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Abstract Motor imagery (MI) tasks evoke event-related

desynchronization (ERD) and synchronization (ERS); the

ERD-/ERS-related features appearing at specific channels

are frequency and time localized. Therefore, optimal

channels, frequency band and time interval are of great

significance for MI electroencephalography feature

extraction. In this paper, channel selection method based

on linear discriminant criteria is used to automatically

select the channels with high discriminative powers. In

addition, the concept of artificial bee colony algorithm is

first introduced to find the global optimal combination of

frequency band and time interval simultaneously without

prior knowledge for common spatial pattern features

extraction and classification. Experimental results demon-

strate that this scheme can adapt to user-specific patterns

and find the relatively optimal channels, frequency band

and time interval for feature extraction. The classification

results on the BCI Competition III Dataset IVa and BCI

Competition IV Dataset IIa clearly present the effective-

ness of the proposed method outperforming most of the

other competing methods in the literature.

Keywords Brain–computer interface (BCI) � Common

spatial pattern (CSP) � Artificial bee colony (ABC) � Motor

imagery (MI) � Electroencephalogram (EEG)

1 Introduction

Brain–computer interfaces (BCIs) use electroencephalog-

raphy (EEG) [1] or other electrophysiological measures of

brain activity like magnetoencephalography (MEG), func-

tional magnetic resonance imaging (fMRI) and elec-

trooculography (ECoG) to establish a nonmuscular channel

for sending messages and commands to external devices.

Motor imagery (MI)-based BCI uses the information cor-

related with amplitude modulations of sensory motor

rhythms (SMR) to reflect the motor intention of a subject

[2]. The modulation of SMR generates contra lateral pre-

ponderant event-related desynchronization (ERD) and

synchronization (ERS) which are short lasting amplitude

attenuation and enhancements in the rhythmic components

of EEG [3]. Currently, ERD-/ERS-based BCIs have

received a lot of attentions due to their potential application

in motor rehabilitation and assisting for the motor function

impaired patients [4, 5]. However, there still remain some

challenges and barriers to use this technology easily and

effectively for the intended beneficiaries. One of them is

that ERD/ERS analysis for different subjects has proven to

be complex, as ERD/ERS occurs in different parts of the

cortex, at different frequencies, and during different time

intervals due to individual distinctions in physiology,

anatomy and brain state, which leads to difficulty when

extracting features for classification [6].

Feature extraction plays an important role for the per-

formance of ERD-/ERS-based BCI, and common spatial

pattern (CSP) is one of the most popular methods that have

proven to be very useful in extracting the spatial infor-

mation of EEG activity [7]. CSP aims to find the optimal

spatial filters onto which the difference of projected scat-

ters between two EEGs is maximized. However, some

preprocessing steps like the band-pass filtering and time
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interval selection have great effect on final CSP feature

extraction [8]. As described above, the reactive frequency

band and time interval are always user specific, and spatial

adaptation of EEG-based BCI system was first investigated

in [9]. It has been shown that using subject-specific

parameters such as discriminable frequency bands, tem-

poral segments of maximum separability and channels with

high discriminative powers can improve the performance

of a BCI system [3].

In order to accurately capture the band-power changes

resulting from ERD/ERS, most of the CSP refinements are

focused on the proper selection of frequency band, which is

typically subject specific and can hardly be determined

manually [1, 10, 11]. Besides the selection of discriminable

frequency bands, automated channel selection is also

essential to enhance the performance of CSP feature

extraction and subsequent classification by removing task-

irrelevant and redundant channels [12]. Moreover, the

optimal observation period in MI classification depends on

subjects and some attempts to determine the optimal tem-

poral segment automatically have been proposed [13–15].

All these mentioned works have shown effectiveness in

their fields. However, most of these methods above only

extract spatial, frequency, frequency–temporal or spatial–

temporal information of EEG, respectively; they do not

work on all three of the spatial–frequency–temporal

domains, simply expressing MI features in one (or two)

domain(s) while disregarding the other(s) will result in loss

of information that may contribute to more accurate MI

classification.

Recently, some approaches that engage comprehensive

considerations over the spatial–frequency–temporal fea-

tures have been reported. Wang et al. [16, 17] proposed

two approaches for motor imagery classification that uti-

lized information from time, frequency, and spatial

domains. In literature [18], the time and frequency axes

were first divided into basic grids and then merged

together based on task-discriminant maximization. In each

adapted frequency–time grid, a respective selection was

conducted to pick channels with high discriminative

information. In order to extract discriminative features as

much as possible, Higashi and Tanaka [19] proposed a

method called common spatio-time–frequency patterns

(CSTFP) for finding the time windows as well as the

coefficients of the band-pass filters and spatial weights. In

another technique proposed by Ince et al. [3], the most

discriminative time segments were first found by imple-

menting a merge/divide strategy along the time axis, and

a frequency domain clustering was then used to select the

most discriminative frequency bands. As we can see, in

most of the methods above, frequency or temporal

decomposition is implemented. Since the bandwidth of a

frequency bin or the length of a time segment is usually

constant, although some merge strategies are used, a

precise optimal frequency band or time interval is still

hard to determine. Moreover, the frequency band selec-

tion is still independent of the time interval selection in

[3]. Obviously, the pre-decided time segments would

affect the detection of optimal frequency parameter to a

large extent. As mentioned above, ERD and ERS are

frequency and time localized, so the most discriminative

information is always determined by the combined effects

of both time interval and frequency band. The sequential

procedure in above works may fail to find the best

combination of frequency–time parameters for CSP fea-

ture extraction and subsequent classification, and the mere

optimization of time segments without the simultaneous

consideration of frequency band in the first step may lead

to a local optimum.

