42], and
Sattar et al. [1], where availability of previous failures in-
creased pipe failure rates over time. Pipe diameter came

Table 5 Statistics of developed ELM model versus some popular
machine learning machines

Pipe type Measure ELM ANN SVM NNR

AC R2 0.46 0.42 0.08 0.17

RMSE 0.17 0.24 0.24 0.26

Esn 0.51 0.48 0.10 0.15

D 0.85 0.77 0.08 0.11

PC time (s) 0.001 0.20 1.40 0.01

CI R2 0.43 0.40 0.21 0.18

RMSE 0.13 0.14 0.16 0.19

Esn 0.46 0.44 0.21 0.20

D 0.78 0.81 0.44 0.37

PC time (s) 0.01 0.17 1.67 0.01

DI R2 0.65 0.61 0.33 0.42

RMSE 0.09 0.11 0.13 0.12

Esn 0.68 0.59 0.32 0.37

D 0.85 0.80 0.50 0.65

PC time (s) 0.002 0.07 2.64 0.009

Table 4 External validation for developed ELM models

Model K
(0.85 < K < 1.15)

K′
(0.85 < K
′ < 1.15)

m
(m < 0.1)

n
(n < 0.1)

AC-ELM-Tf 0.80 0.91 −0.49 −0.42
CI-ELM-Tf 0.80 0.91 −0.49 −0.42
DI-ELM-Tf 0.77 0.76 −0.25 −0.18

Table 6 Importance of
various pipe parameters
as predicted by ELM
model

Attribute CI DI AC

Length 2.1 0.30 0.75

Diameter 28.25 16.78 0.21

CML 0.12 0.63 3.70

CP 0.42 0.30 3.09

NB 69.11 81.99 92.25
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second to NB with more influence on time to pipe failure than
pipe length. Protection methods had less effect on the output
uncertainty. This is confirmed by results that also show that
the CP protective effect is more pronounced than that for
CML for different pipe types. These outputs are generally in
agreement with Harvey et al. [36] and Sattar et al. [1].

3.5 Parametric analysis of developed ELM model

This section presents the parametric analysis for the developed
ELM model. This parametric analysis helps to determine the
behavior of the model and influence of various input param-
eters, mainly pipe diameter, length, and previous failures, on
the predicted time to failure. Figure 8 shows the time to pipe-
line failure as predicted by the ELM model with the ratio of
diameter and length for the three types of pipes, CI, DI, and
AC. The predicted time to failure of a pipe is observed to
decrease with longer pipes than for shorter ones for three types
of pipes. This is due to the fact that longer pipes are subject to

various possible external conditions that can affect their integ-
rity such as traffic loads [43]. The same finding has been
reported by Lei [44], Wang et al. [45], and [1, 46–48].
Predicted time-to-failure is higher for cast iron pipes than duc-
tile iron and asbestos cement pipes. This is attributed to the
non-homogeneity of CI pipe material, the same fact that
makes this type of pipes prone to failures, unlike DI and
AC. Furthermore, ELM model predictions showed that the
time to next failure is directly proportional to the pipe diame-
ter. This has been confirmed by Rostum [43] who related the
larger time to failure with higher pipe diameter. He attributed
this to reduced pipe strength and less reliable joints of smaller
diameter pipes.

Predictions of the ELM are consistent with the historical
trends observed in the city dataset. A significant increase in
the next time of failure of a pipeline is predicted with the
application of one or two types of pipe protection for three
types of pipes. The CP protection is shown to be more effec-
tive at increasing the time of pipes before the next failure than
the CML protection. This is true for pipe types DI and CI
where the CP protection increased the time to next failure by
more than 15% in case of CML protection. However, this is
not true for the AC pipes where the application of CP showed
the same effect as CML. In all pipe types, the effects of CP and
CML protection is additive leading to an increase in the time
to next failure. This specific behavior is related to the studied
network since various impacts of CP and CML protection
have been reported for other networks under different condi-
tions of soil corrosiveness, temperature, and installation
methods that have impacts on the coatings [34].

4 Conclusions

In this study, the extreme learning machine method has been
used on more than 9500 pipe failure instances in the city of
Scarborough, Canada to develop a new model that can predict
the time to next watermain failure. The developed ELMmodel
indicated results with coefficient of determination ranging
from 0.67 to 0.82. This was achieved with a maximum of 50
neurons in the network hidden layer and the triangular basis
function. Other variants of the ELM modeling methods were
attempted namely tELM, ELMr, and SaELM. Error results
showed the superiority of the ELM models over its variants
on the study case. The ELM model has the advantage of in-
cluding the type of protection of pipes and incorporates its
influence on the predicted results in addition to pipe diameter,
length, and previous failures. The number of previous pipe
breaks is shown to be the most influential input parameter to
the ELM predictions followed by pipeline diameter.
Moreover, the CP pipe protection was found to be more ef-
fective in protecting pipes and decreasing their failure rate.
The ELM model can be used as a tool to help decisions on
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optimum pipe inspection and maintenance schedule to proac-
tively control the rising maintenance cost of the aging infra-
structure and also improve the reliability and safety of the
essential service to the public.
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