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Abstract In this paper, a viable global optimizer based on

chaotic differential evolution is hybridized with sequential

quadratic programming, an efficient local search technique

to exploit short-term hydrothermal coordination (STHTC)

involved for power generation and its efficient manage-

ment. A multi-objective optimization framework is estab-

lished for minimizing the total cost of thermal generators

with valve point loading effects satisfying power balance

constraint as well as generator operating and hydrodis-

charge limits, respectively. The proposed model is imple-

mented on various systems comprising hydrogenerating

units as well as different thermal units. The results are

compared with state-of-the-art heuristic techniques

recently employed on STHTC problems, while the relia-

bility, stability and effectiveness of the proposed frame-

work are validated through the comprehensive analysis of

Monte Carlo simulations.

Keywords Short-term hydrothermal coordination �
Chaotic differential evolution � Sequential quadratic
programming � Multi-objective optimization � Stability
analysis

List of symbols

xTHi, yTHi, zTHi, uTHi, eTHi Cost coefficients for thermal

power generation

PTHit Generated output power in

time t of thermal unit i

Pmin
THi;P

max
THi

Minimum and maximum

thermal generation limits for

unit i

Pdt Power demand at time t

Plt Losses due to power

transmission at time t

NTH, Nh Total number of thermal and

hydroelectric units

DRi, URi Down and up ramp rate limits

of thermal unit i

Qhjt, Vhjt Water discharge rate and

storage volume of jth

reservoir at time

Phjt Generated power from jth

hydroelectric unit at time t

C1j, C2j, C3j, C4j, C5j, C6j Power generation coefficients

of jth hydroelectric unit

Pmin
hj ;Pmax

hj
Lower and upper limits of jth

hydroelectric unit

Qmin
hj ;Qmax

hj
Minimum and maximum

water discharge rate of jth

reservoir

t, T Time index and scheduling

period
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Pop Randomly generated

population of candidate

solutions

Psize Population size

STHTCsize Problem size

B Weight factor

Crate Crossover rate

f Chaotic variable

fval Cost of the fitness evaluation

function

1 Introduction

In power sector, optimum coordination of demand and

generation impacts the budget substantially that demands

the researchers and engineers minimization of cost and

power losses [1, 2]. Modern gigantic power system com-

prises of many thermal as well as hydropower plant con-

nected through transmission networks [3]. A very

important objective in the operation of huge power system

is meeting power demand economically by finding optimal

mix of different power plants. Utilizing the available

hydroresources completely without wasting a drop of water

and using minimum thermal fuel will lead to huge saving in

fuel cost [4]. The main objective of hydrothermal coordi-

nation is minimizing the cost of mixed hydrothermal sys-

tem by trading off with transmission losses, available

resources, fuel cost, dynamic loads and valve point

loadings.

The research age of hydrothermal coordination problem

is almost a century [5–7]; however, the development of the

state-of-the-art optimization solvers and sophisticated

hardware kept it a demanding area even in the last decade

[8–10]. A number of conventional techniques have been

employed to solve this nonlinear, non-deterministic and

polynomial time hard problem like lambda gamma itera-

tion method [11], gradient method [12], dynamic pro-

gramming [13] and Newton–Raphson method [14] which

have their own strengths and weaknesses [15, 16].

Although the conventional techniques are capable enough

to provide a reasonably good solution in an appropriate

time, however, they lack in handling more than a few

constraints and are more probable to get stuck in the local

minima and may lead toward an odd solution. The schemes

like priority list method a class of weighted procedures and

forward dynamic programming (DP) approach took lots of

attention in the research community [17, 18] for handling

the problems of unit commitment while constraints of

getting stuck in the local minimum still exist. The similar

problems have been observed in the Lagrange relaxation

method and the methods of the class based on Karush–

Kuhn–Tucker equations [16, 19].

