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Abstract The present study investigate the numerical solu-
tion of nonlinear singular system represented with sixth
Painlev́e equation by the strength of artificial intelligence
using feed-forward artificial neural networks (ANNs) opti-
mized with genetic algorithms (GAs), interior point tech-
nique (IPT), sequential quadratic programming (SQP), and
their hybrids. The ANN provided a compatible method for
finding nature-inspired mathematical model based on unsu-
pervised error for sixth Painlev́e equation and adaptation
of weights of these networks is carried out globally by
the competency of GA aided with IPT or SQP algorithms.
Moreover, a hybrid approach has been adopted for better
proposed numerical results. An extensive statistical analy-
sis has been performed through several independent runs
of algorithms to validate the accuracy, convergence, and
exactness of the proposed scheme.
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1 Introduction

The second order ordinary differential equations (ODE) has
been studies by Painlev́e, Gambier, and many researchers
later on. The Painlev́e equations were discovered by
Painlev́e [1] and Gambier [2]; they found six new functions
which were defined by nonlinear ordinary differential equa-
tions depending on complex parameters this result led to the
problem of finding new function which could be defined by
nonlinear ODEs like the Painlev́e equations, while study-
ing a problem posed by Picard [3]. Problem was about the
second-order ordinary differential equations of the form,

d2u

dx2
= �

(
du(x)

dx
, u(x), x

)
, (1)

where � is rational function in du
dx
, algebraic in u and ana-

lytic in x with the Painlev́e property, i.e., the singularities
other than poles of the solutions are independent of the inte-
grating constant and so are dependent only on the equation.
The differential equations, possessing Painlev́e property, are
called Painlev́e type equations. Painlev́e showed that within
a Mobius transformation, there are fifty canonical equations
[4] of the form (1). Among the 50 equations, the 6 were
well known. Remaining 44 are integrable in terms of known
elementary functions and they are reducible to one of these
6 equation. These six equations are commonly known as
Painlev́e equations and denoted by PI-PVI. Although the
Painlev́e equations were discovered frommathematical con-
siderations, they occur in many physical situations; plasma
physics, statistical mechanics, nonlinear waves, quantum
gravity, general relativity, quantum field theory, nonlinear
optics, and fiber optics. Painlev́e equations have attracted
much interest as reduction of the soliton equations which
are solvable by inverse scattering transformation [5–7].
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The general solution of Painlev́e equations are called
Painlev́e transcendent. However, for certain values of
parameters, PI-PVI having rational solutions and solutions
are expressible in terms of special functions [8–10]. The PII-
PVI expression admitted Backlund transformations which
relate one solution to another solution of the same equation
but with different values of parameters [11, 12]. Painlev́e
equations can be written as Hamiltonian systems [13, 14].
Painlev́e equations appear on the compatibility conditions
of linear system of equation, Lax-pairs, possessing irregular
singular points. By using Lax-pairs, one can find the gen-
eral solution of a given Painlev́e equations as the Fredholm
integral equation.

At the end of the nineteenth century, it was proposed
that new transcendental functions could be found as solu-
tions of ordinary differential equations (ODEs). For those,
a classification process was undertaken, which it was fore-
seen would proceed order by order of ODEs having what is
today known as the Painlev́e property. An ODE is said to
have the Painlev́e property if its general solution is free of
movable branched singularities (movable means, the loca-
tion of the singularity depends on initial conditions). This
is the base of discovery of the well-known six Painlev́e
equations [4, 15–17], which did indeed define new transcen-
dental functions. However, this classification process then
stalled somewhat, with only partial classifications being
undertaken at third order [18–22], and no new transcen-
dent being found. At fourth order, even the classification of
dominant terms for the polynomial case was left incomplete
[23]. Interest in the six Painlev́e equations was reignited by

the work of Ablowitz et al. [24, 25], they found that simi-
larity reductions of completely integrable partial differential
equations (PDEs) gave rise to ODEs with the Painlev́e prop-
erty. In many cases, one or other of the Painlev́e equations
themselves.

Airault [26] made the next step of using higher order inte-
grable PDEs to derive higher order ODEs with the Painlev́e
property. She derived a whole hierarchy of ODEs, a second
Painlev́e hierarchy, i.e., having as first member the second
Painlev́e equation, by similarity reduction of the Korteweg
de Vries and modified Korteweg de Vries hierarchies. This
open the possibility of deriving higher order Painlev́e equa-
tions as sequences of ODEs of increasing order, as opposed
to the classification of ODEs order-by-order originally pro-
posed. However, it was not until the work of Kudryashov
[27], who derived both a first and second Painlev́e hier-
archy, that further work in this direction was undertaken.
Later on, many researchers have been interested in deriv-
ing Painlev́e hierarchies and in investigating their properties
and underlying structures [28–35]. At the same time, the
present day continuation of the original order-by order
classification process [36–40] is informed by knowledge
of the connection with higher order completely integrable
PDEs.

There are many types of Painlev́e equations but com-
monly known are only following six Painlev́e equations. A
brief introductory material about the one to six Painlev́e
equations is described here. These equations are used exten-
sively by the research community in different applications
in physical science and engineering technologies.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ = 6u2 + x, Painlev́e equation-I or (PI)
u′′ = 2u3 + xu + α, Painlev́e equation-II or (PII)

u′′ = u′2
u

− u′
x

+ αu2+β
x

+ γ u3 + δ
u
, Painlev́e equation-III(PIII)

u′′ = u′2
2u + 3

2u
3 + 4xu2 + 2(x2 − α)u + β

u
, Painlev́e equation-IV(PIV)

u′′ =
(

1
2u + 1

u−x

)
u′2 − u′

x
+ (u−1)2

x2

(
αu + β

u

)
+ γ u

x
+ δu(u+1)

u−1 , Painlev́e equation-V(PV)

u′′ = 1
2

(
1
u

+ 1
u−1 + 1

u−x

)
u′2 −

(
1
x

+ 1
x−1 + 1

u−x

)
u′

+u(u−1)(u−x)

x2(x−1)2

(
α + βx

u2
+ γ (x−1)

