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Abstract Twin support vector regression (TSVR) aims at
finding ε-insensitive up- and down-bound functions for the
training points by solving a pair of smaller-sized quadratic
programming problems (QPPs) rather than a single large
one as in the conventional SVR. So TSVR works faster
than SVR in theory. However, TSVR gives equal emphasis
to the points above the up-bound and below the down-
bound, which leads to the same influences on the regression
function. In fact, points in different positions have differ-
ent effects on the regressor. Inspired by it, we propose an
asymmetric ν-twin support vector regression based on pin-
ball loss function (Asy-ν-TSVR). The new algorithm can
effectively control the fitting error by tuning the param-
eters ν and p. Therefore, it enhances the generalization
ability. Moreover, we study the distribution of samples and
give the upper bounds for the samples locating in dif-
ferent positions. Numerical experiments on one artificial
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dataset, eleven benchmark datasets and a real wheat dataset
demonstrate the validity of our proposed algorithm.
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1 Introduction

The support vector machine (SVM), introduced by Vapnik,
is a successful model and prediction tool for classification
and regression, which has spread to many fields [1, 2]. Com-
pared with other machine learning approaches like artificial
neural networks, SVM has many advantages. First, SVM
solves a quadratic programming problem (QPP), assuring
that once an optimal solution is obtained, it is the unique
solution. Second, by maximizing the margin between two
classes of samples, SVM derives a sparse and robust solu-
tion. Third, SVM implements the structural risk minimiza-
tion principle rather than the empirical risk minimization
principle, which minimizes the upper bound of the general-
ization error. The introduction of kernel function extends the
linear case to the nonlinear case, and effectively overcomes
the “curse of dimension” [3, 4]. Because of its great gener-
alization performance, SVM has been successfully applied
in various aspects ranging from pattern recognition, text
categorization, and financial regression.

The ν-support vector regression (ν-SVR) [5], which is
based on statistical learning theory, has become a standard
tool in regression tasks. The ν-SVR extends standard SVR
[2] techniques by Vapnik via enforcing a fraction of the
data samples to lie inside an ε-tube, as well as minimizing
the width of this tube [6]. It introduces a new parameter ν

to control the fitting error. ν-SVR has better generalization
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performance than the traditional techniques. In the ν-SVR,
the ε-insensitive loss function is defined as follows

Lε(u) =
⎧
⎨

⎩

u − ε, u ≥ ε,

0, −ε < u < ε,

−u − ε, u ≤ −ε.

(1)

ν-SVR owns better generalization ability compared with
other machine learning methods. However, one of the main
challenges for it is high computational complexity. In order
to improve the computational speed, Peng proposed an
efficient twin support vector machine for regression prob-
lem (TSVR) [7–9] based on twin support vector machine
(TSVM) [11]. It aims at generating two nonparallel bound
functions [10] by solving two smaller-sized QPPs such that
each function determines the ε-insensitive up- or down-
bounds of the unknown regressor. Each QPP involves only
one group of constraints for all samples, which makes
TSVR work faster than the standard SVR in theory [7, 12].
Then, it receives many attentions, and many variants have
also been proposed in literatures [13–16].

Recently, Huang extends ε-insensitive loss Lε(u) to the
pinball loss L

p
ε (u). Samples locating in different positions

are given different penalties [17–20], and then it yields bet-
ter generalization performance. Inspired by it, we propose
an asymmetric ν-twin support vector regression (Asy-ν-
TSVR) in this paper. Where the asymmetric tube is used,
and then Asy-ν-TSVR produces good generalization perfor-
mance. Asy-ν-TSVR is especially suitable for dealing with
the asymmetric noise [21–24].

Asy-ν-TSVR aims at finding two nonparallel functions:
ε1-insensitive down function f1(x) = wT

1 x + b1 and ε2-
insensitive up function f2(x) = wT

2 x + b2 [25, 26]. Similar
to the TSVR [7], Asy-ν-TSVR also solves two smaller-
sized QPPs rather than a larger one, and each involves
only one group of constraints for all samples. By introduc-
ing the pinball loss [27] into it, the samples lying above
and below the bounds are given different punishments [29,
30]. To verify the validity of our proposed algorithm, an
artificial experiment, eleven benchmark experiments and a
real wheat dataset have been performed. Compared with
ν-SVR, Asy-ν-SVR, least squares for support vector regres-
sion (LS-SVR) [28], and TSVR, our proposed Asy-ν-TSVR
has better generalization ability.

The paper is organized as follows: Section 2 briefly
dwells on ν-SVR, Asy-ν-SVR, and TSVR. Asy-ν-TSVR
is proposed in Section 3, which includes both the lin-
ear and nonlinear cases. The bounds are discussed in
Section 4. Section 5 performs experiments on three kinds of
datasets to investigate the feasibility and validity of our pro-
posed algorithm. Section 6 ends the paper with concluding
remarks.

2 Related works

In this section, we give a brief description of the ν-
SVR, Asy-ν-SVR, and TSVR. Given a training set T =
{(x1, y1), (x2, y2), · · · , (xl, yl)}, where xi ∈ Rd and
yi ∈ R. For the sake of conciseness, let matrix A =
(x1, x2, · · · , xl)

T , and matrix Y = (y1, y2, · · · , yl)
T . e is a

vector of ones of appropriate dimensions.

2.1 ν-support vector regression

The nonlinear ν-SVR seeks to find a regression function
f (x) = wT φ(x)+b in a high-dimensional feature space tol-
erating the small error in fitting the given data points. This
can be achieved by utilizing the ε-insensitive loss function
Lε(u) that sets an ε-insensitive “tube” as small as possi-
ble, within which errors are discarded. The ν-SVR can be
obtained by solving the following QPP,

min
w,b,ξ,ξ∗,ε

1

2
‖w‖2 + Cνε + C

l

l∑

i=1

(ξi + ξ∗
i ) (2)

s.t. (wT φ(xi) + b) − yi ≤ ε + ξi, i = 1, 2, · · · , l,

yi − (wT φ(xi) + b) ≤ ε + ξ∗
i , i = 1, 2, · · · , l,

ε ≥ 0, ξi ≥ 0, ξ∗
i ≥ 0, i = 1, 2, · · · , l.

where C, ν are parameters chosen a priori. Parameter C

controls the trade-off between the fitting errors and flatness
of the regression function. ν has its theoretical interpreta-
tion that controls the fractions of the support vectors and
the margin errors. To be more precise, ν is an upper bound
on the fraction of errors and a lower bound on the fraction
of support vectors [31–33]. ξi and ξ∗

i are the slack vectors
reflecting whether the samples locate into the ε-tube or not.

By introducing the Lagrangian multiplies α and α∗
i , we

can derive the dual problem of the ν-SVR as follows

min
α(∗)

1

2

l∑

i,j=1

(α∗
i −αi)(α

∗
j −αj)K(xi, xj)−

l∑

i=1

(α∗
i −αi)yi (3)

s.t.
l∑

i=1

(αi − α∗
i ) = 0,

0 ≤ α
(∗)
i ≤ C/l, i = 1, 2, · · · , l,

l∑

i=1

(αi + α∗
i ) ≤ Cν.

Once the QPP (3) is solved, we can achieve its solution
α(∗) = (α1, α

∗
1 , α2, α

∗
2 , · · · , αl, α

∗
l ) and the threshold b, and

then obtain the regression function,

f (x) =
l∑

i=1

(α∗
i − αi)K(xi, x) + b. (4)
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Here K(xi, x) represents a kernel function which gives the
dot product in the high-dimensional feature space.

2.2 Asymmetric ν-support vector regression

The ν-SVR considers only one possible location of the ε-
tube: it imposes that the numbers of samples above and
below the tube are equal. To further improve the compu-
tational accuracy, Huang imposes that those outliers can
be divided asymmetrically over both regions. To pursue an
asymmetric tube, he introduces the following asymmetric
loss function

Lp
ε (u) =

⎧
⎪⎨

⎪⎩

1
2p

(u − ε), u ≥ ε,

0, −ε < u < ε,
1

2(1−p)
(−u − ε), u ≤ −ε,

(5)

where p is a parameter related to asymmetry. As we can
learn that L

p
ε (u) can reduce to Lε when p = 0.5.

The Asy-ν-SVR solves the following QPP,

min
w,b,ε,ξi ,ξ

∗
i

1

2γ
wT w + νε + 1

l

l∑

i=1

(ξi + ξ∗
i ) (6)

s.t. (wT φ(xi) + b − ε) − yi ≤ 2(1 − p)ξi, i = 1, · · · , l,

yi − (wT φ(xi) + b + ε) ≤ 2pξ∗
i , i = 1, 2, · · · , l,

ε ≥ 0, ξi ≥ 0, ξ∗
i ≥ 0, i = 1, 2, · · · , l.

The coefficients γ and ν control the trade-off among the
margin, the size of the slack variables and the width of
ε-tube. The ε as unknown controls the width of the ε-
insensitive zone, which is used to fit the training data, and it
can affect the number of support vectors. ξi and ξ∗

i are the
slack vectors reflecting whether the samples locating into
the ε-tube or not. Parameter p is related to the asymme-
try. Where parameters γ, ν and p are chosen in advance.
Apparently Asy-ν-SVR reduces to ν-SVR when p = 0.5.
So Asy-ν-SVR is an extension of the ν-SVR.

We can derive the dual formulation of the Asy-ν-SVR as
follows

min
λ∗,λ

1

2

l∑

i,j=1

(λ∗
i −λi)

TK(xi, xj)(λ
∗
j −λj)−

l∑

i=1

yi(λ
∗
i −λi) (7)

s.t.
l∑

i=1

(λ∗
i − λi) = 0,

l∑

i=1

(λ∗
i + λi) ≤ νγ,

0 ≤ λ∗
i ≤ γ

2pl
, i = 1, 2, · · · , l,

0 ≤ λi ≤ γ

2(1 − p)l
, i = 1, 2, · · · , l.