The derivative-free methods have the strengths like

converging to the optimal solution even on a very vague

start points, less probable to get stuck in the local min-

ima’s, state of the art for getting global solution and their

computational complexity also lie in an acceptable domain

[20–22]. Since the last decade of twentieth century, many

intelligent computational techniques have merged espe-

cially evolutionary computational methods remained more

attractable to power system optimizers [23, 24]. The

techniques that are mostly used are simulated annealing,

artificial bee colony, genetic algorithm (GA), differential

evolution (DE), particle swarm optimization (PSO) and ant

colony optimization. These up-to-date techniques solved

the shortcomings of conventional techniques of being

caught to local optima and ability of handling a few con-

straints only [25–27].

In this paper, a nature-inspired evolutionary technique

hybridized with an efficient local search optimizer

sequential quadratic programming (SQP) for economic

dispatch of nonlinear, dynamic and multi-constrained

STHTC problem is developed. A multi-objective opti-

mization framework is established for minimizing the total

cost of thermal generators with valve point loading effects

satisfying power balance constraint as well as generator

operating and hydrodischarge limits, respectively. The

exploitations of three computational techniques like chao-

tic DE on the four different cases of hydrothermal coor-

dination are applied in mean square error sense as a fitness

evaluation function. The comparison is made based on

fitness evaluation, mean square error, computational com-

plexity behavior in terms of time, fuel cost and power

generation demand.

The organization of this paper is as follows: In Sect. 2, a

detailed problem formulation has been provided containing

STHTC problem and its constraints. The proposed

scheme based on chaotic DE, SQP and hybrid approach is

revealed in Sect. 3. The scenario-based results and dis-

cussion on the case studies [1, 28–30] and equivalent

hydropower plant is provided in Sect. 4. The conclusions

drawn from the results have been provided at the end.

2 Problem formulation

Hydrothermal coordination problem aims to minimize the

fuel cost while meeting the different constraints fulfilling

the power demand. The objective function for hydrother-

mal coordination and different constraints are formulated

in the following way.
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2.1 Objective function

MinCost Function ¼
XT

t¼1

XNTH

i¼1

xTHi þ yTHiPTHit þ zTHiP
2
THit

�

þ uTHi � sin eTHi � Pmin
THi � PTHit

� �� ��� �� �:
ð1Þ

2.2 System constraints

2.2.1 Power balancing constraints

In each interval of scheduling time, the combined output

power of hydroelectric and thermal power plants must

balance the expected power demand and transmission line

losses

XNTH

i¼1

PTHit þ
XNh

j¼1

Phjt ¼ Pdt þ Plt; t 2 T: ð2Þ

The hydroelectric power production depends on water

discharge and water head that is directly related to storage

volume of the reservoir

Phjt ¼ C1j V
2
hjt þ C2j Q

2
hjt þC3j Vhjt Qhjt þC4j Vhjt

þ C5j Vhjt þC6j; jeNh; t e T :
ð3Þ

Power losses due to transmission is given as

Plt ¼
XNTHþNh

i¼1

XNTHþNh

j¼1

PitBijPjt þ
XNTHþNh

i¼1

BoiPit þ Boo: ð4Þ

2.2.2 Generation upper and lower constraints

Following equation indicates that each thermal generation

unit has a certain upper and lower generation limit. The

output power from every unit must be in the given gener-

ation range.

P
min
THi � PTHit � P

max
THi ; i e NTH; t e T : ð5Þ

Similarly we have, hydroelectric power generation

limits

P
min
hj � Phjt � P

max
hj ; j e Nh; t e T: ð6Þ

2.2.3 Up and down ramp limits for thermal generation

units

The power from any thermal unit ‘i’ during an interval

should not exceed from the power generated in previous

interval by more than a certain amount. It should not be

less than the power generated in the previous interval by

more than a specified limit. It can be represented mathe-

matically in the following constraints

PTHit � PTHiðt�1Þ �URi; ieNTH; teT ð7Þ

PTHi t�1ð Þ � PTHit �DRi; ieNTH; teT : ð8Þ

2.2.4 Hydroelectric system constraints

The operation of hydropower plants comprises constraints

like balancing the input–output water of reservoir, power

plant limitations, reservoir storage bounds and the multi-

purpose storage. The mathematical model of these con-

straints is presented in following equations.