(u−1)2
+ δx(x−1)

(u−x)2

)
, Painlev́e equation-VI(PVI)

The PI-equation based on quadratic nonlinear factor in one
of its term, PII-equation has special importance due to its
cubic nonlinearity along with variations of one constant
parameter α, PIII-equation is well recognized due to its sin-
gularity at origin with variation in four constants parameters
α, β, γ , and δ. Comparatively, very few numerical and ana-
lytical solvers are available to handle such type of problem.
The Painlev́e -IV equation is famous for its strong nonlin-
earity. Moreover, this problem has two constants parameters

α, β, as well and the PV-equation is very complicated
differential equation, that has three terms possess singular-
ities and also four constants parameters namely α, β, γ ,
and δ. The last Painlev́e equation which focus of our study
is known as PVI-equation have special attention among
all six Painlev́e and this is the most complicated Painlev́e
equation having multiple singularities. This equation have
multiple singularities at x = 1, 0, and u = 1, 0, u = x. It
depends upon the four constants parameters known as α, β,
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γ , and δ. It has quadratic nonlinearity in many terms as well
[41–45].

General properties of Painlev́e equations

(a) PII-PVI have Backlund transformations which relate
solutions of a given Painlev́e equation to solutions of
the same Painlev́e equation, though with different val-
ues of the parameters with associated Affine Weyl
groups that act on the parameter space.

(b) PII-PVI have rational, algebraic, and special function
solutions expressed in terms of the classical special
functions

(c) These rational, algebraic and special function solu-
tions of PII-PVI, called classical solutions, can usually
be written in determinant form, frequently know as
wronskians. Often, these can be written as Hankel
determinants or Toeplitz determinants

(d) PI-PVI can be written as a (non-autonomous) Hamil-
tonian system and the Hamiltonians satisfy a second-
order, second-degree differential equations (PI-PVI)

(e) PI-PVI possess Lax pairs (isomonodromy problems)

2 Design methodology for sixth Painlev́e equation

The brief description of designed methodology will be
presented for the solution of the nonlinear sixth Painleve
differential equation. In this section, the procedure has been
developed two feed-forward unsupervised neural networks
models of the equation.

2.1 Heuristic mathematical modeling

Generalized design methodology for sixth Painlev́e differ-
ential equation can be expressed as a MATLAB function.
Mathematical model for the sixth Painlev́e equation is con-
structed with the strength of feed-forward ANN, in the
form of following continuous mapping for the solution û(x),
and its first- and second-order derivatives are dû/dx and
d2û/dx2 respectively,

û(x) =
k∑

i=1

Aif (Bix + Ci), (2)

dû

dx
=

k∑
i=1

Ai

d

dx
[f (Bix + Ci)], (3)

d2û

dx2
=

k∑
i=1

Ai

d2

dx2
[f (Bix + Ci)]. (4)

Equations (2–4) are based on defined log-sigmoid function
f (t) = 1

1+e−t and its respective derivatives are working as

activation functions, therefore, system of equations can be
written as,

û(x) =
k∑

i=1

Ai

1

1+e−(Bix+Ci)
, (5)

dû

dx
=

k∑
i=1

AiBi

e−(Bix+Ci)

(1+e−(Bix+Ci))2
, (6)

d2û

dx2
=

k∑
i=1

AiB
2
i

[
2e−2(Bix+Ci)

(1+e−(Bix+Ci))3
− e−(Bix+Ci)

(1+e−(Bix+Ci))2

]
.

(7)

The suitable combination of these above equations can
be used to model the differential equations like (5–7), for
reader interest see more references like [46, 47] and [48].

2.2 Fitness function

A fitness function or objective function E is developed in an
unsupervised manner and it is defined by sum of two mean
square error E1 and E2. Therefore, E can be written as

E = E1 + E2, (8)

where E1 is error function associated with given differential
equation and it is given as

E1 = 1

N+1

N∑
m=0

[
d2ûm

d2x
− 1

2

(
1

ûm

+ 1

ûm − 1
+ 1

ûm − xm

)

×
(

dûm

dx

)2

+
(

1

xm

+ 1

xm − 1
+ 1

ûm − xm

)

×dûm

dx
− ûm(ûm − 1)(ûm − xm)

x2
m(xm − 1)2

×
(

α+ βxm

û2m
+ γ (xm−1)

(ûm−1)2
+ δxm(xm−1)

(ûm−xm)2

)]2
. (9)

Similarly, E2 is the error function associated with boundary
conditions for given equation is given as:

E2 = 1

2
[(û0 − l)2 + (û′

0 − m)2]. (10)

3 Numerical and analytical learning techniques

Differential equations are solved under the conditions of
existing techniques. A lot of analytical and numerical
solvers have been developed by researchers to solve higher
order nonlinear boundary value problems. Painlev́e equa-
tions have been examined by number of researchers by
means of several techniques including both analytical, as
well as, numerical solvers. For example, variation iteration
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method (VIM), homotopy perturbation method (HPM) [49],
Adomian decomposition method (ADM), Legendre-Tau
methods, Sinc-collocation method, wavelet method, and so
on. In all of these methods, the solution is generally given
in the form of an infinite series usually convergent to an
accurate approximate solution. The results showed that all
of these methods have their own limitations and advantages
over others. As per our literature survey about the stochas-
tic solver to Painlev́e equation, no body yet applied to solve
sixth Painlev́e equation; however, the first Painlev́e equation
is solved using neural networks optimized with evolution-
ary and swarm intelligence technique. Further, some latest
work has been done through these techniques [50, 51].

3.1 Hybrid approach

Hybrid approach is one of the best algorithms in the class of
constrained optimization techniques. Alongside GA, AST,
IPT, and SQP, their hybrid combination GA-AST, GA-IPT,
and GA-SQP are also used to train the design parameters
of neural network models for solving problems of sixth
painlev́e type. Flow diagram of the generic hybrid approach
based on GA-AST is shown in Fig. 1.