Once the QPP (7) is solved, we can achieve its solution
λ(∗) = (λ1, λ

∗
1, λ2, λ

∗
2, · · · , λl, λ

∗
l ) and threshold b, and

then obtain the following regressor

f (x) =
l∑

i=1

(λ∗
i − λi)K(x, xi) + b. (8)

This extension gives an effective way to deal with skewed
noise in regression problems.

2.3 Twin support vector regression

To improve the computational speed, Peng [7] proposed an
efficient TSVR for the regression problem. TSVR generates
an ε-insensitive down-bound function f1(x) = wT

1 x + b1

and an ε-insensitive up-bound function f2(x) = wT
2 x + b2.

TSVR is illustrated in Fig. 1.
The final regressor f (x) is decided by the mean of these

two bound functions, i.e.,

f(x)= 1

2
(f1(x)+f2(x))= 1

2
(w1+w2)

T x+ 1

2
(b1+b2). (9)

For the nonlinear case, TSVR solves the following pair
of smaller-sized QPPs,

min
w1,b1,ξ

1

2
‖Y −eε1−(K(A, AT )w1+eb1)‖2+C1e

T ξ (10)

s.t. Y − (K(A, AT )w1 + eb1) ≥ eε1 − ξ,

ξ ≥ 0,

and

min
w2,b2,η

1

2
‖Y +eε2−(K(A, AT )w2+eb2)‖2+C2e

T η (11)

s.t. (K(A, AT )w2 + eb2) − Y ≥ eε2 − η,

η ≥ 0.
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Fig. 1 Illustration of the TSVR
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In the objective function of (10) or (11), the first term min-
imizes the squared distances from the training points to
f1(x)+ε1 and f2(x)−ε2, the second term aims to minimize
the sum of error variables. Where parameters C1 and C2

chosen in advance determines the trade-off between above
goals. The constraints require the training points should be
larger than the function f1(x) at least ε1, at the same time
they should be smaller than the function f2(x) at least ε2. ξ

and η are slack vectors. For the outliers, the same penalty is
given to them in TSVR.

After introducing the Lagrangian function L, and differ-
entiating L with respect to variables, we can derive their
dual formulations of (10) and (11) as follows

max
α

−1

2
αTH(HTH)−1HT α+f T H(HTH)−1HTα−f T α (12)

s.t. 0 ≤ α ≤ C1e,

and

max
β

−1

2
βT H(HTH)−1HT β−hT H(HTH)−1HT β+hT β (13)

s.t. 0 ≤ β ≤ C2e,

where H = [K(A, AT ) e], f = Y −eε1, and h = Y +eε2.
Once the dual QPPs (12) and (13) are solved, we can get

[
w1

b1

]

= (HT H)−1HT (f − α), (14)

and
[

w2

b2

]

= (HT H)−1HT (h + β). (15)

Note that TSVR is comprised of a pair of QPPs such that
each QPP determines one of up- or down-bound function
by using only one group of constraints compared with the
standard SVR. Hence, TSVR solves two smaller-sized QPPs
rather than a single large one, which implies that TSVR
works faster than the standard SVR in theory.

3 Asymmetric ν-twin support vector regression

As we know that the same penalties are given to the points
above the up-bound and below the down-bound in TSVR.
In fact, they have different effects on the regression func-
tion. Motivated by studies above, we propose the following
asymmetric ν-twin support vector regression based on the
pinball loss function.

3.1 Linear case

We extend TSVR to the asymmetric case, where p is the
parameter related to asymmetric. Asy-ν-TSVR generates an
ε1-insensitive down-bound function f1(x) = wT

1 x + b1 and

an ε2-insensitive up-bound function f2(x) = wT
2 x +b2, and

they are nonparallel. Asy-ν-TSVR is illustrated in Fig. 2.
The final regressor f (x) is decided by the mean of these

two bound functions, i.e.

f (x)= 1

2
(f1(x)+f2(x)) = 1

2
(w1 + w2)

T x + 1

2
(b1 + b2).

In TSVR, after replacing the ε-insensitive loss func-
tion Lε by the pinball loss L

p
ε (u), Asy-ν-TSVR solves the

following pair of smaller-sized QPPs,

min
w1,b1,ε1,ξ

1

2
‖Y −(Aw1+eb1)‖2+C1ν1ε1+ 1

l
C1e

T ξ (16)

s.t. Y − (Aw1 + eb1) ≥ −eε1 − 2(1 − p)ξ,

ε1 ≥ 0, ξ ≥ 0,

and

min
w2,b2,ε2,η

1

2
‖Y −(Aw2+eb2)‖2+C2ν2ε2+ 1

l
C2e

T η (17)

s.t. (Aw2 + eb2) − Y ≥ −eε2 − 2pη,

ε2 ≥ 0, η ≥ 0

where C1, C2, ν1, ν2 are parameters chosen in advance, ξ

and η are slack vectors.
The first term in the objective function of (16) or (17)

minimizes the sum of squared distances from the estimated
function f1(x) = wT

1 x + b1 or f2(x) = wT
2 x + b2 to the

training points. The second term means the ε1-tube and ε2-
tube are as narrow as possible. The third term minimizes the
sum of error variables. The constraints require the training
points lie above f1(x) − ε1 = wT

1 x + b1 − ε1 or below
f2(x)+ ε2 = wT

2 x +b2 + ε2 as possible. The slack vector ξ

or η is introduced to measure the error wherever the distance
is closer than ε1 or ε2. Note that the equal emphasis is given
to ξ, η in TSVR. Here, for the outliers, we apply a slightly
different penalty to them with the parameter p, i.e., pinball
loss. Moreover, it degrades into ε-intensive loss when p =
0.5.
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Fig. 2 Illustration of the Asy-ν-TSVR

Neural Comput & Applic (2018) 30:3799–38143802



To derive the dual formulations of Asy-ν-TSVR, we first
introduce the following Lagrangian function for the problem
(16), which is

L(w1, b1, ε1, ξ, α, β, γ)= 1

2
‖Y−(Aw1+eb1)‖2+C1ν1ε1 + 1

l
C1e

T ξ

−αT(Y −(Aw1+eb1)+eε1+2(1−p)ξ)−βε1−γ T ξ, (18)

where α, β, and γ are nonnegative and the Lagrangian
multipliers. After differentiating L in (18) with respect to
variables w1, b1, ε1 and ξ , we have

∂L

∂w1
= −AT (Y − (Aw1 + eb1)) + AT α = 0, (19)

∂L

∂b1
= −eT (Y − (Aw1 + eb1)) + eT α = 0, (20)

∂L

∂ε1
= C1ν1 − eT α − β = 0, (21)

∂L

∂ξ
= 1

l
C1e − 2(1 − p)α − γ = 0. (22)

Combining (19) and (20) leads to

−
[

AT

eT

](

(Y −eε1) − [A e]
[

w1

b1

])

+
[

AT

eT

]

α = 0. (23)

Define G = [A e], and μ1 = [w1, b1]T , then we have

− GT (Y − Gμ1) + GT α = 0. (24)

From (24), we can get

μ1 =(GT G)−1(GT Y −GT α)=(GT G)−1GT (Y −α). (25)

Then,

L= 1

2
‖Y−Gμ1‖2+C1ν1ε1+ 1

l
C1e

T ξ−αT(Y−Gμ1+eε1+2(1−p)ξ)

−βε1−γ T ξ = 1

2
‖Y −Gμ1‖2−αT (Y −Gμ1)

= 1

2
‖Y−G(GTG)−1GT(Y−α)‖2−αT(Y−G(GTG)−1GT(Y−α)).(26)

We can get

L=−1

2
αT G(GTG)−1GTα+YTG(GTG)−1GTα−YTα. (27)

From (21) and (22), we can obtain the following constraints,

eT α ≤ C1ν1, 0 ≤ α ≤ C1e/2(1 − p)l. (28)

Finally, we can derive the dual formulation of (16) as
follows

max
α

−1

2
αTG(GTG)−1GTα+YTG(GTG)−1GTα−YTα (29)

s.t. eT α ≤ C1ν1,

0 ≤ α ≤ C1e/2(1 − p)l.

Similary, we can obtain the dual formulation of (17) as

max
γ

−1

2
γ TG(GTG)−1GTγ−YTG(GTG)−1GTγ +YTγ (30)

s.t. eT γ ≤ C2ν2,

0 ≤ γ ≤ C2e/2pl.