Limitations of storage volume and discharge rates in

reservoir are;

Vmin
hj � Vhjt � Vmax

hj ; jeNh; teT ð9Þ

Qmin
hj � Qhjt � Qmax

hj ; jeNh; teT : ð10Þ

3 Chaotic differential evolution and quadratic
programming

A robust meta-heuristic method well known as differential

evolution (DE) algorithm having strong capability of

function minimization or maximization is proposed by Ken

and Storn in 1997 [31]. DE is a population-based stochastic

algorithm with very a few parameters but providing

excellent solutions to the non-smooth, multimodal and non-

convex problems [32] because it is not a gradient-based

method [33]. As compared to other evolutionary algo-

rithms, DE is less stochastic but more greedy and uses

simple arithmetic operators for evolving starting popula-

tion to final solution [34]. The main difference between

genetic algorithm and DE is that DE uses the perturbing

vectors that cause the diversity in the sample space and

amplification factor searches the candidate solution from

every knock and corner of the solution surface [35].

DE applications are widespread almost in every field of

research, e.g., electrical power simulations, optical systems

optimization, radio network designs, chemistry of carbon

materials and water pumping systems optimization [36]. To

overcome the basic drawbacks of DE, chaotic theory is

exploited to make it chaotic DE that assures the diversifi-

cation so that handle can move through the whole search

space for improving the chances of not being caught in the

local optima and it tunes the parameters control strategy as

well.

More precisely, to create the diversity in the search

space the behavior of a chaotic system is encapsulated in

differential evolution algorithm as a chaotic parameter
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from the algebraic manipulation of initial random values

passed from the random system that create the scattered-

ness and the algorithm will search every knock and corner

of the candidate solutions. The vector representation and

factor of DE algorithm are also coupled with the chaotic

variable which guarantees the parallelism in n-dimensions

and improves the computational searching of the proposed

scheme as well.

SQP is an iterative method fall under the class of

barrier methods efficiently used in nonlinear optimization

of complex system having linear and nonlinear con-

straints. The capability of transforming a complex prob-

lem into the subproblems has been exploited by keeping

in view the constraints like load demand, generating

limits and valve point loading effects in STHTC problem.

The SQP requires the objective function and its con-

straints as a lagrangian function to minimize the energy

cost subject to the defined constraints. The applications of

this local search schemes are found in combinatorial

problems, image classification, numerical approximation

of the control and power system stability analysis. The

built-in subroutine of the sequential quadratic program-

ming (SQP) is used as a local optimizer.

The necessary explanation about the logical steps used

for optimization of hybrid approach DE-SQP is presented

here:

Step 1 Parameter setup An initial weight vector is

generated randomly with the real bounded

values of the length equal to the number of

design parameters involved in STHTC. The

user-defined population size, length of one

vector in the population, the boundary

constraints of the optimization, the mutation

factor, stopping criteria and other necessary

parameter settings and values are taken as given

in Table 1.

Step 2 Initialization of an individual population Set

generation N = 0 with a population of

i = 1,…,M individuals (real-valued sufficiently

large n-dimensional candidate solution) with

random values generated according to a uniform

probability distribution in the n-dimensional

problem space in order to avoid premature

convergence.

Step 3 Fitness evaluation Evaluate the energy function

as defined for each objective function up to an

acceptable range of the fitness value e.
Step 4 Differential operation The mutation operation

adds a vector differential to a population vector of

individuals with a real mutation factor that

controls the amplification of the difference

between two individuals to avoid search

stagnation and is usually taken from the range

[0.1, 1].

Step 5 Recombination operation Recombination is

employed to generate a trial vector by replacing

certain parameters of the target vector with the

corresponding parameters of a randomly

generated donor vector; the recombination rate is

taken in logarithmic manner to get a mature

exploitation of the search space.