Focused on the proper selection of optimal channels,

frequency band and time interval for different people

without any prior knowledge, we manage to enhance MI

EEG classification accuracy with two coordinated meth-

ods: spatial optimization by channel selection, and the

simultaneous searching of user-specific frequency–time

parameters that locate the best discriminative signal com-

ponents. The channel selection method will select the most

discriminative EEG channels which are highly subject

dependent, thus removing redundant channels and reducing

the computational load for the CSP algorithm. In essence,

the ultimate goal for searching user-specific frequency–

time parameters is convergent to the optimization problem

that how to find the global optimal combination of fre-

quency band and time interval for CSP features extraction

and classification. Obviously, there are infinite combina-

tions for this issue; an exhaustive manual search is highly

time-consuming and unreasonable. Artificial bee colony

(ABC) algorithm is inspired by foraging behavior of bee

and proposed by Karaboga and Basturk [20]. ABC algo-

rithm has been successfully applied to various areas and

proved higher efficiency than some other optimization

algorithms [21]; however, it has never been used in this

filed. The original ABC algorithm is developed for solving

multivariable function optimization problem, while in our

work the selection of frequency–time parameters is pre-

cisely a multivariable optimization problem, so we care-

fully design a frequency–temporal parameters optimization

strategy and integrate it into different phases of ABC

algorithm. To our best knowledge, we are the first to

examine the efficiency of applying ABC concept to fre-

quency–temporal feature optimization for MI EEG

classification.

This paper is organized as follows: In the next section,

we present the data description and a detailed explanation

of our method. Section 3 describes experimental results

and discussion. Finally, conclusions are given in Sect. 4.
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2 Materials and methods

2.1 Data description

In this study, three EEG datasets are used for evaluation;

they are obtained from two publicly available sources,

which are the BCI Competition III [22] and BCI Compe-

tition IV [30]. The detailed descriptions of three datasets

are presented in this section.

2.1.1 BCI Competition III Dataset IIIa

In this dataset, EEG signals were recorded from three

subjects (‘‘K3B,’’ ‘‘K6B,’’ ‘‘L1B’’) with a 64-channel

amplifier; however, EEG data of only 60 channels were

provided for the competition. The EEG data were sampled

at 250 Hz and filtered between 1 and 50 Hz. The subjects

sat on a comfortable chair and had to perform left-/right-

hand, tongue or foot movement imagination according to

the cue on the screen. Since the classification method is

developed for binary classes in this paper, only the samples

of left hand and right hand are used. For each trial, the first

2 s were quite, at t = 2 s an acoustic stimulus indicated the

beginning of the trial and a cross was displayed; then from

t = 3 s, an arrow appeared on the fixation cross indicating

the imagined movement to be executed until the cross

disappeared at t = 7 s. There are 180 trails in total for

‘‘K3B,’’ 90 trials per task. There are 120 trails in total for

‘‘K6B’’ and ‘‘L1B,’’ 60 trials per task. The numbers of

trials for training and testing of each subject are as fol-

lowing: subjects (left hand, right hand) ‘‘K3B’’ (45, 45),

‘‘K6B’’ (30, 30) and ‘‘L1B’’ (30, 30) are for training and

the remaining are for evaluation.

2.1.2 BCI Competition III Dataset IVa

In this dataset, EEG signals were recorded from five

healthy subjects (‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’, ‘‘ay’’) through

118 electrodes. In each trial, a visual cue was shown for

3.5 s, during which three kinds of motor imageries were

performed, that is, left hand, right hand and right foot. The

motor imageries of right hand and right foot were provided

for the competition. For this dataset, there were 100 and

1000 Hz versions. In our study, the 1000-Hz version was

chosen and it was band-pass filtered between 0.05 and

200 Hz. There are 280 trials in total, 140 trials per task for

each subject. The numbers of trials for training and testing

vary across subjects as follows: subjects (left hand, right

foot) ‘‘aa’’ (80, 88), ‘‘al’’ (112, 112), ‘‘av’’ (42, 42), ‘‘aw’’

(30, 26) and ‘‘ay’’ (18, 10) are for training and the

remaining are for evaluation.

2.1.3 BCI Competition IV Dataset IIa

In this dataset, nine subjects participated in the collection

of EEG signals and EEG signals were recorded from 22

electrodes [30]. Subjects were instructed to perform four

types of MI: left hand, right hand, both feet and tongue.

Two sessions on different days were recorded for each

subject. Only one session contained the class labels for all

trials, whereas the other one session was used for evalua-

tion. Each session was comprised of six runs and one run

consisted of 48 trials (12 for each class). Therefore, one

session consisted of 288 trials totally. At the beginning of

each trial (t = 0 s), a fixation cross appeared on the black

screen. After two seconds (t = 2 s), a cue in the form of an

arrow pointing either to the left, right, down or up (corre-

sponding to one of the four classes left hand, right hand,

foot and tongue) appeared and stayed on the screen for

1.25 s. Subjects were instructed to perform motor imagery

tasks according to the cue until the fixation cross disap-

peared at t = 6 s. The EEG signals were band-pass filtered

between 0.5 and 100 Hz and sampled at 250 Hz.

2.2 Methods

The proposed EEG signal analysis system includes both

training and testing phases. Training is performed in sev-

eral steps to obtain the necessary information for the cor-

responding testing, such as optimal channels, optimal

frequency band, optimal time interval and CSP filters.

These steps contain data preprocessing, channel selection,

ABC-based frequency–temporal parameters selection and

feature extraction. Then, the information obtained in the

training phase is applied for testing directly. The same data

preprocessing method is implemented in both training and

testing phases.