3.2 Parameter setting

MATLAB function GA and FMINCON have used in graph-
ical user interface (GUI) of optimization tool box for learn-
ing of unknown parameter of ANN model. The parameters

Fig. 1 Flow chart of proposed algorithms

setting used for GA and AST have listed in Tables 1 and 2,
respectively.

3.3 Procedural steps of proposed method

The main points of proceeding our solvers algorithm are
discussed below

1. Initialization
Initial values of parameters are set in this step with ran-
dom assignment and declarations. These setting are also
tabulated in Table 1 for important parameter of GA.

2. Fitness evaluation
Calculate the fitness of each individual or chromosome
of population using the (9) and (10), for first and second
type of modeling, respectively.

3. Termination criteria
Terminate the algorithm when either of following crite-
ria matches:

• Predefined fitness values |E| ≤ 10−15 is achieved.
• Predefine number of generations are executed.
• Any of termination setting given in Table 1 for GA

is fulfilled.

If termination criterion meets, then go to step 5.
4. Reproduction

Create next generation on the basis of Crossover:
call for scattered function, Mutation: call for adaptive

Table 1 Parameters setting for GA

Parameters Setting

Population creation Constrained dependant

Scaling function Rank

Selection function Uniform

Crossover fraction 0.8

Crossover function Heuristic

Mutation function Adaptive feasible

Elite count 3

Penalty factor 100

Migration fraction 0.2

Sub populations 10

Population size 300

Chromosome size 30 or 45

Generation 1000

Function tolerance 1.00E-20

Stall gen limit 100

Bounds (lower, upper) (−20,20)

Nonlinear constraint tolerance 1.00E-20

Nonlinear constrain tolerance 1.00E-20

Fitness limit 1.00E-15

Others Defaults
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Table 2 Parameters setting for AST

Parameters Setting

Start point randn(1,30)

Derivative Solver approximate

Sub-problem algorithm IDI factorization

Scaling Objective and constraints

Maximum iterations 500

Finite difference types Central differences

Maximum function evaluation 100,000

X-tolerance 1.00E-10

Nonlinear constraint tolerance zero

SQP constraint tolerance zero

Fitness limit 1.00E-06

Others Defaults

feasible function, Selection: call for stochastic uniform
function and elitism account is step 4, etc. Repeat the
procedure from step 2 to step 4 with newly produced
population and continues.

5. Improvements
Active set technique has used for further refinement of
results by taking final adaptive weights of GA as initial
weights (start point) of AST algorithm. AST has applied
as per setting of parameters given in Table 2. Store also
the refined final weights of the algorithm.

6. Neurons analysis
Repeat steps 1 to 5 for by taking size of initial weights,
i.e., 30 and 45 for N = 10, 15 neurons, respectively.
These results are used for detail analysis of algorithm
later. The architectural diagram of proposed model is
presented in Fig. 2.

4 Numerical results of Painlev́e equation-VI

Consider Painlev́e equation-VI

u′′ = 1

2

(
1

u
+ 1

u − 1
+ 1

u − x

)
u′2 −

(
1

x
+ 1

x − 1
+ 1

u − x

)
u′

+u(u − 1)(u − x)

x2(x − 1)2

[
α+ βx

u2
+ γ (x − 1)

(u − 1)2
+ δx(x − 1)

(u − x)2

]
.

(11)

with boundary conditions defined as

u(0) = l, u′(1) = m

Now, our main objective is to find the solution of the pro-
posed problem using scheme based on two neural networks
models. The fitness functions constructed for proposed
problem (11) is given as

E = E1 + E2, (12)

where E1 is error function associated with (11) and it is
defined by

E1 = 1

10

10∑
m=1

[
d2ûm

d2x
− 1

2

(
1

ûm

+ 1

ûm−1
+ 1

ûm−xm

)

×
(

dûm

dx

)2

+
(

1

xm

+ 1

xm−1
+ 1

ûm−xm

)

×dûm

dx
− ûm(ûm−1)(ûm−xm)

x2
m(xm−1)2

×
(

α+ βxm

û2m
+ γ (xm−1)

(ûm−1)2
+ δxm(xm−1)

(ûm−xm)2

)]2
. (13)

Similarly, E2 is the error function associated with proposed
boundary conditions for given problem is as

E2 = 1

2
[(û0 − l)2 + (û′

0 − m)2]. (14)

Case 1 For N = 30 (number of neurons)
Let us define the series solution of (11) in the form of our
proposed weights as,

û(x) =
10∑
i=1

Ai

(
1

1 + e−(Bix+Ci)

)

Fig. 2 Architectural diagram of
physical model of sixth Painlev́e
equation
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The proposed solution of (11) can be written in the form
of neurons, which are obtained by optimal technique (AST,
SQP, IPT, GA, GA-AST, GA-SQP, GA-IPT). Therefore,
proposed solution of equation is written as

û(x) = A1

1+e−(B1x+C1)
+ A2

1+e−(B2x+C2)
+ A3

1+e−(B3x+C3)

+ A4

1+e−(B4x+C4)
+ A5

1+e−(B5x+C5)
+ A6

1+e−(B6x+C6)

+ A7

1+e−(B7x+C7)
+ A8

1+e−(B8x+C8)
+ A9

1+e−(B9x+C9)

+ A10

1+e−(B10x+C10)
(15)

ûSQP = 3.852664207

1 + e−(−4.557692131x−4.650552422)

+ −1.319761307

1 + e−(−2.187930899x+1.300007309)

+ −0.792153668

1 + e−(4.263719327x−0.609608606)

+ 4.462553295

1 + e−(−3.269979902x−4.20889754)

+ 2.205781656

1 + e−(−3.607747507x−4.012823819)

+ 0.13768719

1 + e−(−0.108773444x−1.244950893)

+ 3.521925914

1 + e−(1.589236886x−2.309019827)

+ −3.494923022

1 + e−(−3.852467942x−5.137719643)

+ 1.211888186

1 + e−(−1.168642848x+4.192646853)