Step 6 Selection operator The procedure of producing

better offsprings is obtained in this step with a

criterion of comparing the fitness of the current

individual as stability to stain in the next

generation. Similarly, the fitness cost of each trial

vector is compared with that of its parent target

vector. If the cost of the target vector is lower

than that of trial vector, the target is allowed to

advance to the next generation; otherwise, the

target vector is replaced by the trial vector in the

next generation.

Table 1 Parameter values/settings for chaotic DE and SQP

Chaotic differential evolution Sequential quadratic programming

Parameters Values/settings Parameters Values/settings

Generations 500 Start point Random or best result of DE

Population size 360 No of variables Generation unit dependent

Population range [-1 1] Iterations 1000

Function tolerance 10-30 Max. function evaluations 50,000

Stall generation limit 200 Function tolerance 0

Nonlinear constraints tolerance 10-30 Nonlinear constraints tolerance 0

Fitness limit 10-35 Derivative approach Finite forward difference

X-tolerance 10-18 X-tolerance 10-18

Bounds As given in thermal units Bounds As given in thermal units

Others Default Others Default
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Step 7 Stopping criteria for chaotic differential evolution

Set the generation number for N = N ? 1 and

proceed to step 3 until a stopping criteria is met

that is problem dependent based on the following

conditions:

1. Maximum number of generations achieved

2. Fitness value e is less than 10-12 is achieved

3. Function tolerance is lower than a certain pre-

defined criteria

Step 8 Hybrid with SQP The one of the best individual

obtained with Chaotic DE is passed as a start

point to the SQP algorithm for fine-tuning of the

unknown adaptive parameters of the STHTC

problem.

The detailed pseudo-code of the proposed scheme is

given as follows:

4 Simulation and results

Four scenario-based hydrothermal test systems have been

investigated, and the simulation results based on various

performance criterions like cost in dollars, fitness evalua-

tion of the energy functions, absolute error of the load and

thermal generations and computational complexity in terms

of time are presented. The level and percentage of the

convergence for chaotic DE, SQP and hybrid approach are

also computed for sufficiently large number of independent

runs. The algorithms used in this article are implemented

by using MATLAB version 7.12.0 (R 2011a) on the

Intel(R) Core(TM) i3-4010U CPU @ 1.70 GHz machine

with 4 GB RAM.

4.1 Case study I

This test system considers a multi-chain cascade of four

reservoirs hydropower plants along with the three steam

power plants to fulfill the overall generation of 1050 MW.

The entire scheduling period is one week and divided into

100 intervals. The system has been simulated using the

optimization solvers based on chaotic DE, SQP and DE-

SQP; the parameters values/settings of the solvers are

provided in Table 1.

200 MW of the power is obtained from the hydropower

plants, while the remaining power is fed to the system

using three available steam power plants economically.

The optimal values of the hydrothermal generation and

steam generation are presented in Table 2 while the

behavior of the steam power plant is shown in Fig. 1a as a

fitness evaluation of the energy function while Fig. 1b

describes the absolute difference of the remaining power

load and thermal generation. It is quite evident from the

figure that the value of the fitness achieved lie in the range

from 10-11 to 10-13, while difference of thermal genera-

tion is from 10-05 to 10-06 for the hybrid approach. It is

worth to mention that the cost for DE-SQP is much lesser

than that of DE and SQP alone.

4.2 Case study II

This test system considers six steam power plants and an

equivalent hydrogeneration plant to meet the requirement

of 400 MW. The entire scheduling period is one week and

divided into 100 equal intervals. 116.6 MW of the power is

fed by the hydropower plants, and the remaining power is

provided by the six steam plants. The optimal values of the

hydrothermal generation and steam generation are pre-

sented in Table 3 while the steam power plants behavior is

shown in Fig. 2a as a fitness evaluation of the energy

Table 2 Optimal hydrothermal generation (MW) for case study I

Solver DE SQP DE-SQP

Optimal hydrogeneration

Ph (MW) 200 200 200

Optimal thermal generation

Ps1 (MW) 368.0882 415.7895 389.2278

Ps2 (MW) 239.6326 289.4737 260.7722

Ps3 (MW) 242.2792 144.7368 200

Cost ($) 8678.374 8596.647 8421.025
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function while Fig. 2b shows the absolute difference

between power required and the power generated.