Once (30) is solved, we can obtain
[

w2

b2

]

= (GT G)−1GT (Y + γ ). (31)

3.2 Nonlinear case

In order to extend our model to the nonlinear case, we con-
sider the following kernel-generated functions instead of
linear functions,

f1(x)=K(x, AT )w1+b1 and f2(x)=K(x, AT )w2+b2. (32)

The corresponding formulations are designed as follows

min
w1,b1,ε1,ξ

1

2
‖Y −(K(A,AT )μ1+eb1)‖2+C1ν1ε1+ 1

l
C1e

T ξ (33)

s.t. Y −(K(A,AT )μ1+eb1)≥−eε1−2(1−p)ξ,

ε1 ≥ 0, ξ ≥ 0,

and

min
w2,b2,ε2,η

1

2
‖Y −(K(A, AT )μ2+eb2)‖2+C2ν2ε2+ 1

l
C2e

T η (34)

s.t. (K(A,AT )μ2+eb2)−Y ≥−eε2−2pη

ε2 ≥ 0, η ≥ 0,

where C1, C2, ν1, and ν2 are parameters chosen in advance,
ξ and η are slack vectors. The dual formulations of (33) and
(34) can be derived as follows

max
α

−1

2
αT H(HTH)−1HTα+YT H(HTH)−1HTα−YT α (35)

s.t. eT α ≤ C1ν1,

0 ≤ α ≤ C1e/2(1 − p)l,

and

max
γ

−1

2
γ T H(HTH)−1HTγ −YT H(HTH)−1HT γ +YT γ (36)

s.t. eT γ ≤ C2ν2,

0 ≤ γ ≤ C2e/2pl,

where H = [K(A, AT ) e]. Once (35) and (36) are solved,
we can get the augmented vectors
[

w1

b1

]

= (HT H)−1HT (Y − α), (37)

and
[

w2

b2

]

= (HT H)−1HT (Y + γ ). (38)
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After the optimal values w1, w2 and b1, b2 are calculated,
the regression function is expressed as

f(x)= 1

2
(f1(x)+f2(x))= 1

2
(w1+w2)

TK(x, AT )+ 1

2
(b1+b2).(39)

Compared with other algorithms, Asy-ν-TSVR owns
following characteristics: First, it considers the sum of
squared distances from the training points to the shifted
functions f1(x) and f2(x) instead of others. Second, Asy-
ν-TSVR introduces the asymmetric loss function L

p
ε (u)

not ε-insensitive loss Lε , and different penalty is proposed
to give the samples locating in different positions. Third,
Asy-ν-TSVR degrades into the TSVR when p = 0.5, so
Asy-ν-TSVR is an extension of TSVR.

4 Discussion about the bound

In this section, we discuss the bounds of three algorithms,
i.e., ν-SVR, Asy-ν-SVR, and Asy-ν-TSVR. In ν-SVR,
there are same upper bounds for the points lying above
and below the ν-tube. However, in Asy-ν-SVR and Asy-ν-
TSVR, there are different upper bounds for the points above
the hyper-plane wT x+b+ε = 0 and below the hyper-plane
wT x + b − ε = 0.

Proposition 1 The optimal solution in ν-SVR satisfies:

l∑

i=1

L(yi < wT xi + b − ε) ≤ 1

2
lν,

l∑

i=1

L(yi > wT xi + b + ε) ≤ 1

2
lν,

l∑

i=1

L(wT xi +b−ε ≤yi ≤wT xi +b+ε)≥ l − lν, (40)

where L(a) stands for an indicator function, which is equal
to one when a is true and is zero otherwise.

Please refer to literature [5] for proof of this proposition.

Proposition 2 The optimal solution in Asy-ν-SVR satisfies:

l∑

i=1

L(yi < wT xi + b − ε) ≤ (1 − p)lν,

l∑

i=1

L(yi > wT xi + b + ε) ≤ plν,

l∑

i=1

L(wT xi +b−ε ≤yi ≤wT xi +b+ ε)≥ l − lν, (41)

where p is the parameter related to asymmetric. It means
that the points lying above and below the ν-tube have differ-
ent upper bounds. And when p=0.5, it has the same upper
bound as ν-SVR.

The proof of this proposition is in [18]. We can find that
there are different upper bounds for the samples lying above
and below the ε-tube in the Asy-ν-SVR.

Proposition 3 The optimal solution in Asy-ν-TSVR satis-
fies:

l∑

i=1

L(yi < wT
1 xi + b1 − ε1) ≤ 2(1 − p)lν1,

l∑

i=1

L(yi > wT
2 xi + b2 + ε2) ≤ 2plν2,

l∑

i=1

L(wT
1xi +b1−ε1 ≤yi≤wT

2 xi +b2+ε2)≥ l−2(1−p)lν1−2plν2,(42)

where L(a) stands for an indicator function, which is equal
to one when a is true and is zero otherwise.

Proof Any point below the line wT
1 x +b1 −ε1 = 0 satisfies

(wT
1 xi +b1 − ε1)−yi = 2(1 −p)ξi , and ξi > 0. According

to the complementary slackness condition, we have γi = 0.
We can further get αi = C1

2(1−p)l
from (22). Since β ≥ 0,

we get eT α ≤ C1ν1 from (21), it means that
l∑

i=1

αi ≤ C1ν1.

From above, we get

l∑

i=1

L(yi < wT
1 xi + b1 − ε1) ≤ 2(1 − p)lν1. (43)

Similarly, the points lying above the line wT
2 x+b2+ε2 =

0 satisfy

l∑

i=1

L(yi > wT
2 xi + b2 + ε2) ≤ 2plν2. (44)

Combining (43) and (44), we can get

l∑

i=1

L(wT
1xi + b1−ε1≤yi ≤wT

2 xi +b2+ε2)≥ l−2(1−p)lν1−2plν2.(45)

Note that there are different upper bounds for the samples
lying above the upper bound and below the down-bound in
the Asy-ν-TSVR.
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5 Numerical experiments

To demonstrate the validity of our Asy-ν-TSVR, we com-
pare it with other four algorithms, i.e., ν-SVR, LS-SVR,
TSVR, and Asy-ν-SVR using one artificial dataset, eleven
benchmark datasets, and a real wheat dataset. For the exper-
iment on each dataset, we use 5-fold cross-validation to
evaluate the performance of five algorithms. That is to say,
the dataset is split randomly into five subsets; one of those
sets is reserved as a test set, and the rest is training set. This
process is repeated five times, and the average of five testing
results is used as the performance measure.

5.1 Evaluation criteria

In order to evaluate the performance of our Asy-ν-TSVR,
the evaluation criteria are specified before presenting the
experimental results. The size of testing set is denoted by
l, while yi denotes the real value of a sample point xi ,

ŷi denotes the predicted value of xi , y = 1

l

l∑

i=1

yi is the

mean of y1, y2, · · · , yl . We use the following criteria for
algorithm evaluation [34].

MAE: Mean absolute error, defined as

MAE = 1

m

m∑

i=1

|yi − ŷi |. (46)

MAE is also a popular deviation measurement between the
real and predicted values.

RMSE: Root mean squared error, defined as

RMSE =
√
√
√
√ 1

m

m∑

i=1

(yi − ŷi )2. (47)

SSE/SST: Ratio between sum of squared error and sum of
squared deviation of testing samples, defined as

SSE/SST =
m∑

i=1

(yi − ŷi )
2/

m∑

i=1

(yi − ȳ)2. (48)

SSR/SST: Ratio between interpretable sum of squared devi-
ation and real sum of squared deviation of testing samples,
defined as

SSR/SST =
m∑

i=1

(ŷi − ȳ)2/

m∑

i=1

(yi − ȳ)2. (49)

In most cases, small SSE/SST means there is good agree-
ment between the estimates and the real values, and decreas-
ing SSE/SST is usually accompanied by an increase in
SSR/SST.

Time: The total training time and testing time.

5.2 Parameter selection

The performance of these five algorithms depends heav-
ily on the choices of parameters. In our experiments, we
choose optimal values for the parameters by the grid search
method. In five algorithms, the Gaussian kernel parame-
ter σ is selected from the set {2i |i = −4, −3, · · · , 8}.
In TSVR and Asy-ν-TSVR, we set C1=C2, ν1=ν2 and
ε1=ε2 to degrade the computational complexity of param-
eter selection. The parameter C is searched from the set
{2i |i = −3, −2, · · · , 8}. The optimal values for ν in four
algorithms are chosen from the set {0.1, 0.2, · · · , 0.9}. The
optimal values for ε in algorithms are selected from the set
{0.1, 0.2, · · · , 0.9}. Parameter p is searched from the set
{0.2, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8}.

5.3 Experiment on artificial dataset with noises

To evaluate the performance of Asy-ν-TSVR, we carry out
an artificial experiment under different cases. We firstly
generate 100 points (Xi, i = 1, · · · , 100) following a uni-
form distribution in [0, 1]5, linear function Y (X) = wT X +
b + (δχ2 − 4) with w = [1; 0.5; −0.5; −1; 2], b = −3 is
used to calculate their values, here δχ2 follows a chi-squared
distribution with 4 degrees of freedom. The generated points
(Xi, Yi), i = 1, · · · , 100 are regarded as samples. Subse-
quently we randomly select 5% of the samples and replace
their observed results by random values following a uniform
distribution in the range of [−15, 15]; thus, the new samples
(Xi, Yi), i = 1, · · · , 100 are produced. Finally, a uniform
distribution in the range of [−30, 30] is used to build another
samples. Fivefold cross-validation is applied as before, the
experimental results of five algorithms are listed in Table 1.
Apparently, our proposed algorithm Asy-ν-TSVR always
performs the lowest MAE among five algorithms on this
artificial dataset with different noises. The reason may lie in
that our Asy-ν-TSVR adopts the pinball loss function but ν-
SVR, LS-SVR, and TSVR adopt ε-insensitive loss. It makes
Asy-ν-TSVR less sensitive to noises and has better gener-
alization ability since samples from different positions are
given different punishments. The Gaussian kernel function
k(xi, xj ) = exp(−||xi − xj ||2/σ 2) is used on this artificial
dataset. The optimal parameters used in the experiment are
listed in the last column of Table 1.