+ −2.632461101

1 + e−(−4.256236816x−1.883428072)
(16)

ûIPT = −0.494413203

1 + e−(−0.563576778x−0.071732859)

+ 0.296910551

1 + e−(0.253029768x+0.138304721)

+ 1.017894435

1 + e−(1.042155805x−0.073318396)

+ 0.22529088

1 + e−(0.224535628x+0.025924206)

+ 0.142823162

1 + e−(0.17406687x+0.178422266)

+ −0.042499223

1 + e−(−0.082284884x−0.255089136)

+ 0.738827939

1 + e−(0.739655909x+0.149972895)

+ −0.019671964

1 + e−(0.052666701x−0.028173882)

+ −0.9770742

1 + e−(−1.086652624x−0.07626653)

+ −0.981215871

1 + e−(−0.924084278x+0.042974028)
(17)

ûGA = 0.484693387

1 + e−(2.282534095x+1.430452867)

+ −0.85062687

1 + e−(−2.260429318x+0.67352394)

+ −0.832460344

1 + e−(−0.121752802x−0.828405606)

+ −0.565902282

1 + e−(0.162374497x+1.410502354)

+ 0.570241973

1 + e−(−0.202643046x−0.573694337)

+ −0.192332919

1 + e−(−0.467847963x+0.333378428)

+ −0.80671863

1 + e−(0.147407103x+1.540733481)

+ 0.894866112

1 + e−(1.725851575x+0.363518104)

+ 0.832144068

1 + e−(0.364845716x−0.222055111)

+ 0.701006282

1 + e−(−0.307744349x+1.319595699)
(18)

ûGA−AST = 1.592316553

1 + e−(−3.200480077x−3.347382524)

+ −1.320208838

1 + e−(−0.355295927x+1.032001828)

+ 0.319825968

1 + e−(2.955042366x−0.83990283)

+ 1.952266267

1 + e−(−2.007219521x−2.827048245)

+ 1.705335008

1 + e−(−1.818440181x−2.884065761)

+ 1.408759062

1 + e−(2.959565675x−0.246105986)

+ 1.216380832

1 + e−(−1.140500523x−1.894501887)

+ −2.277300978

1 + e−(−2.051183478x−2.492644937)

+ 0.058806128

1 + e−(−1.275458961x+2.264150473)

+ −0.570777737

1 + e−(−1.524116854x−2.789580802)
(19)

ûGA−SQP = 3.852668073

1 + e−(−4.557699082x−4.650538173)

+ −1.319791365

1 + e−(−2.187967501x+1.299977048)
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+ −0.792077223

1 + e−(4.263700406x−0.609537199)

+ 4.462556044

1 + e−(−3.269989174x−4.208886822)

+ 2.2057858448

1 + e−(−3.607753592x−4.012815346)

+ 0.137684982

1 + e−(−0.108773898x−1.244951139)

+ 3.521911929

1 + e−(1.589188478x−2.309027891)

+ −3.49492136

1 + e−(−3.852464502x−5.137725322)

+ 1.211878857

1 + e−(−1.16864842x+4.192644345)

+ −2.632431741

1 + e−(−4.256187358x−1.883462931)
(20)

ûGA−IPT = −0.494413203

1 + e−(−0.563576778x−0.071732859)

+ 0.296910551

1 + e−(0.253029768x+0.138304721)

+ 1.017894435

1 + e−(1.042155805x−0.073318396)

+ 0.22529088

1 + e−(0.224535628x+0.025924206)

+ 0.142823162

1 + e−(0.17406687x+0.178422266)

+ −0.042499223

1 + e−(−0.082284884x−0.255089136)

+ 0.738827939

1 + e−(0.739655909x+0.149972895)

+ −0.019671964

1 + e−(0.052666701x+0.028173882)

+ −0.9770742

1 + e−(−1.086652624x−0.07626653)

+ −0.981215871

1 + e−(−0.924084278x+0.042974028)
(21)

The values of the number of weights of our six proposed
techniques like SQP, IPT, GA, and their hybrid approach
GA-AST, GA-SQP, and GA-IPT are presented in Tables 3
and 4. Furthermore, we concluded on the basis of 100 times
runs through these solvers results that there are minimum
five digits in each value of the weights are good for approx-
imated solution of proposed problem. The comparison of
the proposed results with reference solution are presented
in Table 5, which showed that, there are up to one to three
digits places accuracy with the reference solution of our
techniques SQP, IPT, GA, GA-AST, GA-SQP, and GA-
IPT and their graphical representation is shown in Fig. 3.
Moreover, we calculated the absolute error (AEs) of pro-

posed results with reference solution as shown in Fig. 4.
Table 6 showed that hybrid technique GA-AST is more
accurate than the others techniques but SQP technique is
also good in accuracy than IPT, GA, GA-SQP, and GA-IPT.
The absolute errors of GA-AST, SQP, IPT, GA, GA-SQP,
and GA-IPT lie in the range of [1.65E − 09, 9.18E − 04],
[1.04E − 08, 8.88E − 02], [6.48E − 02, 1.18E − 01],
[4.99E − 08, 1.08E − 01], [4.28E − 08, 9.45E − 02], and
[4.33E − 08, 1.05E − 01] respectively.