2.2.1 Data preprocessing

Prior to temporal filtering, the continuous experimental

data are intercepted into single-trial data at first, and

common average reference (CAR) [18] is adopted to re-

reference them. For all three datasets, considering the usual

frequency band of ERD and ERS, a fifth-order Butterworth

band-pass filter is used to remove noises over 40 Hz and

slow baseline signal under 5 Hz. The sampling rate of BCI

Competition III Dataset IVa is 1000 Hz, in order to reduce

the computational cost of subsequent processing without

omitting important time series information; this dataset is

down sampled to 250 Hz.
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2.2.2 Channel selection

In order to achieve decent system performance, channel

selectionmethod is usually required to remove irrelevant and

redundant channels [12]. In addition, the computational

burden of subsequent time interval and frequency band

selection can be reduced significantly by channel reduction.

In this step, the fisher’s linear discriminant criteria (FDC)

value between two classes is calculated to quantify the dis-

criminative power of the channel. Since the ERD/ERS

phenomenon is time localized, temporal segmentation is

done at first, it uses rectangular timewindows, length of each

t-segment is set to 250 and 100 data points for BCI Com-

petition III Dataset IIIa (250 Hz 9 8 s) and BCI Competi-

tion III Dataset IVa (250 Hz 9 3.5 s) empirically, and the

neighboring t-segments are 50% overlapping. For each

channel, log-power is computed as the feature of each seg-

ment, as pch,t in (1), where xch,t is signal segment of t-segment

t of channel ch and varðÞ denotes variance of the variable.
pch;t ¼ logðvarðxch;tÞÞ ð1Þ

Then, pch,t of all trials are grouped according to MI

classes, two sets of pch,t of all trials in two classes are

defined as pch,t
1 and pch,t

2 , respectively. FDC value between

two classes is calculated in (2), where m1 and m2 are means

of pch,t of two MI classes, and uch,t is the FDC value of t-

segment t of channel ch.

uch;t ¼
m1 � m2ð Þ2

varðp1ch;tÞ þ varðp2ch;tÞ
ð2Þ

After that, for each ch, the maximum of FDC values of

all t-segments is served as the FDC value of this channel.

Finally, channels with high FDC values are picked out. In

this study, we sort the FDC values in descending order and

the first K corresponding channels are selected. Note that

EEG signals are recorded from only 22 electrodes in BCI

Competition IV Dataset IIa, and too few channels may not

include enough information for high performance; hence,

channel selection is not implemented for this dataset.

2.2.3 Feature extraction and classification

In the procedure of ABC-based frequency–temporal

parameters selection, average classification accuracy (CA)

of cross-validation (CV) will be served as the objective

measure of performance; therefore, we describe the details

of feature extraction and classification before automatic

frequency band and time interval selection.

CSP algorithm is selected for feature extraction due to

its good performance in discriminating two classes of EEG

signals. We assume that we have two classes of MI EEG

signals, each class includes some trials in which each

single trial is represented as a C 9 Q matrix X, where C is

the number of EEG channels and Q is the number of

sampled time points per channel. For each class, the

average covariance matrix can be obtained as follows:

wi ¼
1

Ni

X

j2Ni

XjX
T
j

traceðXjX
T
j Þ
; i 2 1; 2f g ð3Þ

where Ni is the number of trials corresponding to ith class,

T denotes the transpose operator, and traceðXXTÞ gives the
sum of the diagonal elements of XXT. The CSP algorithm

projects X to spatially filtered Z as

Z ¼ WX ð4Þ

where the rows of the projection matrix W are the spatial

filters. W is generally computed by solving the following

eigenvalue decomposition problem.

w1W ¼ w2WK ð5Þ

where K is the diagonal matrix that contains the eigen-

values of w�1
2 w1. Since the eigenvalues in K indicate the

ratio of the variances under two conditions, the first and the

last m rows of W, corresponding to the m largest and

m smallest eigenvalues, are generally extracted as the most

discriminative filters. Afterward, the variances of the pro-

jected signals are calculated as the features.

It should be noted that, in the process of optimal fre-

quency–temporal parameter searching based on ABC

algorithm, the average classification accuracy of cross-

validation is served as the objective measure of perfor-

mance and we have to run the whole system to compute

classification accuracies for many iterations. In order to

reduce the computing burden, K is set to 16 empirically and

we extract eigenvectors corresponding to the largest and

smallest eigenvalues to form the spatial filter. Afterward,

the variances of the projected signals are calculated directly

to form a two-dimensional feature vector. It is widely

known that the first element of the feature vector is larger

than the second element for one class and smaller than the

second element for the other class. In this study, a simple

comparison between these two elements of the feature

vector is done to discriminate the classes in the procedure

of frequency–temporal parameter searching.

While in the testing phase, we extract the eigenvectors

corresponding to the largest and smallest m eigenvalues to

form the filter, the choice for m depends on the data. For

both BCI Competition III Dataset IIIa and BCI Competi-

tion III Dataset IVa, we set m to 1 and a simple sign

function classifier is utilized to discriminate the classes as:

if sgnðvarðZð1; :ÞÞ� varðZð2; :ÞÞÞ ¼ 1; X 2 R1

if sgnðvarðZð1; :ÞÞ� varðZð2; :ÞÞÞ ¼�1; X 2 R2

�
ð6Þ

where R1 and R2 denote class one and class two, respec-

tively. For BCI Competition IV Dataset IIa, in order to
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compare with the method proposed in [14] under the same

condition, we also set m to 2, LDA [23] classifier is used

for this dataset.

2.2.4 Artificial bee colony algorithm

Among evolutionary approaches, the ABC algorithm has

been found to perform better or at a same level than others

like genetic algorithm (GA), differential evolution (DE),

particle swarm optimization (PSO) or evolution strategies

(ES) on a large set of unconstrained test functions by Kar-

aboga and Akay [24]. The ABC algorithm simulates the bee

colony behavior in food search activity and contains three

groups of artificial bees: employed bees, onlooker bees and

scout bees. The search procedures are carried out by those

bees iteratively and can be summarized as follows:

At the initial phase of the algorithm, it generates a group of

food positions randomly. A food position represents a pos-

sible solution, and each position has several parameters to be

optimized. The quality of a food position, i.e., the amount of

nectar, is evaluated by its fitness value. Then, the algorithm

calculates fitness values of all these food positions.