5.4 Experiments on benchmark datasets

To further verify the efficiency of our algorithm, we con-
duct experiments on eleven benchmark datasets from the
UCI machine learning repository1. The datasets are Auto
Price, Bodyfat, Chwirut, Con. S, Diabetes, Machine-Cpu,

1http://archive.ics.uci.edu/ml/datasets.html
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Table 1 Testing errors on artificial datasets with different noises

Datasets Algorithms MAE RMSE SSE/SST SSR/SST Time(s) (C, σ, ν, ε, p)

Artificial dataset ν-SVR 2.4868 ± 0.4598 3.4496 ± 0.7586 1.2682 ± 0.1901 0.2661 ± 0.1880 0.0801 (64, 0.0625, 0.8, ∼, ∼)

(100 × 5) Asy-ν-SVR 2.3798 ± 0.4255 3.1726 ± 0.7513 1.0600 ± 0.0481 0.0565 ± 0.0417 0.0490 (256, 0.0625, 0.7, ∼, 0.6)

LS-SVR 2.4207 ± 0.3673 3.0895 ± 0.6751 1.0121 ± 0.0690 0.0425 ± 0.0307 0.0101 (0.125, 0.5, ∼, ∼, ∼)

TSVR 2.4198 ± 0.3215 3.0952 ± 0.6285 1.0247 ± 0.1248 0.0680 ± 0.0507 0.0977 (4, 256, ∼, 0.9, ∼)

Asy-ν-TSVR 2.3720 ± 0.3324 3.1457 ± 0.6380 1.0622 ± 0.1647 0.1184 ± 0.0932 0.0903 (256, 256, 0.6, ∼, 0.8)

Artificial dataset ν-SVR 2.5779 ± 0.4800 3.2318 ± 0.6819 0.9925 ± 0.1314 0.1322 ± 0.0678 0.0735 (256, 0.25, 0.2, ∼, ∼)

[−15, 15] Asy-ν-SVR 2.5650 ± 0.4166 3.2239 ± 0.5760 0.9993 ± 0.1552 0.1023 ± 0.0879 0.1036 (256, 2, 0.4, ∼, 0.6)

(100 × 5) LS-SVR 2.5186 ± 0.3909 3.2381 ± 0.6609 1.0234 ± 0.3011 0.1797 ± 0.1425 0.0253 (128, 16, ∼, ∼, ∼)

TSVR 2.4962 ± 0.4871 3.2477 ± 0.7039 1.0593 ± 0.4585 0.2801 ± 0.2304 0.1141 (16, 128, ∼, 0.9, ∼)

Asy-ν-TSVR 2.4588 ± 0.4915 3.2822 ± 0.7753 1.0551 ± 0.3539 0.2495 ± 0.1525 0.1310 (256, 128, 0.6, ∼, 0.8)

Artificial dataset ν-SVR 3.6298 ± 0.5305 5.9945 ± 1.3656 1.0408 ± 0.0544 0.0409 ± 0.0544 0.6224 (256, 0.0625, 0.3, ∼, ∼)

[−30, 30] Asy-ν-SVR 3.5152 ± 0.5740 5.9683 ± 1.3446 1.0323 ± 0.0416 0.0322 ± 0.0414 0.0841 (128, 0.0625, 0.9, ∼, 0.2)

(100 × 5) LS-SVR 3.5512 ± 0.6631 5.7974 ± 1.3532 0.9742 ± 0.0838 0.0899 ± 0.0659 0.0222 (128, 32, ∼, ∼, ∼)

TSVR 3.4882 ± 0.6788 5.7888 ± 1.2884 0.9754 ± 0.0739 0.0823 ± 0.0539 0.1600 (16, 256, ∼, 0.1, ∼)

Asy-ν-TSVR 3.4517 ± 0.8390 5.8438 ± 1.3738 0.9901 ± 0.0939 0.1081 ± 0.0939 0.0908 (256, 256, 0.8, ∼, 0.8)

Italic type shows the best result

Pyrimidibes, Triazines, Housing, Istanbul Stock Exchange,
and Yacht Hydrodynamics. Both linear kernel and Gaus-
sian kernel are considered in five algorithms. Moreover,
statistical tests, including the Wilcoxon signed-rank test and
Friedman test, are also used to demonstrate the validity of
our proposed method. At last, we also study the relation-
ship between the efficiency of our Asy-ν-TSVR and the
asymmetry of the datasets in Section 5.4.4.

5.4.1 Result comparison and discussion

The experimental results of five algorithms are summarized
in Table 2 when linear kernel is employed, and in Table 3
when Gaussian kernel is used. In the error items, the first
item denotes the mean value of five times testing results,
and the second item stands for plus or minus the standard
deviation. Time denotes the mean value of time taken by
five time experiments, and each experimental time consists
of training time and testing time.

In terms of MAE criterion, from Table 2, we can find that
Asy-ν-SVR produces the lowest testing error among five
algorithms in most cases when linear kernel is employed,
followed by Asy-ν-TSVR. Both of them employ the pinball
loss, which implies that pinball loss is more suitable than
ε-insensitive loss for these datasets. In addition, in terms of
RMSE criterion, Asy-ν-TSVR yields the comparable test-
ing error with Asy-ν-SVR and TSVR. It further shows that
pinball loss is suitable for these datasets. Meanwhile, we
can find that small MAE and RMSE corresponds to small
SSE/SST and large SSR/SST in most cases.

No matter from MAE criterion or RMSE criterion, from
Table 3, we can find that Asy-ν-TSVR yields the lowest test-
ing errors among five algorithms on most datasets. Followed
by TSVR. On dataset Pyrimidibes, although Asy-ν-TSVR
produces lightly higher MAE than ν-SVR and Asy-ν-SVR.
Asy-ν-TSVR produces the lowest RMSE among five algo-
rithms. In addition, we can also find that Asy-ν-SVR yields
slightly lower MAE than ν-SVR. It further testifies that the
pinball loss function is effective in the Asy-ν-TSVR. Mean-
while, we can find that small MAE and RMSE corresponds
to small SSE/SST and large SSR/SST in most cases.

In terms of computational time, from Tables
2 and 3, we can really find that TSVR costs
more running time than Asy-ν-TSVR for
most cases. It means that the introduction of
pinball loss function does not increase computational cost of
Asy-ν-TSVR. In addition, ν-SVR and Asy-ν-SVR cost larger
running time than TSVR and Asy-ν-TSVR. The main reason
lies in that they solve a larger-sized QPP but TSVR and
Asy-ν-TSVR solve a pair of smaller-sized QPPs. LS-SVR
costs the least running time among five algorithms since it
solves a system of linear equations rather than a QPP.

To further verify the computational burden with different
p values in our Asy-ν-TSVR, we analyze the experiments
on 11 benchmark datasets with different p values. The
average values of computational time on each dataset are
summarized in Table 4, and the MAE of Asy-ν-SVR and
Asy-ν-TSVR are displayed in Table 5.

From Table 4, we can find that Asy-ν-TSVR costs less
time when p value is near to 0.5. That is, smaller or larger p
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Table 2 Performance comparisons of five algorithms with linear case on eleven benchmark datasets

Datasets Algorithms MAE RMSE SSE/SST SSR/SST Time (s) (C, σ, ν, ε, p)

Auto Price ν-SVR 1960.7 ± 504.5 2775.2 ± 763.1 0.3969 ± 0.2865 0.9727 ± 0.5616 1.3080 (2, ∼, 0.4, ∼, ∼)

(159 × 15) Asy-ν-SVR 1955.2 ± 538.8 2772.9 ± 795.7 0.3864 ± 0.2623 0.9795 ± 0.5608 0.7302 (8, ∼, 0.5, ∼, 0.45)

LS-SVR 2355.4 ± 691.6 3351.5 ± 1245.1 0.4839 ± 0.1957 1.0103 ± 0.7162 0.0277 (0.1250, ∼, ∼, ∼, ∼)

TSVR 2486.1 ± 602.5 3512.1 ± 1121.0 0.5693 ± 0.2756 1.0918 ± 0.7527 0.1683 (256, ∼, ∼, 0.9, ∼)

Asy-ν-TSVR 2493.5 ± 599.3 3517.3 ± 1116.4 0.5717 ± 0.2769 1.0937 ± 0.7536 0.3989 (256, ∼, 0.9, ∼, 0.8)

Bodyfat ν-SVR 0.0808 ± 0.0155 0.0998 ± 0.0194 0.3924 ± 0.0798 0.7378 ± 0.2306 1.7772 (256, ∼, 0.4, ∼, ∼)

(252 × 13) Asy-ν-SVR 0.0761 ± 0.0118 0.0972 ± 0.0159 0.3830 ± 0.1145 0.7420 ± 0.2935 1.5051 (256, ∼, 0.4, ∼, 0.2)

LS-SVR 0.0755 ± 0.0071 0.0940 ± 0.0080 0.3906 ± 0.2275 0.8575 ± 0.4109 0.0839 (256, ∼, ∼, ∼, ∼)

TSVR 0.0744 ± 0.0074 0.0936 ± 0.0074 0.3887 ± 0.2330 0.8377 ± 0.4309 0.2571 (1, ∼, ∼, 0.9, ∼)

Asy-ν-TSVR 0.0743 ± 0.0071 0.0933 ± 0.0079 0.3898 ± 0.2428 0.8332 ± 0.4275 0.2683 (128, ∼, 0.8, ∼, 0.4)

Chwirut ν-SVR 0.1860 ± 0.0380 0.2156 ± 0.0352 0.7261 ± 0.3106 1.2780 ± 0.3868 0.7406 (256, ∼, 0.1, ∼, ∼)

(214 × 1) Asy-ν-SVR 0.1860 ± 0.0380 0.2156 ± 0.0352 0.7261 ± 0.3106 1.2780 ± 0.3868 0.3815 (256, ∼, 0.1, ∼, 0.5)

LS-SVR 0.1251 ± 0.0141 0.1449 ± 0.0186 0.3097 ± 0.0539 0.6670 ± 0.1285 0.0265 (1, ∼, ∼, ∼, ∼)