Case 2 For N = 45 (number of neurons)
The proposed solution of (11) by taking N = 45 is written
as:

û(x) = A1

1 + e−(B1x+C1)
+ A2

1 + e−(B2x+C2)

+ A3

1 + e−(B3x+C3)
+ A4

1 + e−(B4x+C4)

+ A5

1 + e−(B5x+C5)
+ A6

1 + e−(B6x+C6)

+ A7

1 + e−(B7x+C7)
+ A8

1 + e−(B8x+C8)

+ A9

1 + e−(B9x+C9)
+ A10

1 + e−(B10x+C10)

+ A11

1 + e−(B11x+C11)
+ A12

1 + e−(B12x+C12)

+ A13

1 + e−(B13x+C13)
+ A14

1 + e−(B14x+C14)

+ A15

1 + e−(B15x+C15)
(22)

ûSQP = −2.981186883

1 + e−(−0.190071148x−0.42872715)

+ 0.768616578

1 + e−(−1.853284783x+2.538759738)

+ −1.215459689

1 + e−(−1.104744276x−0.089031497)

+ 1.424318279

1 + e−(−0.451934839x−0.833612481)

+ −1.035748313

1 + e−(0.562284442x−0.995318799)

+ −1.411659669

1 + e−(−0.324662445x−0.599500242)

+ 2.789462715

1 + e−(0.910323891x−0.8778286)

+ 0.515239938

1 + e−(−0.135572375x+1.64395686)

+ −1.038899223

1 + e−(−1.052128095x−0.414849175)

+ −1.222779538

1 + e−(0.828456626x−1.453050204)
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Table 3 Weights by taking N = 30 along their corresponding solvers SQP, IPT, and GA

SQP IPT GA

i Ai Bi Ci Ai Bi Ci Ai Bi Ci

1 3.852664 −4.55769 −4.65055 −0.49441 −0.56358 −0.07173 0.484693 2.282534 1.430453

2 −1.31976 −2.18793 1.300007 0.296911 0.25303 0.138305 −0.85063 −2.26043 0.673524

3 −0.79215 4.263719 −0.60961 1.017894 1.042156 −0.07332 −0.83246 −0.12175 −0.82841

4 4.462553 −3.26998 −4.20890 0.225291 0.224536 0.025924 −0.5659 0.162374 1.410502

5 2.205782 −3.60775 −4.01282 0.142823 0.174067 0.178422 0.570242 −0.20264 −0.57369

6 0.137687 −0.10877 −1.24495 −0.04250 −0.08228 −0.25509 −0.19233 −0.46785 0.333378

7 3.521926 1.589237 −2.30902 0.738828 0.739656 0.149973 −0.80672 0.147407 1.540733

8 −3.49492 −3.85247 −5.13772 −0.01967 0.052667 0.028174 0.894866 1.725852 0.363518

9 1.211888 −1.16864 4.192647 −0.97707 −1.08665 −0.07627 0.832144 0.364846 −0.22206

10 −2.63246 −4.25624 −1.88343 −0.98122 −0.92408 0.042974 0.701006 −0.30774 1.319596

Table 4 Weights by taking N = 30 along their corresponding solvers GA-AST, GA-SQP, and GA-IPT

GA-AST GA-SQP GA-IPT

i Ai Bi Ci Ai Bi Ci Ai Bi Ci

1 1.592317 −3.20048 −3.34738 3.852668 −4.5577 −4.65054 −0.49441 −0.56358 −0.07173

2 −1.32021 −0.3553 1.032002 −1.31979 −2.18797 1.299977 0.296911 0.25303 0.138305

3 0.319826 2.955042 −0.8399 −0.79208 4.2637 −0.60954 1.017894 1.042156 −0.07332

4 1.952266 −2.00722 −2.82705 4.462556 −3.26999 −4.20889 0.225291 0.224536 0.025924

5 1.705335 −1.81844 −2.88407 2.205786 −3.60775 −4.01282 0.142823 0.174067 0.178422

6 1.408759 2.959566 −0.24611 0.137685 −0.10877 −1.24495 −0.0425 −0.08228 −0.25509

7 1.216381 −1.1405 −1.8945 3.521912 1.589188 −2.30903 0.738828 0.739656 0.149973

8 −2.2773 −2.05118 −2.49264 −3.49492 −3.85246 −5.13773 −0.01967 0.052667 0.028174

9 0.058806 −1.27546 2.26415 1.211879 −1.16865 4.192644 −0.97707 −1.08665 −0.07627

10 −0.57078 −1.52412 −2.78958 −2.63243 −4.25619 −1.88346 −0.98122 −0.92408 0.042974

Table 5 Comparison of Ref
Sol. with results of proposed
techniques

Interval(0,1) Ref Sol. SQP IPT GA GA-AST GA-SQP GA-IPT

0 −4.4E-08 −3.4E-08 0.066337 5.78E-09 −4.2E-08 −1.3E-09 −8E-10

0.1 0.096064 0.09821 0.16086 0.100372 0.09607 0.097845 0.099806

0.2 0.187019 0.194245 0.254546 0.200985 0.187028 0.193043 0.198875

0.3 0.27543 0.289261 0.347063 0.301084 0.275416 0.287177 0.296849

0.4 0.362087 0.38362 0.438247 0.399943 0.362014 0.380975 0.393528

0.5 0.446854 0.4772 0.527952 0.496897 0.446681 0.47454 0.488728

0.6 0.529273 0.569582 0.61596 0.591363 0.528964 0.567539 0.58219

0.7 0.60887 0.660218 0.701997 0.682858 0.608401 0.65941 0.673592

0.8 0.685278 0.748553 0.785788 0.770996 0.684643 0.749524 0.762617

0.9 0.758264 0.834098 0.867099 0.855498 0.757472 0.837301 0.848991

1 0.827711 0.916462 0.945749 0.936178 0.826793 0.922256 0.932498
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Fig. 3 Comparison of reference solution and proposed solutions case 1

+ 0.879583272

1 + e−(−0.709296653x−0.322501933)

+ 0.29290285

1 + e−(−0.53697887x−1.583655045)

+ −3.626280806

1 + e−(−0.308258981x−0.449521512)

+ −1.3971885

1 + e−(−0.277507868x−0.570155554)

+ 3.676629109

1 + e−(−0.03750609x+0.495244765)
(23)

ûIPT = 0.105796212

1 + e−(0.080383331x−0.020161484)

+ −0.145795475

1 + e−(−0.107082733x+0.064312681)

+ 0.205000139

1 + e−(0.230299485x−0.233354609)

+ −0.466410003

1 + e−(−0.428127661x+0.046290178)

+ −0.393013417

1 + e−(−0.323632235x+0.074518818)