At the employed bees phase, each employed bee is

associated with a food position at first. Then, the employed

bees search new positions using their current food posi-

tions. For each employed bee, the fitness value of the new

food position is calculated and compared with the fitness

value of the old one, and the food position with the larger

fitness value is recorded.

At the onlooker bees phase, the algorithm calculates the

selection probabilities of all the food positions by their

fitness values. The food position with the largest proba-

bility is selected by onlooker bees and they make modifi-

cations on this food position. Note that, for each onlooker

bee, the fitness value of the new food position is also

compared with the fitness value of the old one, and the

better food position is recorded.

At the scout bees phase, when an employed bee cannot

improve a food position within a certain number of trials, it

abandons its current food position and becomes a scout bee

which will find a random food position.

For all the three kinds of bees, the food position with the

largest fitness value is recorded as the temporary best

solution in each cycle. The best food position is iteratively

updated for certain iterations. The general structure of ABC

algorithm is shown in Fig. 1.

2.2.5 An ABC-based frequency–temporal parameter

optimization scheme

In the BCI application, the labels of the training set are

known, while the labels of the testing set are unknown. In

this section, based on the training set, we apply the concept

of ABC algorithm to find the optimal frequency band {fstart,
fstart ? fwidth} and time interval {fstart, fstart ? flength}

simultaneously for robust CSP feature extraction, with fstart
denoting the low bound of band-pass filter, fwidth denoting

the frequency band width of band-pass filter, tstart denoting

the low bound of time interval and tlength denoting the

length of time interval. Obviously, the dimension of a

solution (food position) is four, with each component

representing fstart, fwidth, tstart and tlength. For all the three

datasets, the searching ranges of food position components

are listed in Table 1. For all the three datasets, if

fstart þ fwidth � 40, then fwidth ¼ 40� fstart. For BCI Com-

petition III Dataset IIIa, if tstart þ tlength � 8� 250, then

tlength ¼ 8� 250� tstart. For BCI Competition III Dataset

IVa, if tstart þ tlength � 3:5� 250, then tlength ¼ 3:5�
250� tstart. It should be noted that the time segment of 0–

4 s of EEG after the onset of the visual cue was used for

BCI Competition IV Dataset IIa in literature [14]; we also

use this time segment for analysis. Therefore, for this

dataset if tstart þ tlength � 4� 250, then tlength ¼ 4�
250� tstart.

In order to evaluate the quality of a food position, the

objective function should be defined to calculate the fitness

value. In our study, two kinds of objective functions are

used. One is the average classification accuracy of cross-

validation. In this study, fivefold CV is implemented on the

training set of BCI Competition III Dataset IIIa and BCI

Competition IV Dataset IIa. While for BCI Competition III

Dataset IVa, since some subjects have a small amount of

training data, i.e., subject ‘‘ay’’ has only 28 training sam-

ples, 5 9 2-fold CV is used. The other objective function is

R-squared (R2) [13] between two tasks.

According to the principle of ABC algorithm, our

algorithm consists of four phases, namely the initialization

phase, the employed bees phase, the onlooker bees phase

and the scout bees phase. After the initialization phase, the

other three phases are invoked iteratively for D cycles, and

the best food position is obtained in the end. The ABC-

based approach for optimal frequency band and time

interval selection can be denoted as below.

Step 1. Initialization phase: In this phase, we first create

a population of initial food positions according to the

colony size S; a food position viði ¼ 1; 2; . . .; SÞ represents
a feasible solution for the optimization problem, i.e., an

initial combination of frequency–time parameters. Each

position vi has four parameters vi;j; j ¼ 1; 2; 3; 4 to be

optimized, where the first component defines fstart, the

second component defines fwidth, the third component

defines tstart, and the fourth component defines tlength. Each

component is initialized with a random integer value within

its searching range as described in Table 1. Then, the

quality of each food position is evaluated; for the ith food
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Fig. 1 Flowchart of ABC algorithm

Table 1 Searching ranges of

food position components for all

the three datasets

Dataset fstart (Hz) fwidth (Hz) tstart (sample points) tlength (sample points)

III–IIIa 5–30 5–30 3 9 250–5 9 250 1 9 250–5 9 250

III–IVa 5–30 5–30 0 9 250–3 9 250 1 9 250–3 9 250

IV–IIa 5–30 5–30 0 9 250–3 9 250 1 9 250–3 9 250

3682 Neural Comput & Applic (2018) 30:3677–3691
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position, we feed the four parameters ½vi;1; vi;2; vi;3; vi;4� into
the fitness function to obtain the fitness value gi. After the
initialization phase, totally S initial combinations of fre-

quency–time parameters are obtained, and the best one

with the largest fitness value gbest is recorded. Then, all the
S initial food positions will be iteratively updated by

employed bees, onlooker bees and scout bees for D cycles

to find the optimal frequency band and time interval for

CSP feature extraction and classification; each phase is

described as follows.

Step2.Employedbeesphase:Thenumber of employedbees

is S/2; in our work, they are associated with the first S/2 food

positions in the initialization phase. Each employed bee sear-

ches a new food position based on its current food position; for

the ith employed bee, the new food position is obtained by

xi;j ¼ vi;j þ /ðvi;j � vk;jÞ ð7Þ

xi;g ¼ vi;g; g 6¼ j ð8Þ

where k is a random food position index ðk 6¼ iÞ and

ðk 2 ½1; S=2�Þ, j is a parameter chosen randomly and

/ðvi;j � vk;jÞ returns a random integer value within

[-|vi,j - vk,j|, |vi,j - vk,j|]. Then, the fitness value of xi is

calculated, and greedy selection is applied: If xi has better

fitness value than vi, the food position vi is replaced by xi

and its trial counter s is reset to zero, otherwise vi is

retained and s increases by one.