TSVR 0.1239 ± 0.0143 0.1447 ± 0.0183 0.3085±0.0530 0.7265±0.1346 0.1365 (0.25, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 0.1214 ± 0.0144 0.1492 ± 0.0221 0.3262 ± 0.0513 0.7425 ± 0.1155 0.1558 (32, ∼, 0.8, ∼, 0.8)

Con. S ν-SVR 0.1873 ± 0.0230 0.2315 ± 0.0171 0.6660 ± 0.2019 0.5204 ± 0.3562 0.1378 (256, ∼, 0.4, ∼, ∼)

(103 × 7) Asy-ν-SVR 0.1855 ± 0.0329 0.2298 ± 0.0365 0.6798 ± 0.2773 0.4178 ± 0.3431 0.0909 (32, ∼, 0.7, ∼, 0.8)

LS-SVR 0.1921 ± 0.0368 0.2314 ± 0.0290 0.6807 ± 0.2438 0.4450 ± 0.3291 0.0179 (4, ∼, ∼, ∼, ∼)

TSVR 0.1936 ± 0.0359 0.2353 ± 0.0314 0.7038 ± 0.2615 0.5251 ± 0.4112 0.0741 (0.5, ∼, ∼, 0.9, ∼)

Asy-ν-TSVR 0.1898 ± 0.0387 0.2271±0.0284 0.6544 ± 0.2336 0.4056 ± 0.2361 0.0798 (128, ∼, 0.1, ∼, 0.8)

Diabetes ν-SVR 0.4451 ± 0.0809 0.5836 ± 0.0898 0.8833 ± 0.3579 0.4607 ± 0.2994 0.0452 (4, ∼, 0.2, ∼, ∼)

(43×2) Asy-ν-SVR 0.4407 ± 0.0763 0.5788 ± 0.0867 0.8512 ± 0.2673 0.3709 ± 0.1551 0.0292 (8, ∼, 0.2, ∼, 0.4)

LS-SVR 0.4940 ± 0.0686 0.6187 ± 0.0400 1.0257 ± 0.4498 0.5972 ± 0.3892 0.0160 (256, ∼, ∼, ∼, ∼)

TSVR 0.4842 ± 0.0976 0.6248 ± 0.0876 1.0849 ± 0.5940 0.7703 ± 0.4881 0.0382 (16, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 0.4830 ± 0.0935 0.6349 ± 0.0846 1.0745 ± 0.5154 0.7420 ± 0.3795 0.0367 (128, ∼, 0.4, ∼, 0.8)

Machine-Cpu ν-SVR 34.8133 ± 16.9816 64.1274 ± 48.3133 0.2256 ± 0.1593 0.5957 ± 0.2035 2.2050 (8, ∼, 0.9, ∼, ∼)

(209×6) Asy-ν-SVR 33.774 ± 15.659 62.6452 ± 46.3595 0.2173 ± 0.1526 0.5876 ± 0.1940 2.2909 (64, ∼, 0.6, ∼, 0.55)

LS-SVR 43.3543 ± 16.0953 71.1977 ± 40.4697 0.3836 ± 0.4108 1.0469 ± 0.4421 0.1174 (0.1250, ∼, ∼, ∼, ∼)

TSVR 41.6387 ± 15.7333 69.4367 ± 41.8549 0.3489 ± 0.3562 0.9557 ± 0.3817 0.1961 (128, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 43.2571 ± 16.1525 71.1210 ± 40.6607 0.3823 ± 0.4094 1.0434 ± 0.4405 0.1910 (256, ∼, 0.9, ∼, 0.8)

Pyrimidibes ν-SVR 0.0589 ± 0.0244 0.0843 ± 0.0481 1.3703 ± 1.9814 1.4539 ± 1.7678 0.0902 (16, ∼, 0.7, ∼, ∼)

(74×27) Asy-ν-SVR 0.0574 ± 0.0198 0.0844 ± 0.0440 1.2238 ± 1.5000 1.3261 ± 1.4229 0.0520 (16, ∼, 0.3, ∼, 0.45)

LS-SVR 0.0624 ± 0.0195 0.0891 ± 0.0483 1.2949 ± 1.5905 1.2571 ± 1.3706 0.0161 (2, ∼, ∼, ∼, ∼)

TSVR 0.0976 ± 0.0418 0.1513 ± 0.0758 5.2084 ± 8.6257 5.1894 ± 8.0761 0.0653 (0.25, ∼, ∼, 0.9, ∼)

Asy-ν-TSVR 0.0948 ± 0.0402 0.1452 ± 0.0702 4.9105 ± 8.2625 4.9572 ± 7.6816 0.0858 (8, ∼, 0.3, ∼, 0.2)

Triazines ν-SVR 0.1010 ± 0.0136 0.1435 ± 0.0127 0.8867 ± 0.1675 0.2204 ± 0.0644 0.4743 (8, ∼, 0.8, ∼, ∼)

(186 × 60) Asy-ν-SVR 0.1007 ± 0.0132 0.1427 ± 0.0121 0.8756 ± 0.1559 0.2198 ± 0.0691 0.6135 (8, ∼, 0.8, ∼, 0.55)

LS-SVR 0.1041 ± 0.0064 0.1421 ± 0.0065 0.8668 ± 0.1106 0.2312 ± 0.1262 0.0221 (0.2500, ∼, ∼, ∼, ∼)

TSVR 0.1167 ± 0.0103 0.1599 ± 0.0125 1.1278 ± 0.3143 0.6550 ± 0.3033 0.1258 (8, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 0.1135 ± 0.0082 0.1586 ± 0.0134 1.1032 ± 0.2847 0.6046 ± 0.2553 0.1395 (16, ∼, 0.5, ∼, 0.2)

Housing ν-SVR 3.3147 ± 0.1912 5.0119 ± 0.7285 0.3039 ± 0.0751 0.6392 ± 0.1127 6.7073 (64, ∼, 0.9, ∼, ∼)

(506 × 13) Asy-ν-SVR 3.2242 ± 0.1997 5.0568 ± 0.9189 0.3122 ± 0.1055 0.6703 ± 0.1116 15.9027 (256, ∼, 0.7, ∼, 0.6)

LS-SVR 3.4189 ± 0.2000 4.9763 ± 0.7865 0.3001 ± 0.0828 0.7441 ± 0.1227 0.7548 (2, ∼, ∼, ∼, ∼)

TSVR 3.3564 ± 0.2078 4.9689 ± 0.8472 0.3000 ± 0.0920 0.7350 ± 0.1201 1.2754 (8, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 3.3927 ± 0.2136 4.9748 ± 0.7973 0.2999 ± 0.0836 0.7447 ± 0.1194 1.1837 (256, ∼, 0.9, ∼, 0.8)
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Table 2 (continued)

Datasets Algorithms MAE RMSE SSE/SST SSR/SST Time (s) (C, σ, ν, ε, p)

Istanbul Stock
Exchange

ν-SVR 0.0055 ± 0.0016 0.0067 ± 0.0016 0.4360 ± 0.2043 0.9139 ± 0.1943 3.1161 (256, ∼, 0.5, ∼, ∼)

(536 × 8) Asy-ν-SVR 0.0051 ± 0.0014 0.0062 ± 0.0014 0.3689 ± 0.1426 0.8565 ± 0.1489 4.1568 (256, ∼, 0.9, ∼, 0.2)

LS-SVR 0.0037 ± 0.0004 0.0049 ± 0.0005 0.2254 ± 0.0449 0.7758 ± 0.1142 0.0961 (256, ∼, ∼, ∼, ∼)

TSVR 0.0038 ± 0.0003 0.0050 ± 0.0005 0.2333 ± 0.0467 0.8137 ± 0.1636 0.8496 (0.125, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 0.0037 ± 0.0003 0.0049 ± 0.0005 0.2267 ± 0.0441 0.8125 ± 0.1266 0.4692 (2, ∼, 0.6, ∼, 0.55)

Yacht Hydro-
dynamics

ν-SVR 7.8657 ± 2.1482 15.0612 ± 3.2395 1.0231 ± 0.0995 0.2416 ± 0.0709 3.1683 (256, ∼, 0.9, ∼, ∼)

(308 × 6) Asy-ν-SVR 7.8272 ± 2.1403 14.8498 ± 3.2994 0.9932 ± 0.1095 0.2219 ± 0.0803 2.3730 (256, ∼, 0.9, ∼, 0.45)

LS-SVR 7.0280 ± 0.8833 9.7910 ± 1.9086 0.4343 ± 0.0207 0.3887 ± 0.1873 0.1289 (1, ∼, ∼, ∼, ∼)

TSVR 7.2462 ± 0.3822 9.3299 ± 1.2581 0.4039 ± 0.0603 0.6221 ± 0.2909 0.4217 (32, ∼, ∼, 0.1, ∼)

Asy-ν-TSVR 7.4967 ± 0.2038 9.3972 ± 0.9939 0.4155 ± 0.0892 0.7320 ± 0.3466 0.3702 (256, ∼, 0.9, ∼, 0.8)

Italic type shows the best result

value will increase the computational burden. From Table 5,
we can see that the MAE of both Asy-ν-SVR and Asy-
ν-TSVR are monotonic as p varies from 0.2 to 0.8 for
most datasets. For example, the MAE is monotonically
decreasing on Auto Price and Machine-Cpu. However, it
is monotonically increasing on Pyrimidibes. The p value
controls the imbalance ratio of punishments on different
samples. The experimental results in Table 5 verify that the
introduction of pinball loss can actually improve the perfor-
mance of the model for Asymmetric datasets. And different
datasets fit for different p values.