It is very clear from the figure that the value of the

fitness achieved lie in the range from 10-12 to 10-15, while

difference of thermal generation is from 10-06 to 10-07 for

the hybrid approach. We observed that the cost for DE-

SQP is much lesser than that of DE and SQP alone.

4.3 Case study III

In this test system, we consider a system comprising 13

steam power plants and equivalent hydropower generation.

The total power demand is 2200 MW of which 400 MW is

provided by hydropower plants free of cost, and the left

Fig. 1 Behavior of the fitness function evaluation (a) and absolute error of thermal generation for 100 intervals in (b)

Table 3 Optimal hydrothermal generation (MW) for case study II

Solver DE SQP DE-SQP

Optimal hydrogeneration

Ph (MW) 116.6 116.6 116.6

Optimal thermal generation

Ps1 (MW) 81.85596539 128.4905694 87.05768382

Ps2 (MW) 38.06031749 51.39622726 43.26203736

Ps3 (MW) 47.48569106 33.31446592 48.08028332

Ps4 (MW) 37.23094576 23.08176139 34.99999835

Ps5 (MW) 33.40607996 20.46540911 29.9999984

Ps6 (MW) 45.36100034 26.65156693 39.99999832

Cost ($) 123,020.8913 4394.600398 1648.481294

Fig. 2 Behavior of the fitness function value (a) and absolute error of thermal generation for 100 intervals in (b)
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over power is met by the steam power plants. The system

has been simulated using the optimization solvers based on

chaotic DE, SQP and DE-SQP; the parameters values/set-

tings of the solvers are provided in Table 1.

The optimal solution of the hydrothermal values is

presented in Table 4. The behavior of steam power plants

is shown in Fig. 3a as a fitness evaluation of the energy

function, and Fig. 3b shows the absolute difference

between power demand and the power generated. It is very

clear from the figure that the value of the fitness achieved

lie in the range from 10-12 to 10-16, while difference of

thermal generation is from 10-06 to 10-08 for the hybrid

approach. We have observed in this case also the cost for

DE-SQP is much lesser than that of DE and SQP alone.

4.4 Case study IV

In this case, we consider a system comprising of 40 steam

power plants and equivalent hydropower generation. The

total power demand is 12,000 MW of which 1500 MW is

generated by hydropower plants and the remaining power

is fed by the steam power plants; here, we are neglecting

transmission losses. The optimal solution we found by the

algorithms is given in Table 5. The behavior of steam

power plants is shown in Fig. 4a as a fitness evaluation of

the energy function, and Fig. 4b shows the absolute dif-

ference between power demand and the power generated.

The results of the figure are drawn at semi-log scale in

order to describe the clear difference in each independent

run. It is quite evident from the table that the hybrid

scheme shows supremacy in terms of cost per MW than

that of chaotic DE and SQP, although the computational

time complexity of hybrid scheme is slightly more but this

effect can be ignored with the effect of the cost.

It is quite evident from the figure that the value of the

fitness achieved lie in the range of 10-20 to 10-25, while

difference of thermal generation is from 10-10 to 10-12 for

the hybrid approach. The cost of hybrid approach is much

lesser than that of DE and SQP alone in this case also.