Step 3. Onlooker bees phase: An onlooker bee selects a

food position depending of a probability pi as:

pi ¼
giPS
i¼1 ni

ð9Þ

where gi is the fitness value of the ith food position. Once

that the onlooker bees have selected the food position with

largest value of pi, they generate new food positions using

(7). However, for onlooker bees, k 6¼ i and k 2 ½S=2; S�.
The new food positions are evaluated, and the same greedy

selections are applied.

Step 4. Scout bees phase: The purpose of this phase is to

avoid being trapped into local optimum that usually occurs

after running mangy iterations. When a food position has

not improved within a number of trials as:

s[ Limit ð10Þ

where Limit is the maximum limit search number, this food

position is replaced by a random food position.

Step 5. After each cycle, the food position with the best

fitness value so far is recorded as the temporary best food

position. If the number of iterations reaches D, the algo-

rithm stops and the temporary best position at this moment

becomes the final optimal solution of the system.

Three control parameters are included in the proposed

algorithm above. The colony size S, the predefined

maximum limit search number Limit and the maximum

iteration number D are the parameters. It should be noted

that S is closely related to D. If S is big, it is more likely

that the best solution can be found in each iteration and the

ABC algorithm can converge to global optimal solution

within a small number of iterations, so D can be relatively

small, while the computation time of each iteration will be

relatively long. The purpose of setting Limit is to avoid

being trapped into local optimum. If Limit is too small, then

the searching ability of the employed bee will be weak-

ened, while a big setting of Limit means that the employed

bee may be trapped into a certain local optimum for too

many iterations. In our practice, when S is set to 50, the

number of iteration epochs for convergence is less than 15

for each subject in all three datasets, so we set D to 15,

Limit is set to 5 according to literature [25].

3 Results and discussion

In this section, we present the feasibility and effectiveness

of our proposed method by comparing the classification

performance with other competing methods in the literature

and analyzing the experimental results on three public

datasets.

3.1 Classification performance comparisons

with other methods

3.1.1 Results of BCI Competition III Dataset IVa

For this dataset, we firstly used the same training set pro-

vided in BCI Competition to perform feature optimization

and the performance of our method was evaluated by

measuring the ratio of trials correctly classified to the total

number of trials in testing set for each subject. Under this

circumstance, the training sets of subject ‘‘aa’’, ‘‘al’’, ‘‘av’’,

‘‘aw’’ and ‘‘ay’’ contain 168, 224, 84, 56 and 28 trials,

respectively. The challenge of BCI Competition III dataset

IVa is to validate the efficiency of algorithms to deal with

various sizes of training dataset. In Table 2, we present the

effectiveness of our method by comparing its classification

results with those of other recently reported methods,

namely the standard CSP [8], common spatial spectral

pattern (CSSP) [26], filter bank CSP (FBCSP) [27], dis-

criminative FBCSP (DFBCSP) [11], optimal spatio-spec-

tral filter network (OSSFN) [28], Bayesian spatio-spectral

filter optimization (BSSFO) [29], channel selection with

GA [12], space–time–frequency adaption [3], channel

configuration with spectrally weighted common spatial

pattern (SWCSP) [31], spatio-spectral-cognitive fuzzy

interface system (SS-CFIS) [32] and optimized sparse

spatio-spectral filtering (OSSSF) [33]. For the OSSFN, two
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approaches are considered, each of which utilizes FBCSP

(OSSFNwFBCSP) or DFBCSP (OSSFNwDFBCSP) in

composing a filter band. Note that all the methods in

Table 2 are evaluated by standard competition procedure,

except for OSSSF in which the training trials are increased

to 140 for subjects ‘‘aw’’ and ‘‘ay.’’ Table 2 shows that, for

our proposed method, the final classification accuracies of

subject ‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ and ‘‘ay’’ are 85.71%

(K = 16), 98.21% (K = 16), 76.57% (K = 16), 95.05%

(K = 32) and 91.67% (K = 16), respectively. The results

of the first seven algorithms are presented in [29]. We also

note that our algorithm provides a mean classification

accuracy of 89.45%, the average accuracy improvements

achieved by the proposed method are 27.66, 15.85, 29.1,

28.42, 22.47, 22.99, 13.99, 5.92, 3.11, 3.43, 11.70 and

1.22% in comparison with CSP, CSSP, FBCSP, DCSP,

OSSFNwFBCSP, OSSFNwDCSP, OSSFN, channel selec-

tion with GA, space–time–frequency adaption, SWCSP,

SS-CFIS and OSSSF, respectively. The result indicates that

an overall consideration on space–time–frequency domains

can improve the classification ability effectively, and our

approach outperforms other competing methods which are

under the same condition significantly. According to BCI

Competition 2005 final results, only the top one winner

shows better performance than our method. Note that the

high performance of the winner is achieved by applying

additional techniques like boosting or online classifier

training to tackle the problem of the small training sets.

However, these techniques are out of the scope of this

paper. All these results show that the proposed algorithm

can generalize well with little amount of training data.