5.4.2 Wilcoxon signed-rank test

In these benchmark experiments, both linear kernel and non-
linear kernel are employed. To verify that which is more
effective, the Wilcoxon signed-rank test [35] is used.

The Wilcoxon signed-rank test is a nonparametric sta-
tistical hypothesis test used when comparing two related
samples, matched samples, or repeated measurements on
a single sample to assess whether their population mean
ranks differ (i.e., it is a paired difference test). Here, we
use the “signrank” function in Matlab to do the Wilcoxon
signed-rank test. For each algorithm, the null hypothesis H0

demonstrates that the MAE in linear case is larger than that
in the nonlinear case.

Table 6 lists the p values of a right-sided Wilcoxon
signed-rank test, the test statistic W and a logical value
indicating the test decision. h = 1 indicates a rejection
of the null hypothesis, and h = 0 indicates a failure to
reject the null hypothesis at the 5% significance level. We
can see that the results are h = 0 for all five algorithms,
which means that the nonlinear case is superior to the linear
case.

5.4.3 Paired t test

From Table 3, one can easily observe that our proposed
Asy-ν-TSVR does not outperform four other algorithms for
all datasets in the nonlinear case. We use five times test-
ing results corresponding to the lowest error to perform
the paired t test. The null hypothesis H0 demonstrates that
there is no significant difference between the two algo-
rithms tested. The hypothesis H0 is rejected if the p value
is less than 0.05 under the significance level α = 0.05.
We compute the p values between Asy-ν-TSVR and other
algorithms. From the experimental results, we can find that
there are significant differences between Asy-ν-TSVR and
other algorithms on datasets Chwirut, Housing, and Yacht
Hydrodynamics. However, there is no significant difference
on other datasets.

5.4.4 Friedman test

To further demonstrate the validity of our proposed Asy-
ν-TSVR in the nonlinear case, Friedman test [36, 37] is
employed. We assume Friedman test with the correspond-
ing post hoc tests which is considered to be a simple,
nonparametric yet safe test. For this, the average ranks
of five algorithms on MAE for all datasets are calculated
and listed in Table 7. Under the null hypothesis that all
algorithms are equivalent, one can compute the Friedman
statistic according to (50),

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ , (50)
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Table 3 Performance comparisons of five algorithms with Gaussian kernel on eleven benchmark datasets

Datasets Algorithms MAE RMSE SSE/SST SSR/SST Time (s) (C, σ, ν, ε, p)

Auto Price ν-SVR 4944.5 ± 2580.1 6308.9 ± 3140.0 1.6240 ± 1.0536 0.6240 ± 1.0536 0.4577 (1, 16, 0.4, ∼, ∼)

(159 × 15) Asy-ν-SVR 4944.4 ± 2580.1 6308.9 ± 3140.0 1.6240 ± 1.0536 0.6241 ± 1.0536 0.4356 (4, 256, 0.3, ∼, 0.55)

LS-SVR 2618.7 ± 1127.9 3944.5 ± 2296.6 0.6653 ± 0.4088 0.8397 ± 0.6294 0.0305 (2, 256, ∼, ∼, ∼)

TSVR 4629.7 ± 1108.4 5689.2 ± 1884.4 1.6373 ± 1.3147 0.6974 ± 1.2752 0.2408 (64, 8, ∼, 0.1, ∼)

Asy-ν-TSVR 4629.7 ± 1108.4 5689.2 ± 1884.4 1.6373 ± 1.3147 0.6974 ± 1.2752 0.1899 (256, 8, 0.9, ∼, 0.8)

Bodyfat ν-SVR 0.0764 ± 0.0120 0.0952 ± 0.0143 0.3761 ± 0.1428 0.6898 ± 0.2317 0.5418 (256, 1, 0.5, ∼, ∼)

(252×13) Asy-ν-SVR 0.0750 ± 0.0100 0.0937 ± 0.0135 0.3684 ± 0.1489 0.6744 ± 0.2565 0.6891 (256, 1, 0.5, ∼, 0.8)

LS-SVR 0.0724 ± 0.0083 0.0903 ± 0.0106 0.3544 ± 0.1831 0.7766 ± 0.3058 0.0234 (256, 4, ∼, ∼, ∼)

TSVR 0.0720 ± 0.0076 0.0896 ± 0.0086 0.3555 ± 0.2044 0.8021 ± 0.3618 0.3710 (1, 16, ∼, 0.1, ∼)

Asy-ν-TSVR 0.0717 ± 0.0084 0.0896 ± 0.0097 0.3608 ± 0.2238 0.8182 ± 0.3923 0.2899 (128, 16, 0.8, ∼, 0.4)

Chwirut ν-SVR 0.0725 ± 0.0136 0.0806 ± 0.0094 0.1008 ± 0.0353 1.0839 ± 0.1568 0.4774 (256, 0.0625, 0.5, ∼, ∼)

(214 × 1) Asy-ν-SVR 0.0615 ± 0.0111 0.0724 ± 0.0086 0.0814 ± 0.0290 1.1626 ± 0.1930 0.4150 (256, 0.125, 0.6, ∼, 0.2)

LS-SVR 0.0283 ± 0.0120 0.0387 ± 0.0170 0.0242 ± 0.0168 1.0153 ± 0.1420 0.0190 (256, 0.25, ∼, ∼, ∼)

TSVR 0.0274 ± 0.0131 0.0377 ± 0.0176 0.0234 ± 0.0169 1.0110 ± 0.1344 0.2730 (0.125, 0.5, ∼, 0.1, ∼)

Asy-ν-TSVR 0.0272 ± 0.0135 0.0376 ± 0.0181 0.0234 ± 0.0175 1.0113 ± 0.1356 0.2290 (16, 0.5, 0.7, ∼, 0.55)

Con. S ν-SVR 0.1940 ± 0.0485 0.2351 ± 0.0446 0.6748 ± 0.2543 0.4114 ± 0.2027 0.0770 (128, 1, 0.9, ∼, ∼)

(103 × 7) Asy-ν-SVR 0.1885 ± 0.0453 0.2283 ± 0.0443 0.6478 ± 0.2943 0.3353 ± 0.1512 0.0974 (128, 1, 0.9, ∼, 0.45)

LS-SVR 0.1884 ± 0.0287 0.2263 ± 0.0259 0.6521 ± 0.2406 0.4460 ± 0.2833 0.0348 (128, 4, ∼, ∼, ∼)

TSVR 0.1814 ± 0.0304 0.2219 ± 0.0266 0.6255 ± 0.2460 0.5378 ± 0.2824 0.1240 (0.125, 64, ∼, 0.9, ∼)

Asy-ν-TSVR 0.1802 ± 0.0290 0.2194 ± 0.0238 0.6077 ± 0.2263 0.5171 ± 0.2709 0.1063 (16, 64, 0.1, ∼, 0.2)

Diabetes ν-SVR 0.4514 ± 0.1034 0.5765 ± 0.0827 0.8948 ± 0.4455 0.5266 ± 0.3351 0.0462 (256, 16, 0.3, ∼, ∼)

(43 × 2) Asy-ν-SVR 0.4471 ± 0.0933 0.5628 ± 0.0739 0.8339 ± 0.3441 0.4231 ± 0.2517 0.0226 (128, 16, 0.3, ∼, 0.45)

LS-SVR 0.4774 ± 0.0913 0.5832 ± 0.0414 0.9163 ± 0.4262 0.6505 ± 0.4362 0.0117 (256, 32, ∼, ∼, ∼)

TSVR 0.4549 ± 0.0986 0.5419 ± 0.0729 0.7591 ± 0.2888 0.6417 ± 0.2493 0.1078 (4, 64, ∼, 0.1, ∼)

Asy-ν-TSVR 0.4383 ± 0.0840 0.5375 ± 0.0750 0.7578 ± 0.3408 0.6357 ± 0.2768 0.0642 (128, 64, 0.2, ∼, 0.8)

Machine-Cpu ν-SVR 92.7969 ± 23.2384 148.3253 ± 70.9127 1.2708 ± 0.5598 0.2939 ± 0.5545 0.6891 (256, 256, 0.5, ∼, ∼)

(209 × 6) Asy-ν-SVR 92.4516 ± 23.1962 148.0403 ± 70.9974 1.2657 ± 0.5606 0.2930 ± 0.5521 0.4715 (256, 256, 0.5, ∼, 0.4)

LS-SVR 62.3803 ± 21.4439 118.7040 ± 79.3577 0.8996 ± 0.7644 0.6011 ± 0.4166 0.0199 (128, 256, ∼, ∼, ∼)

TSVR 81.4597 ± 40.3451 147.4851 ± 90.0133 1.0404 ± 0.2255 0.2314 ± 0.1800 0.2309 (4, 8, ∼, 0.1, ∼)

Asy-ν-TSVR 80.8976 ± 40.0417 147.1105 ± 89.9115 1.0350 ± 0.2267 0.2255 ± 0.1725 0.2128 (256, 8, 0.2, ∼, 0.8)

Pyrimidibes ν-SVR 0.0468 ± 0.0170 0.0715 ± 0.0455 0.9105 ± 1.1604 1.2259 ± 1.1602 0.1071 (256, 2, 0.4, ∼, ∼)

(74 × 27) Asy-ν-SVR 0.0468 ± 0.0170 0.0715 ± 0.0455 0.9105 ± 1.1604 1.2259 ± 1.1602 0.0519 (256, 2, 0.4, ∼, 0.5)

LS-SVR 0.0468 ± 0.0180 0.0704 ± 0.0449 0.9234 ± 1.1962 1.2161 ± 1.1616 0.0244 (128, 2, ∼, ∼, ∼)