Fig. 4 Graphical representation of independent runs case 1

+ 0.187759073

1 + e−(0.150674136x−0.089083839)

+ 0.391188015

1 + e−(0.373659129x−0.046799459)

+ 0.920319338

1 + e−(0.868965041x−0.098826133)

+ −0.511364835

1 + e−(−0.470590439x+0.009932894)

+ 0.014103156

1 + e−(−0.081362585x+0.131736388)

+ −0.229638271

1 + e−(−0.188128634x+0.047032649)

+ −1.125716815

1 + e−(−1.084292981x+0.0087882)

+ 1.075167372

1 + e−(0.98252266x−0.163357974)

+ −0.083327541

1 + e−(−0.139448038x−0.050729697)

+ 0.274628645

1 + e−(0.241834313x−0.023923033)
(24)

ûGA = −1.363656406

1 + e−(0.085099021x−0.74394221)

+ 2.851296596

1 + e−(0.678304643x+0.185175216)

+ 0.18928619

1 + e−(−0.752937035x−1.198717482)

+ −1.468523246

1 + e−(−0.899679259x−0.351393344)

+ −0.427997736

1 + e−(−1.863585975x+3.271144744)

+ 1.308881139

1 + e−(0.262833207x+0.121821713)

+ 1.520387638

1 + e−(−0.576342064x−1.806363518)

+ 0.459316583

1 + e−(−0.928668084x−0.562269335)

+ 2.047062888

1 + e−(0.619184027x+1.66014717)

+ −1.109575745

1 + e−(0.819231638x+1.912083154)

+ −1.823556932

1 + e−(−0.296418298x+2.025872201)

+ −0.609796375

1 + e−(0.07971307x−1.157468048)

+ 0.189710124

1 + e−(−0.755677982x−0.343193098)

+ −0.97524152

1 + e−(−1.203725087x−0.61630144)

+ 0.059209499

1 + e−(−0.610467037x+1.494353009)
(25)

Neural Comput & Applic (2019) 31:101–115 109



Table 6 The presentation of
absolute errors(AEs) of
proposed solvers

Interval(0,1) SQP IPT GA GA-AST GA-SQP GA-IPT

0 1.04E-08 0.066337 4.99E-08 1.65E-09 4.28E-08 4.33E-08

0.1 0.002147 0.064797 0.004309 6.24E-06 0.001781 0.003742

0.2 0.007226 0.067526 0.013965 8.29E-06 0.006024 0.011855

0.3 0.013831 0.071633 0.025653 1.41E-05 0.011747 0.021418

0.4 0.021533 0.07616 0.037855 7.34E-05 0.018888 0.031441

0.5 0.030346 0.081098 0.050042 0.000173 0.027686 0.041874

0.6 0.040309 0.086687 0.062091 0.000309 0.038267 0.052917

0.7 0.051348 0.093127 0.073988 0.000469 0.05054 0.064722

0.8 0.063275 0.10051 0.085718 0.000636 0.064246 0.077339

0.9 0.075834 0.108835 0.097234 0.000792 0.079037 0.090728

1 0.088751 0.118038 0.108466 0.000918 0.094545 0.104787

ûGA−AST = −0.262149427

1 + e−(−0.502904887x+0.411557222)

+ −0.093910624

1 + e−(−0.74609434x−3.024753985)

+ −0.46955918

1 + e−(0.051263983x−1.08694692)

+ 1.011389247

1 + e−(1.008870957x−1.857829674)

+ −0.631127888

1 + e−(−0.113952018x−4.171619951)

+ −1.482027465

1 + e−(−0.480267545x+2.558155694)

+ 0.830997251

1 + e−(−2.360117472x−1.096744456)

+ −0.457799099

1 + e−(−0.554426409x−2.002721757)

+ 2.745655273

1 + e−(2.73178381x+2.301075457)

+ 1.201934267

1 + e−(0.193172473x−3.088996794)

+ −1.57557471

1 + e−(−0.748204934x+0.665750072)

+ 0.43355072

1 + e−(1.795329929x−2.188184223)

+ −0.995547425

1 + e−(−0.795671929x−0.664101683)

+ 1.075274473

1 + e−(−1.003233661x−1.089874647)

+ −1.525039869

1 + e−(−2.03388967x−2.575473059)
(26)

Table 7 Weights by taking N = 45 along their corresponding solvers SQP, IPT, and GA

SQP IPT GA

i Ai Bi Ci Ai Bi Ci Ai Bi Ci

1 −2.98119 −0.19007 −0.42873 0.105796 0.080383 −0.02016 −1.36366 0.085099 −0.74394

2 0.768617 −1.85328 2.53876 −0.1458 −0.10708 0.064313 2.851297 0.678305 0.185175

3 −1.21546 −1.10474 −0.08903 0.205 0.230299 −0.23335 0.189286 −0.75294 −1.19872

4 1.424318 −0.45193 −0.83361 −0.46641 −0.42813 0.04629 −1.46852 −0.89968 −0.35139

5 −1.03575 0.562284 −0.99532 −0.39301 −0.32363 0.074519 −0.428 −1.86359 3.271145

6 −1.41166 −0.32466 −0.5995 0.187759 0.150674 −0.08908 1.308881 0.262833 0.121822

7 2.789463 0.910324 −0.87783 0.391188 0.373659 −0.0468 1.520388 −0.57634 −1.80636

8 0.51524 −0.13557 1.643957 0.920319 0.868965 −0.09883 0.459317 −0.92867 −0.56227

9 −1.0389 −1.05213 −0.41485 −0.51136 −0.47059 0.009933 2.047063 0.619184 1.660147

10 −1.22278 0.828457 −1.45305 0.014103 −0.08136 0.131736 −1.10958 0.819232 1.912083

11 0.879583 −0.7093 −0.3225 −0.22964 −0.18813 0.047033 −1.82356 −0.29642 2.025872

12 0.292903 −0.53698 −1.58366 −1.12572 −1.08429 0.008788 −0.6098 0.079713 −1.15747