We notice that, instead of using the exact splitting of this

dataset in BCI Competition, some other researchers per-

formed cross-validation for evaluation. To compare with

these methods under the similar condition, we used

10 9 10 cross-validation to evaluate the ability of our

proposed method. The results of 10 9 10 cross-validation

are obtained by repeating the tenfold cross-validation [7]

for 10 times. In this study, the optimal channels and fre-

quency–temporal parameters are obtained from the first

validation procedure and used for other validations to

simplify computation. Table 3 reports the comparison

results of the classification accuracy rates for our proposed

method and the eleven existing algorithms for BCI Com-

petition III Dataset IVa. As shown in Table 3, the highest

mean for all five subjects is obtained by the optimal allo-

cation (OA)-based approach [7], which is 96.62%. Further

looking at the performance comparison in Table 3, it is

noted that our proposed is ranked sixth among all the

twelve algorithms in terms of the average accuracy. Five

existing methods perform better than our method; these

methods are as follows: (1) OA-based approach proposed

by Siuly and Li [7]; (2) iterative spatio-spectral patterns

learning (ISSPL) proposed by Wu et al. [34]; (3) channel

configuration with SWCSP proposed by Meng et al. [31];

(4) DFBCSP proposed by Thomas et al. [11]; and (5) cross-

correlation and logistic regression (CC–LR) with threefold

cross-validation proposed by Siuly and Wen [35]. Note

that, for OA-based approach and CC–LR algorithm, CSP

technique is not employed for feature extraction. Hence,

there still remain three CSP styled approaches outper-

forming our method. For ISSPL, the reason might be that

the temporal filter, channels, time windows and the number

of spatial filter are tuned according to the winning entry of

the dataset [34]. For channel configuration with SWCSP,

like the authors said, the reason why high classification

accuracy is obtained might be that they find the most

proper channel configuration by comparing twelve fixed

channel configurations [31]. Overall, our method still per-

forms better than most of the other CSP styled approaches.

Table 2 Comparison of

classification accuracies (%) by

standard competition procedure,

SD standard deviation. (BCI

Competition III Dataset IVa)

Methods aa al av aw ay Mean SD

CSP [8] 66.96 89.29 52.55 47.77 52.38 61.79 16.98

CSSP [26] 79.46 92.86 52.55 91.52 51.59 73.60 20.33

FBCSP [27] 69.64 80.36 47.96 55.36 48.41 60.35 14.21

DFBCSP [11] 69.64 82.14 54.08 50.89 48.41 61.03 14.41

OSSFNwFBCSP [28] 75.00 83.93 53.06 74.11 48.81 66.98 15.22

OSSFNwDFBCSP [28] 75.00 83.93 52.05 74.11 47.22 66.46 15.93

BSSFO [29] 79.46 94.64 57.65 91.96 53.57 75.46 19.06

Channel selection with GA [12] 74.44 98.47 70.78 90.52 83.44 83.53 11.37

s-t-f adaption [3] 88.40 91.10 82.10 81.20 88.90 86.34 4.41

SWCSP [31] 83.0 100 73.5 82.1 91.5 86.02 10.08

SS-CFIS [32] 82.14 100 63.27 83.04 60.32 77.75 16.24

OSSSF [33] 77.68 100 77.04 94.28 92.14 88.23 10.33

Our method 85.71 98.21 76.57 95.09 91.67 89.45 8.56
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3.1.2 Results of BCI Competition IV Dataset IIa

The experiment of this dataset was performed in two parts. In

the first part, ABC algorithm was performed on the training

data (the first session) to determine the optimal frequency–

temporal parameters. Note that three are in total 288 trials in

one session and 72 trials per class. Since one session contains

four types of MI: (1) left hand (LH); (2) right hand (RH); (3)

feet (FT); and (4) tongue (TO), there are six pairs of MI tasks

for binary classification, namely LH/RH, LH/FT, LH/TO,

RH/FT, RH/TO and FT/TO. For each pair of MI task, the

optimal frequency–temporal parameters are selected indi-

vidually using ABC-based approach, and then CSP algo-

rithm and classifier training is implemented according to

these parameters. In the second part of the experiment, the

session-to-session performance of the proposed method was

computed on the evaluation data (the second session). Note

that the multi-class classification result was obtained based

on the one-against-one [38] approach in this study. Since the

kappa coefficient [14] was used as a performance measure in

the BCI Competition IV, it was used in this part of the

experiment to measure the maximum kappa value evaluated

on the entire single-trial EEG from the onset of the fixation

cross. The kappa value was computed from the onset of the

fixation cross to the end of the cue for every point in time

across all the trials of the evaluation data.

The performance of our method is comparedwith optimal

spatial–temporal patterns (OSTP) [14], OSTPusing the LDA

classifier (denoted FLD), OSTP using the mutual informa-

tion-based sequential forward selection (MISFS) algorithm

(denoted SFS), OSTP using manual selection of time seg-

ment and frequency on the training data (denoted Manual),

FBCSP [27], DFBCSP [11] and results of the 2nd, 3rd and

4th placed submissions for the competition.

Table 4 shows the results of the session-to-session

transfer from the training data to the evaluation data for

Table 3 Comparison of average classification accuracies (standard deviation) (%) obtained by cross-validation

Methods aa al av aw ay Average

OA-based approach [7] 99.17 (2.63) 98.29 (2.20) 100 (0.0) 91.13 (8.03) 94.51 (9.04) 96.62 (3.72)

ISSPL [34] 93.57 (3.28) 100 (0.0) 79.29 (7.10) 99.64 (1.13) 98.57 (3.01) 94.21 (2.9)

Algorithm of [31] 94.2 (4.5) 99.2 (1.8) 78 (8.5) 97.7 (2.9) 95.6 (3.8) 93 (4.3)

DFBCSP [11] 90.2 (5.6) 98.7 (2.9) 77.8 (9.9) 97.9 (3.7) 94.2 (5.3) 91.8 (5.5)

CC–LR (threefold) [35] 96.57 (2.65) 82.9 (5.35) 100 (0.0) 96.6 (3.21) 82.9 (0.69) 91.79 (2.38)

Our method 91.2 (4.81) 97 (3.13) 76 (8.12) 94.3 (4.74) 95.3 (4.22) 90.76 (5)

CSP [31] 91.5 (5.4) 99.2 (1.8) 70.9 (8.2) 96.9 (2.8) 94.7 (3.8) 90.6 (4.4)