TSVR 0.0494 ± 0.0132 0.0670 ± 0.0282 0.7628 ± 0.8594 1.1787 ± 0.9547 0.0456 (0.25, 64, ∼, 0.1, ∼)

Asy-ν-TSVR 0.0483 ± 0.0120 0.0661 ± 0.0271 0.7203 ± 0.7521 1.1637 ± 0.8907 0.0860 (32, 64, 0.7, ∼, 0.8)

Triazines ν-SVR 0.0968 ± 0.0128 0.1354 ± 0.0161 0.7907 ± 0.1889 0.2962 ± 0.0918 0.4574 (256, 2, 0.3, ∼, ∼)
(186 × 60) Asy-ν-SVR 0.0946 ± 0.0147 0.1431 ± 0.0200 0.8858 ± 0.2455 0.3457 ± 0.1253 0.2158 (64, 1, 0.7, ∼, 0.4)

LS-SVR 0.0981 ± 0.0116 0.1404 ± 0.0106 0.8493 ± 0.1587 0.3570 ± 0.1511 0.0245 (4, 1, ∼, ∼, ∼)
TSVR 0.1026 ± 0.0080 0.1424 ± 0.0097 0.8664 ± 0.0881 0.2431 ± 0.1202 0.2175 (0.5, 256, ∼, 0.9, ∼)
Asy-ν-TSVR 0.1006 ± 0.0129 0.1451 ± 0.0172 0.8937 ± 0.1105 0.2355 ± 0.0243 0.1427 (64, 256, 0.8, ∼, 0.2)

Housing ν-SVR 5.4063 ± 0.3851 8.2144 ± 0.5051 0.8119 ± 0.0732 0.2435 ± 0.0503 11.0028 (256, 64, 0.8, ∼, ∼)
(506 × 13) Asy-ν-SVR 5.3764 ± 0.3421 8.1876 ± 0.5161 0.8062 ± 0.0693 0.2468 ± 0.0387 5.0205 (256, 64, 0.9, ∼, 0.45)

LS-SVR 3.0499 ± 0.0831 4.4672 ± 0.3207 0.2410 ± 0.0333 0.8581 ± 0.0969 0.0905 (256, 64, ∼, ∼, ∼)
TSVR 2.4920 ± 0.1778 3.6393 ± 0.4425 0.1588 ± 0.0240 0.8670 ± 0.0631 2.0754 (8, 256, ∼, 0.1, ∼)
Asy-ν-TSVR 2.5397 ± 0.1867 3.6822 ± 0.4688 0.1627 ± 0.0264 0.8680 ± 0.0535 1.4429 (256, 256, 0.9, ∼, 0.8)

Istanbul Stock
Exchange

ν-SVR 0.0043 ± 0.0004 0.0059 ± 0.0007 0.3273 ± 0.0752 0.7896 ± 0.1670 3.3291 (256, 0.0625, 0.3, ∼, ∼)
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Table 3 (continued)

Datasets Algorithms MAE RMSE SSE/SST SSR/SST Time (s) (C, σ, ν, ε, p)

(536 × 8) Asy-ν-SVR 0.0041 ± 0.0003 0.0056 ± 0.0007 0.2925 ± 0.0615 0.7848 ± 0.1470 1.6578 (128, 0.0625, 0.6, ∼, 0.4)

LS-SVR 0.0037 ± 0.0004 0.0049 ± 0.0005 0.2262 ± 0.0444 0.7747 ± 0.1139 0.0833 (256, 1, ∼, ∼, ∼)

TSVR 0.0037 ± 0.0004 0.0049 ± 0.0005 0.2314 ± 0.0495 0.8354 ± 0.1355 1.3920 (0.125, 8, ∼, 0.2, ∼)

Asy-ν-TSVR 0.0037 ± 0.0004 0.0049 ± 0.0005 0.2304 ± 0.0498 0.8391 ± 0.1328 2.2095 (64, 8, 0.5, ∼, 0.5)

Yacht Hydro-
dynamics

ν-SVR 7.3725 ± 2.1892 14.8909 ± 3.4073 0.9964 ± 0.1181 0.2567 ± 0.0684 1.2566 (256, 0.125, 0.9, ∼, ∼)

(308 × 6) Asy-ν-SVR 7.2913 ± 2.1579 14.6866 ± 3.3689 0.9690 ± 0.1142 0.2427 ± 0.0650 1.2460 (256, 0.125, 0.9, ∼, 0.45)

LS-SVR 1.6644 ± 0.5340 3.1793 ± 1.3592 0.0452 ± 0.0230 0.8160 ± 0.1036 0.0395 (256, 0.125, ∼, ∼, ∼)

TSVR 0.4125 ± 0.1925 0.9950 ± 0.5742 0.0047 ± 0.0034 0.9552 ± 0.0334 0.5196 (128, 0.125, ∼, 0.1, ∼)

Asy-ν-TSVR 0.4119 ± 0.1917 0.9930 ± 0.5717 0.0047 ± 0.0033 0.9554 ± 0.0333 0.5434 (256, 0.125, 0.4, ∼, 0.8)

Italic type shows the best result

where Rj = 1

N

∑

i

r
j
i , and r

j
i denotes the j -th of k

algorithms on the i-th of N datasets. Friedman’s χ2
F is

undesirably conservative and derives a better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

, (51)

which is distributed according to the F-distribution with k-1
and (k − 1)(N − 1) degrees of freedom.

We can obtain χ2
F = 12.09 and FF = 3.789 accord-

ing to (50) and (51), where FF is distributed according to
F-distribution with (4, 40) degrees of freedom. The critical
value of F (4, 40) is 2.61 for the significance level α = 0.05,
and similarly it is 3.13 for α = 0.025 and 3.83 for α = 0.01.
Since the value of FF is much larger than the critical value,

there is significant difference between five algorithms. Note
that the average rank of Asy-ν-TSVR is far lower than the
remaining algorithms. It means that our Asy-ν-TSVR is
more valid than other four algorithms.

5.4.5 Analyze the asymmetry of two datasets

In order to analyze the asymmetry of datasets, the kernel
function-based method is used to estimate the p.d.f. of y −
f̂ (x). In the following, the p.d.f. of y−f̂ (x) obtained by the
ν-SVR and the Asy-ν-TSVR are listed. Where the results of
Chwirut dataset are shown in Fig. 3, and Bodyfat dataset in
Fig. 4.

Apparently, Figs. 3 and 4 imply that the asymmetry
of Bodyfat dataset is not obvious. On the contrary, the
Chwirut dataset shows noticeable asymmetry. However, we

Table 4 The average of computational time with different p values for Asy-ν-TSVR with Gaussian kernel

Datasets p values

0.20 0.40 0.45 0.50 0.55 0.60 0.80

Auto Price 0.1671 0.1607 0.1599 0.1585 0.1601 0.1606 0.1682

Bodyfat 0.2627 0.2585 0.2603 0.2586 0.2608 0.2593 0.2620

Chwirut 0.2471 0.2459 0.2468 0.2467 0.2475 0.2471 0.2462

Con. S 0.0990 0.0986 0.0963 0.0966 0.0969 0.0983 0.0992

Diabetes 0.0684 0.0686 0.0685 0.0690 0.0693 0.0689 0.0686

Machine-Cpu 0.2473 0.2395 0.2399 0.2394 0.2384 0.2370 0.2513

Pyrimidibes 0.0775 0.0782 0.0785 0.0778 0.0779 0.0783 0.0780

Triazines 0.1952 0.1922 0.1933 0.1930 0.1941 0.1933 0.1940

Housing 1.1037 1.0865 1.0855 1.0714 1.0817 1.0751 1.1054

Istanbul Stock Exchange 1.5912 1.5817 1.5995 1.6254 1.5623 1.5658 1.5717

Yacht Hydrodynamics 0.5089 0.4865 0.4880 0.4873 0.4899 0.4938 0.5117

Italic type shows the minimal values

Neural Comput & Applic (2018) 30:3799–38143810



Table 5 The average of MAE with different p values for Asy-ν-SVR and Asy-ν-TSVR with Gaussian kernel

Datasets Algorithms p values

0.20 0.40 0.50 0.60 0.80

Auto Price Asy-ν-SVR 6559.3 ± 2080.6 5836.4 ± 2226.6 5563.2 ± 2300.5 5465.9 ± 2340.1 5366.9 ± 2398.7
Asy-ν-TSVR 13825 ± 8597.5 13825 ± 8596.9 13825 ± 8596.8 13825 ± 8597.0 13826 ± 8597.8

Bodyfat Asy-ν-SVR 0.1354 ± 0.0286 0.1265 ± 0.0274 0.1262 ± 0.0278 0.1261 ± 0.0278 0.1258 ± 0.0281
Asy-ν-TSVR 0.1077 ± 0.0244 0.1072 ± 0.0245 0.1071 ± 0.0246 0.1070 ± 0.0247 0.1072 ± 0.0249

Chwirut Asy-ν-SVR 0.3266 ± 0.0593 0.3018 ± 0.0479 0.2943 ± 0.0456 0.2901 ± 0.0437 0.2845 ± 0.0394
Asy-ν-TSVR 0.0538 ± 0.0100 0.0527 ± 0.0106 0.0524 ± 0.0110 0.0522 ± 0.0113 0.0522 ± 0.0120

Con. S Asy-ν-SVR 0.2744 ± 0.0482 0.2774 ± 0.0463 0.2773 ± 0.0460 0.2784 ± 0.0448 0.2878 ± 0.0377
Asy-ν-TSVR 0.6615 ± 0.3957 0.6614 ± 0.3966 0.6619 ± 0.3976 0.6625 ± 0.3985 0.6653 ± 0.4018