13 −3.62628 −0.30826 −0.44952 1.075167 0.982523 −0.16336 0.18971 −0.75568 −0.34319

14 −1.39719 −0.27751 −0.57016 −0.08333 −0.13945 −0.05073 −0.97524 −1.20373 −0.6163

15 3.676629 −0.03751 0.495245 0.274629 0.241834 −0.02392 0.059209 −0.61047 1.494353
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Table 8 Weights by taking N = 45 along their corresponding solvers GA-AST, GA-SQP, and GA-IPT

GA-AST GA-SQP GA-IPT

i Ai Bi Ci Ai Bi Ci Ai Bi Ci

1 −0.26215 −0.5029 0.411557 −2.98118 −0.19007 −0.42873 0.105796 0.080383 −0.02016

2 −0.09391 −0.74609 −3.02475 0.768593 −1.85326 2.538769 −0.1458 −0.10708 0.064313

3 −0.46956 0.051264 −1.08695 −1.21545 −1.10473 −0.08902 0.205 0.230299 −0.23335

4 1.011389 1.008871 −1.85783 1.424323 −0.45195 −0.83361 −0.46641 −0.42813 0.04629

5 −0.63113 −0.11395 −4.17162 −1.03574 0.562273 −0.99532 −0.39301 −0.32363 0.074519

6 −1.48203 −0.48027 2.558156 −1.41166 −0.32466 −0.5995 0.187759 0.150674 −0.08908

7 0.830997 −2.36012 −1.09674 2.789471 0.910357 −0.87785 0.391188 0.373659 −0.0468

8 −0.4578 −0.55443 −2.00272 0.515246 −0.13557 1.643957 0.920319 0.868965 −0.09883

9 2.745655 2.731784 2.301075 −1.03889 −1.05211 −0.41484 −0.51136 −0.47059 0.009933

10 1.201934 0.193172 −3.089 −1.22277 0.828435 −1.45305 0.014103 −0.08136 0.131736

11 −1.57557 −0.7482 0.66575 0.879589 −0.70931 −0.32251 −0.22964 −0.18813 0.047033

12 0.433551 1.79533 −2.18818 0.292907 −0.53698 −1.58365 −1.12572 −1.08429 0.008788

13 −0.99555 −0.79567 −0.6641 −3.62628 −0.30825 −0.44952 1.075167 0.982523 −0.16336

14 1.075274 −1.00323 −1.08987 −1.39719 −0.2775 −0.57016 −0.08333 −0.13945 −0.05073

15 −1.52504 −2.03389 −2.57547 3.676634 −0.0375 0.495252 0.274629 0.241834 −0.02392

ûGA−SQP = −2.981184974

1 + e−(−0.190067542x−0.428731301)

+ 0.768592809

1 + e−(−1.853259645x+2.538768879)

+ −1.215453209

1 + e−(−1.104729159x−0.089016331)

+ 1.424322616

1 + e−(−0.451946811x−0.833612338)

+ −1.035742911

1 + e−(0.562272943x−0.995318751)

+ −1.411657607

1 + e−(−0.324656112x−0.59950122)

+ 2.789471327

1 + e−(0.910357066x−0.877847887)

+ 0.515246149

1 + e−(−0.135570607x+1.643957452)

+ −1.038890188

1 + e−(−1.052110455x−0.414841108)

+ −1.222769852

1 + e−(0.828434642x−1.45305147)

+ 0.879589313

1 + e−(−0.709305143x−0.322505566)

+ 0.292906802

1 + e−(−0.53698189x−1.583654578)

+ −3.626278978

1 + e−(−0.308247123x−0.44952392)

+ −1.397186564

1 + e−(−0.277503099x−0.570156893)

+ 3.676633577

1 + e−(−0.037499309x+0.495251782)
(27)

Table 9 Comparison of Ref Sol. with proposed techniques

Interval(0,1) Ref Sol SQP IPT GA GA-AST GA-SQP GA-IPT

0 2.45E-08 −6.00E-08 6.31E-08 −3.99E-09 2.14E-13 2.98E-08 1.34E-11

0.1 0.09989 0.099185 0.099863 0.100636 0.09997 0.099002 0.099865

0.2 0.198786 0.196447 0.199141 0.201944 0.199104 0.195885 0.199148

0.3 0.295744 0.291876 0.297396 0.30307 0.296461 0.290924 0.297398

0.4 0.390048 0.385968 0.394222 0.403224 0.39132 0.384725 0.394207

0.5 0.481153 0.478889 0.489264 0.501682 0.483132 0.477514 0.489211

0.6 0.568662 0.570157 0.582217 0.597795 0.571489 0.56883 0.582099

0.7 0.652301 0.658945 0.672827 0.690996 0.656109 0.657844 0.672615

0.8 0.731916 0.744486 0.760896 0.780806 0.736822 0.743778 0.760556

0.9 0.80745 0.826255 0.846273 0.866834 0.813556 0.826082 0.84577

1 0.878932 0.903979 0.928852 0.948765 0.886323 0.90446 0.92815
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ûGA−IPT = 0.105796212

1 + e−(0.080383331x−0.020161484)

+ −0.145795475

1 + e−(−0.107082733x+0.064312681)

+ 0.205000139

1 + e−(0.230299485x−0.233354609)

+ −0.466410003

1 + e−(−0.428127661x+0.046290178)

+ −0.393013417

1 + e−(−0.323632235x+0.074518818)

+ 0.187759073

1 + e−(0.150674136x−0.089083839)

+ 0.391188015

1 + e−(0.373659129x−0.046799459)

+ 0.920319338

1 + e−(0.868965041x−0.098826133)

+ −0.511364835

1 + e−(−0.470590439x+0.009932894)

+ 0.014103156

1 + e−(−0.081362585x+0.131736388)

+ −0.229638271

1 + e−(−0.188128634x+0.047032649)

+ −1.125716815

1 + e−(−1.084292981x+0.0087882)

+ 1.075167372

1 + e−(0.98252266x−0.163357974)