CC–LR (tenfold) [36] 95.93 (11.44) 91.2 (10.5) 88.34 (19.61) 90.08 (14.27) 85.92 (8.49) 90.29 (12.9)

FBCSP [11] 93.1 (5.8) 99 (2.4) 69 (14.2) 95.1 (8.9) 93.8 (9.7) 90.0 (8.2)

SBCSP (MC) [37] 89.3 (5.6) 98.6 (1.8) 70.4 (5.3) 95.7 (4.0) 95.7 (2.8) 89.9 (3.9)

SBCSP (RBE) [37] 90.8 (4.5) 97.8 (3.4) 69 (7.3) 95.8 (3.3) 95 (3.4) 89.7 (4.4)

SWCSP [31] 86.8 (6.3) 97.5 (2.9) 76.8 (9.4) 93.9 (3.8) 92.5 (3.9) 89.5 (5.3)

Methods are listed in descending order in terms of average classification accuracy (BCI Competition III Dataset IVa)

Table 4 Performance

comparison of the proposed

method with other typical

approaches (including the

winners of the competition)

Methods Subjects Average

1 2 3 4 5 6 7 8 9

OSTP 0.731 0.398 0.787 0.574 0.412 0.255 0.829 0.75 0.62 0.595

FBCSP 0.676 0.417 0.745 0.481 0.398 0.273 0.773 0.755 0.606 0.569

DFBCSP 0.736 0.375 0.718 0.329 0.245 0.366 0.727 0.778 0.685 0.551

SFS 0.583 0.306 0.718 0.491 0.440 0.259 0.769 0.718 0.671 0.550

Our method 0.6481 0.3657 0.6632 0.5046 0.3241 0.2963 0.7188 0.6354 0.6458 0.5336

2nd winner 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52

FLD 0.634 0.324 0.653 0.560 0.306 0.153 0.769 0.532 0.514 0.494

Manual 0.528 0.319 0.662 0.435 0.190 0.282 0.560 0.708 0.657 0.483

3rd winner 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31

4th winner 0.46 0.25 0.65 0.31 0.12 0.07 0.00 0.46 0.42 0.30

The numbers represent Cohen’s Kappa values, and methods are listed in descending order in terms of

average Kappa value (BCI Competition IV Dataset IIa)
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BCI Competition IV Dataset IIa. From Table 4, we observe

that our method yields an average kappa value of 0.5336

and is ranked fifth among all the ten algorithms. Four

existing methods perform better than our method; these

methods are as follows: (1) OSTP; (2) FBCSP; (3)

DFBCSP; (4) SFS. It should be noted that FBCSP algo-

rithm is the top one winner of BCI Competition IV Dataset

IIa, and OSTP, FBCSP, DFBCSP, SFS, FLD and Manual

are proposed by the same research team. The results also

show that our method yields better classification perfor-

mance when compared to the 2nd, 3rd and 4th placed

submissions for the competition. Note that our method

outperforms FLD which also uses LDA classifier; hence,

our results are still to be improved by designing more

sophisticated machine learning techniques for classifica-

tion. However, the main aim of this paper is optimizing

CSP features on spatial–frequency–temporal domains, so

our forthcoming research issue would be focused on the

classification step.

3.2 Analysis of channel selection

In order to understand the underlying reasons that spatial

adaptation yields better results and to provide a physiological

basis for discrimination, the channel selection method was

used to calculate the discriminative power of each channel,

and the topographical distributions are illustrated in Fig. 2

for each subject of both BCI Competition III Dataset IIIa and
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Fig. 2 Topographical maps of channels’ discriminative power distributions and selected channels of eight subjects in BCI Competition III:

Dataset IIIa and Dataset IVa
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IVa. As shown in Fig. 2, for most subjects the channels with

high discriminative powers are located in neighboring area

of C3, Cz and C4 locations, except for subject ‘‘K6B.’’

However, because of individual variability across different

subjects, the spatial pattern of one subject is different from

other subjects. According to the discriminative powers of

channels, an optimal combination of channels with high

discriminative powers was selected. Figure 2 also shows the

topographies of selected channels of each subject, here

K = 16. As serial processing is employed on signal of each

channel, it is obvious that the computational burden is

reduced when the number of channels decreases. Aiming to

evaluate the effectiveness of channel selection, different

numbers of channels were selected for classification; we set

K to 8, 16, 32, 64 and 118. Figure 3 presents the classification

performance by standard competition procedure under dif-

ferent settings of K for each subject of BCI Competition III

Dataset IVa. Figure 3 shows that the accuracies decrease

dramatically when K is bigger than 32. The reason might be

that the nonevent-related channels add ambiguous informa-

tion to the dataset, thus resulting in separability attenuation

of different classes. Therefore, channel selection can

improve the separability effectively by eradicating a signif-

icant amount of redundant information.

3.3 Effects of different fitness functions

To evaluate the performance of two different fitness

functions, both CA and R2 were used for BCI Competition

III Dataset IIIa. Figure 4 presents the evolution procedures

of classification accuracy and best food position for subject

‘‘K3B’’ when CA is used as the fitness function. Figure 4

(a) shows that CA value (fitness value) inclines to a con-

stant after 9 epochs, note that the numbers of epochs for

convergence are also less than 15 for other subjects in all

three datasets according to the experimental results, which

demonstrate that ABC has good convergence. Since CA

and R2 are used for optimal frequency band and time

interval selection, the resulted frequency band and time

interval will be of generalization for feature extraction and

classifier training. Table 5 shows the performance of two

approaches on BCI Competition III Dataset IIIa using CA

and R2 as the fitness functions of ABC. The obvious dif-

ferences of the frequency band and time interval are given

in Table 5 for all subjects when two different fitness

functions are used. The results show that the mean test
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accuracy of CA approach is 85.187%, while in the case of