Diabetes Asy-ν-SVR 0.5879 ± 0.1485 0.5824 ± 0.1384 0.5983 ± 0.1363 0.5992 ± 0.1371 0.6211 ± 0.1547
Asy-ν-TSVR 1.8246 ± 1.8910 1.7975 ± 1.8574 1.7902 ± 1.8498 1.7842 ± 1.8465 1.7770 ± 1.8467

Machine-Cpu Asy-ν-SVR 143.0002 ± 20.3020 113.8695 ± 19.4701 110.2614 ± 20.0042 105.8753 ± 22.0350 100.2744 ± 22.0369
Asy-ν-TSVR 550.0271 ± 359.1591 549.1505 ± 358.7061 548.9730 ± 358.6089 548.9139 ± 358.5667 548.9806 ± 358.5524

Pyrimidibes Asy-ν-SVR 0.0968 ± 0.0365 0.0977 ± 0.0361 0.0989 ± 0.0362 0.0994 ± 0.0365 0.1059 ± 0.0379
Asy-ν-TSVR 0.1471 ± 0.1003 0.1470 ± 0.1004 0.1471 ± 0.1005 0.1473 ± 0.1006 0.1481 ± 0.1013

Triazines Asy-ν-SVR 0.1226 ± 0.0216 0.1193 ± 0.0214 0.1203 ± 0.0227 0.1247 ± 0.0265 0.1510 ± 0.0445
Asy-ν-TSVR 0.3331 ± 0.1466 0.3324 ± 0.1456 0.3325 ± 0.1454 0.3327 ± 0.1453 0.3339 ± 0.1458

Housing Asy-ν-SVR 9.6178 ± 0.8573 7.8251 ± 0.9101 7.2803 ± 0.6326 7.0581 ± 0.5623 6.8911 ± 0.4372
Asy-ν-TSVR 7.9811 ± 2.4585 7.9705 ± 2.4465 7.9717 ± 2.4465 7.9752 ± 2.4483 7.9952 ± 2.4621

Istanbul Stock
Exchange

Asy-ν-SVR 0.0080 ± 0.0023 0.0080 ± 0.0023 0.0080 ± 0.0023 0.0080 ± 0.0023 0.0080 ± 0.0022

Asy-ν-TSVR 0.0048 ± 0.0007 0.0047 ± 0.0006 0.0047 ± 0.0006 0.0047 ± 0.0006 0.0048 ± 0.0006
Yacht Hydro-
dynamics

Asy-ν-SVR 14.5247 ± 3.1103 11.8741 ± 2.4088 11.3315 ± 2.4376 11.0097 ± 2.3522 10.7104 ± 2.3067

Asy-ν-TSVR 4.9008 ± 0.4203 4.8984 ± 0.4210 4.8973 ± 0.4212 4.8962 ± 0.4216 4.8931 ± 0.4221

Italic type shows the minimal values

Table 6 Results of the
Wilcoxon signed-rank test
between the linear case and
nonlinear case on five
algorithms

Algorithms p value W h

ν-SVR 0.7114 27 0

Asy-ν-SVR 0.6812 28 0
LS-SVR 0.2158 36 0
TSVR 0.1602 45 0
Asy-ν-TSVR 0.2158 36 0

Table 7 Average ranks of five
algorithms with Gaussian
kernel on MAE values

Datasets ν-SVR Asy-ν-SVR LS-SVR TSVR Asy-ν-TSVR

Auto Price 4.5 4.5 1 2.5 2.5
Bodyfat 5 4 3 2 1
Chwirut 5 4 3 2 1
Con. S 5 4 3 2 1

Diabetes 3 2 5 4 1
Machine-Cpu 5 4 1 3 2
Pyrimidibes 1.5 1.5 3 5 4
Triazines 2 1 3 5 4
Housing 5 4 3 1 2
Istanbul Stock Exchange 5 4 2 2 2
Yacht Hydrodynamics 5 4 3 2 1

Average rank 4.18 3.36 2.73 2.77 1.95
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Fig. 3 P.d.f. of y-f(x) with ν-SVR and Asy-ν-TSVR on Chwirut dataset
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Fig. 4 P.d.f. of y-f(x) with ν-SVR and Asy-ν-TSVR on Bodyfat dataset

Table 8 Performance comparisons of five algorithms with Gaussian kernel on protein content of wheat

Algorithms MAE RMSE SSE/SST SSR/SST Time (s) Optimal parameters

ν-SVR 1.0578 ± 0.2437 1.3467 ± 0.3504 0.9112 ± 0.2903 0.1363 ± 0.062 0.3375 (C = 128, ε = 0.3, σ = 1)

Asy-ν-SVR 1.0543 ± 0.1998 1.3378 ± 0.306 0.9109 ± 0.2872 0.2309 ± 0.1342 0.3764 (C = 256, ε = 0.5, σ = 1, t = 0.45)

LS-SVR 1.0153 ± 0.2145 1.2824 ± 0.2802 0.8705 ± 0.3884 0.3931 ± 0.1699 0.0286 (C = 256, σ = 4)

TSVR 0.9227 ± 0.2038 1.1407 ± 0.253 0.7553 ± 0.5073 0.5523 ± 0.167 0.2336 (C = 4, ε = 0.9, σ = 8)

Asy-ν-TSVR 0.9122 ± 0.1994 1.1402 ± 0.2338 0.7565 ± 0.4973 0.5274 ± 0.1559 0.213 (C = 128, ε = 0.8, σ = 8, t = 0.8)

Italic type shows the best result
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Table 9 Performance comparisons of five algorithms with Gaussian kernel function on wet gluten of wheat

Algorithms MAE RMSE SSE/SST SSR/SST Time (s) Optimal parameters

ν-SVR 2.9378 ± 0.3981 3.7859 ± 0.6028 0.7974 ± 0.0921 0.1812 ± 0.0601 0.6105 (C = 256, ε = 0.5, σ = 1)

Asy-ν-SVR 2.9048 ± 0.4308 3.7764 ± 0.6250 0.7954 ± 0.1206 0.2449 ± 0.1321 0.4844 (C = 256, ε = 0.8, σ, t = 0.8)

LS-SVR 2.5220 ± 0.2562 3.2826 ± 0.3478 0.6114 ± 0.1204 0.5026 ± 0.2327 0.0356 (C = 256, σ = 2)

TSVR 2.3029 ± 0.2618 3.0135 ± 0.2923 0.5188 ± 0.1130 0.6774 ± 0.2436 0.2640 (C = 4, ε = 0.9, σ = 4)

Asy-ν-TSVR 2.2957 ± 0.2591 3.0208 ± 0.3030 0.5204 ± 0.1097 0.6533 ± 0.2506 0.1684 (C = 256, ε = 0.6, σ = 4, t = 0.8)

Italic type shows the best result

can find from Tables 2 and 3 that our proposed algorithm
Asy-ν-TSVR outperforms the rest algorithms on these two
datasets. This is because the pinball loss function enhances
the generalization ability of our Asy-ν-TSVR for Asymmet-
ric datasets. And the symmetric datasets can be regarded as
the special case of the Asymmetric datasets.

5.5 Experiment on wheat dataset

There are 210 wheat samples from all over China in this real
data experiments [34]. The protein content of wheat ranges
from 9.83 to 20.26%, and the wet gluten of wheat ranges
from 14.8 to 44.6%. They are provided by Heilongjiang
research institute of agricultural science. Each sample has
1193 spectral features. They were scanned in transmission
mode using a commercial spectrometer MATRIX-I. Sam-
ples were acquired in a rectangular quartz cuvette of 1-mm
path length with air as reference at room temperature (20–
24 ◦C). The reference spectrum was subtracted from the
sample spectra to remove background noise. The rectan-
gular quartz cuvette was cleaned after each sample was
scanned to minimize cross-contamination.

In this high-dimensional data experiment, we predict
the content of protein and the wet gluten of wheat using
1193 spectral features of wheat. Now that Gaussian kernel
yields better generalization performance than linear kernel,
we only consider the former, the prediction errors of five
algorithms are summed in Tables 8 and 9.

From Tables 8 and 9, we can learn that Asy-ν-TSVR
yields the lowest prediction errors (0.9122% for protein con-
tent and 2.2957% for wet gluten) among five algorithms.
The prediction errors of TSVR follow. LS-SVR outper-
forms ν-SVR and Asy-ν-SVR either on the prediction of
protein content or the prediction of wet gluten. ν-SVR and
Asy-ν-SVR produce the comparable testing errors. In addi-
tion, Asy-ν-SVR produces lightly lower testing errors than
ν-SVR. It implies that the pinball loss is effective in ν-SVR
and TSVR. In terms of the computational time, LS-SVR
costs the shortest running time since it solves a system of

linear equations, but other four algorithms solve a pair of
smaller-sized QPPs or a larger-sized QPP.

6 Conclusion

In this paper, we propose an Asy-ν-TSVR for the regression
problem. Asy-ν-TSVR solves a pair of smaller-sized QPPs
instead of a larger-sized one as in the traditional ν-SVR. So
it works faster than Asy-ν-SVR. Asy-ν-TSVR employs the
pinball loss function L

p
ε (u) as opposed to the ε-insensitive

loss function Lε(u); then, it can effectively reduce the dis-
turbance of the noise and improve the generalization perfor-
mance. Three kinds of experiments demonstrate the validity
of our proposed Asy-ν-TSVR. Asy-ν-TSVR degrades into
the ν-TSVR when p = 0.5, so our Asy-ν-TSVR is an
extended version of the ν-TSVR, and it is applicable to
the symmetric and asymmetric datasets. How to apply the
pinball loss function to other TSVMs is our future work.
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