+ −0.083327541

1 + e−(−0.139448038x−0.050729697)

+ 0.274628645

1 + e−(0.241834313x−0.023923033)
(28)

The values of the number of weights of six proposed
techniques for case 2 like SQP, IPT, GA, GA-AST, GA-SQP,
and GA-IPT are plotted in Tables 7 and 8, respectively. We
obtained accuracy in weights up to five digit places is good
approximation for proposed series solutions. We also tabled
the values of proposed techniques to construct a comparison
table of the values with the reference solution and presented
in Table 9, which showed that there are accuracy up to three
decimal places with the reference solution of other proposed
techniques SQP, IPT, GA, GA-AST, GA-SQP, and GA-IPT.
Moreover, their plot is presented in Fig. 5. For a better pic-
ture of the whole analysis, the absolute errors is presented
in Fig. 6. Table 10 showed that hybrid technique GA-AST
is more accurate as compared to other techniques. GA-SQP
technique is also good in accuracy than other optimizers
SQP, IPT, GA, and GA-IPT. The absolute errors (AEs) of
GA-AST, GA-SQP, SQP, IPT, GA, and GA-IPT lie in the
range of [2.45E−08, 7.39E−03], [5.27E−09, 2.55E−02],

Fig. 5 Comparison of reference solution and proposed solutions

[8.46E − 08, 2.50E − 02], [3.86E − 08, 4.99E − 02],
[2.85E − 08, 6.98E − 02], and [2.45E − 08, 4.92E − 02]
respectively.

4.1 Statistical analysis

The probability plots with 95% confidence interval (CI) is
used to determine whether a solver result follow the Normal
distribution or not. It was also used to compare the accuracy
of all proposed solvers. The p values for the Anderson-
Darling (AD) test in each case was higher than the chosen
significance level (0.05), so we concluded that all solver
results follow the normal distributions. Moreover, the p val-
ues of SQP and Hybrid-SQP at level 30 were higher than
the others which showed the best result. Similarly, IPT and
Hybrid-IPT at level 45 have best results than others. The
results have been shown in Figs. 7 and 8 for cases 1 and 2,
respectively.

Fig. 6 Graphical representation of independent runs case 2
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Table 10 The estimated
absolute errors(AE) of
proposed solvers in case 2

Interval(0,1) SQP IPT GA GA-AST GA-SQP GA-IPT

0 8.46E-08 3.86E-08 2.85E-08 2.45E-08 5.27E-09 2.45E-08

0.1 0.000706 2.78E-05 0.000746 7.93E-05 0.000889 2.5E-05

0.2 0.002338 0.000355 0.003158 0.000318 0.002901 0.000362

0.3 0.003867 0.001652 0.007326 0.000717 0.00482 0.001654

0.4 0.00408 0.004174 0.013176 0.001273 0.005323 0.004159

0.5 0.002264 0.008111 0.020529 0.001979 0.003639 0.008058

0.6 0.001495 0.013555 0.029134 0.002828 0.000168 0.013437

0.7 0.006643 0.020526 0.038695 0.003808 0.005543 0.020314

0.8 0.01257 0.02898 0.04889 0.004906 0.011862 0.02864

0.9 0.018805 0.038823 0.059384 0.006106 0.018632 0.03832

1 0.025048 0.049921 0.069834 0.007391 0.025528 0.049218

Fig. 7 Fitting at normal
distribution to all solvers for
case 1

Fig. 8 Fitting at normal
distribution to all solvers for
case 2

Neural Comput & Applic (2019) 31:101–115 113



5 Conclusion

The sixth Painlev́e equation is highly nonlinear with mul-
tiple singularities, so very hard to find the solution of such
type problems. However, in this study, we obtained the
approximated solution of this problem through artificial
neural network (ANN) with log-sigmoid as transfer function
inside the hidden layer of structure by using optimizers like
active set techniques, interior point techniques, sequential
quadratic programming, and their hybridization GA-AST,
GA-SQP, GA-IPT. Proposed techniques provide the bet-
ter numerical solution of sixth Painlev́e equation. It is not
so easy to find analytical solutions of nonlinear, stiff, and
multi-singular differential equation in literature.

The best least absolute errors (AEs) are obtained through
ANNs which provided the best fitted solution with refer-
ence solution. We presented the numerical results of sixth
painlev́e equation for N = 10 in Table 5 by using solvers
SQP, IPT, GA, GA-AST, GA-SQP, and GA-IPT. The least
absolute errors are calculated by the difference of numerical
results of proposed solutions with respect to the reference
solution and are presented in Table 6 and the absolute
errors of solvers SQP, IPT, GA, GA-AST, GA-SQP, and
GA-IPT lie in the range of [1.04E − 08, 8.88E − 02],
[6.48E − 02, 1.18E − 01], [4.99E − 08, 1.08E − 01],
[1.65E − 09, 9.18E − 04], [4.28E − 08, 9.45E − 02], and
[4.33E −08, 1.05E −01] respectively. Similarly for case 2,
the absolute errors of solvers SQP, IPT, GA, GA-AST, GA-
SQP, and GA-IPT lie in the range of [8.45E − 08, 2.50E −
02], [3.86E − 08, 4.99E − 02], [2.85E − 08, 6.98E − 02],
[2.45E − 08, 7.39E − 03], [5.27E − 09, 2.55E − 02], and
[2.45E − 08, 4.92E − 02] respectively.

Thus from absolute errors (AEs), it has clear that hybrid
technique (GA-SQP) was more effective than others tech-
nique like sequential quadratic programming and hybrid
techniques (GA-AST, GA-IPT) in case 1. However, IPT
takes less time to converge the desired solution as com-
pared to AST and SQP technique. In the case of by taking
lesser number of neurons, the performance of our methods
were efficient and fast to converge the solution; however,
with the increase of neurons in number, we should need
strong CPU configuration; we spend more time to find the
solution due to stiffness of problem in nature. Moreover,
for future work, one can construct the more reliable opti-
mal techniques based on neural network to investigate it and
compare with other numerical results.
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