R2, it decreases to 76.48%. It is important to note here that

the CA-based approach is bound to give better accuracy as

it computes the fitness value based on CA, thus finding out

the best possible frequency band and time interval for

optimum classification accuracy. On the other hand, the

mean computational time of CA approach for whole ABC

iteration procedure is 3642.6 s, while the mean computa-

tional time of R2 approach is just 1218.6 s. The main

reason is that the R2 approach computes the fitness value

based on the correlation difference between different

classes and hence reduces the computational burden by not

running the whole system to compute classification accu-

racy. Additionally, a relatively long time is needed for

training as we can see from the column ‘‘Computational

time’’ of Table 5, but after training the optimal frequency

band, time interval and CSP filters can be directly used in

the testing phase, and therefore, the ABC-based approach

is feasible for a real-time BCI application. Since higher

classification accuracies are obtained when CA is used as

fitness function, to better evaluate the classification per-

formance of our approach and compare with other meth-

ods, only CA was used as fitness function for BCI

Competition III Dataset IVa and BCI Competition IV

Dataset IIa.

3.4 Analysis of frequency–temporal parameters

optimization

Figure 5 shows the optimal frequency–temporal zones

found by ABC-based approach using CA as the fitness

value for five subjects of BCI Competition III Dataset IVa.

We note that the optimal frequency bands of five subjects

are all located in 8–30 Hz, which covers the mu and beta

rhythms. However, the optimal frequency band of subject

‘‘ay’’ is broader than others. The main reason is that the

small amount of training data prevents the ABC algorithm

to find more precise result for subject ‘‘ay.’’ In addition, the

optimal time segments for classification also differ among

these subjects. To further assess the performance of fre-

quency–temporal parameter optimization, we also used

general frequency and time setting for comparison. The

frequency band 8–30 Hz [1] [18] and time segment

0.5–2.5 s after the visual cue [11] which are generally used

in MI EEG analysis were adopted. Figure 6 presents the

comparison of classification accuracies obtained with

optimal frequency–temporal setting and general fre-

quency–temporal setting for BCI Competition III Dataset

IVa. Figure 6 shows that, for all the subjects in BCI

Competition III Dataset IVa, the results obtained with

optimal frequency–time setting are much better. Although

it is convenient to use general frequency or time setting for

all subjects, the differences among subjects are neglected

and the inclusion of extraneous signals degrades classifi-

cation performance.

Figure 7 presents the optimal frequency–temporal zones

of six pairs of MI tasks found by ABC-based approach for

Subject 1 in BCI Competition IV Dataset IIa. Figure 7

clearly shows that though the optimal frequency bands for

different pairs of MI tasks are mainly located in 8–30 Hz,

they still vary a lot, e.g., the optimal frequency band for

RH/FT is 10–21 Hz which is similar with the results in

Fig. 5, while the optimal frequency band for LH/RH is

17–40 Hz which is similar with the results in Table 5.

From our point of view, the discriminative EEG signal

components locate in different frequency ranges for dif-

ferent pairs of MI tasks, e.g., mu rhythm (12–16 Hz)

contains much discriminative information for RH/FT MI

task, while beta rhythm (18–24 Hz) contains much dis-

criminative information for LH/RH MI task. Further

looking at the optimal time segments for different pairs of

MI tasks in Fig. 7, we observe that though the optimal time

segments for different pairs of MI tasks all start from

almost 1 s (250 points) after the onset of the visual cue, the

starting points still differ in a small range. Moreover, the

lengths of optimal time segments are not equal for different

pairs of MI tasks. We notice that nine predefined temporal

band-pass filters as well as three time segments 0.5–2.5,

Table 5 Classification performance and optimal parameters selected by ABC-based approach using CA and R2 as the fitness functions

Subjects Train accuracy (%) Test accuracy (%) Frequency band (Hz) Time interval (sample points) Computational time (s)

CA R2 CA R2 CA R2 CA R2 CA R2

K3B 100 ± 0 – 98.89 84.44 14–35 20–30 847–1633 800–1160 4700.1 1624.3

K6B 88.82 ± 7.39 – 61.67 58.33 19–34 19–28 925–1375 900–1325 3047.3 1057.7

L1B 97.42 ± 3.59 – 95 86.67 15–31 12–40 825–1325 1150–1775 3180.3 973.7

Mean 95.41 ± 3.66 – 85.187 76.48 N/A N/A N/A N/A 3642.6 1218.6

Column ‘‘train accuracy’’ contains results of classification accuracies on the training set; in the case of CA, all accuracies are obtained by fivefold

cross-validation, so results are presented in ‘‘mean ± Std’’ form, while in the case of R2, train accuracy is not calculated. Column ‘‘Test

accuracy’’ contains results of classification accuracies on the testing set. Column ‘‘Frequency band’’ and column ‘‘Time interval’’ contain results

of optimal frequency band and time interval selected automatically by the proposed method. Column ‘‘Computational time’’ contains results of

computational time for ABC iterations. (–) Not provided (BCI Competition III Dataset IIIa)
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1.0–3.0 and 1.5–3.5 s are used in literature [14]; however,

the optimal frequency bands and time segments in our

study are determined automatically by ABC algorithm.

4 Conclusions

In this study, we proposed a spatial–frequency–temporal

feature optimization method for motor imagery EEG pat-

tern recognition. Channel selection method was used to

automatically select the channels with high discriminative

powers. In addition, the concept of ABC algorithm was

first introduced to find the global optimal combination of

frequency band and time interval simultaneously without

prior knowledge for CSP features extraction and classifi-

cation. The classification accuracy of the algorithm, its

comprehensive consideration over the spatial–temporal–

frequency domains and its capability to adapt to different

subjects make the proposed approach a promising candi-

date for future BCI systems. In current work, the control
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parameters of ABC algorithm are mainly determined

according to practice and the previous studies. For these

parameters, the trade-off between classification accuracy

and computational burden will be analyzed in the future.
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