4.5 Comparative analysis of the results

The comparative study for case 1–4 is also thoroughly

investigated based on behavior of their computation time

complexity, analysis on fitness achieved, load error and

statistical analysis for the computational derive. The

Table 4 Optimal hydrothermal generation (MW) for case study III

Solver DE SQP DE-SQP

Optimal hydrogeneration

Ph (MW) 400 400 400

Optimal thermal generation

Ps1 (MW) 26.9588 352.8772 98.7181922

Ps2 (MW) 41.85882 186.676 99.2111282

Ps3 (MW) 42.8607 186.9355 100.032396

Ps4 (MW) 199.4378 122.1997 179.999958

Ps5 (MW) 200.0579 122.1997 179.999958

Ps6 (MW) 211.0128 122.1997 179.999958

Ps7 (MW) 152.4702 122.1997 157.433046

Ps8 (MW) 137.5302 122.1997 145.186288

Ps9 (MW) 203.039 122.1997 179.999958

Ps10 (MW) 119.2916 81.46589 119.419249

Ps11 (MW) 174.2788 81.46589 119.999956

Ps12 (MW) 143.426 88.69074 119.999956

Ps13 (MW) 147.7774 88.69074 119.999956

Cost ($) 123,020.8913 4394.600398 1648.481294

Fig. 3 Behavior of the fitness function evaluation (a) and absolute error of thermal generation for 100 intervals in (b)
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behavior of the time analysis for 100 independent runs is

shown in Fig. 5a–d for DE, SQP and DE-SQP approaches

in case study 1 to case study 4, respectively. It is quite

evident from the figure that the computational derive of the

local search is very small; however, the probability of

getting struck in the local minima is high while DE and

DE-SQP time is approximately the same but the fitness

values achieved in hybrid approach is better than DE.

The statistical mode mean and standard deviation

always explain more realistically the effectiveness of an

algorithm. The statistical parameters min, max, mean,

standard deviation, variance and mode have been computed

for a large number of independent runs to see the conver-

gence of the optimizer, and the results are tabulated in

Table 6. The mean fitness value achieved using 100 inde-

pendent runs is computed using the relation given in

Eq. (11).

MF ¼ 1

<
X<

j¼1

1

N

XN

k¼1

fval � f̂ kval
�� ��2

 !

j

ð11Þ

This can be exploited from the table that the mean

value of the fitness achieved for hybrid approach is

consistently better than that of DE and SQP individually;

the similar behavior has been observed in standard devi-

ation as well. The comparative analysis of the load error

is also determined for 100 independent runs of the DE,

SQP and DE-SQP algorithms, and the results are shown

in Table 7.

Similarly, the comparative study for DE, SQP and DE-

SQP in terms of computational complexity for case study

1–4 is provided in Table 8 using the relation given below:

MET ¼ 1

<
X<

j¼1

ET j: ð12Þ

It is quite clear from the table that computational budget

in terms of time complexity increases with the increase in

number of generators. One of the important parameter in

this research is cost in dollars for the production of power

in MW; in this regard, a comparative study is also carried

out for DE, SQP and DE-SQP algorithms whose results are

given in Table 9. The dominancy of DE-SQP is observed

in the table as the mean value of the cost for DE-SQP is

lower than that of global search scheme and local search

algorithm individually.

The convergence behavior is observed for 100 inde-

pendent runs to validate the stability of the DE-SQP, and

the results are drawn in Fig. 6 on the semi-log scale to

make clarity among the various case studies. It is quite

evident from the figure that overall convergence lies

from 10-11 to 10-16. Moreover, approximately 88% of

the independent runs are found to be stable for case 1,

case 3 and case 4 in the range from 10-11 to 10-13,

while it is 70% for case study 2 with a precision lies in

10-13.

Table 5 Optimal hydrothermal generation (MW) for case study IV

Solver DE SQP DE-SQP

Optimal hydrogeneration

Ph (MW) 1500 1500 1500

Optimal thermal generation

Ps1 (MW) 132.2539582 92.06804958 114

Ps2 (MW) 139.2677773 92.06804958 114

Ps3 (MW) 163.4171438 103.1292689 120

Ps4 (MW) 177.1651195 159.0703263 183.7098418

Ps5 (MW) 140.9268812 82.94105742 97

Ps6 (MW) 167.7413554 119.7551227 140

Ps7 (MW) 176.1009267 246.5760182 239.2873291

Ps8 (MW) 237.2224228 253.6054895 269.2385135

Ps9 (MW) 185.7263532 253.6054895 244.0047197

Ps10 (MW) 232.3491264 252.1995952 266.850625

Ps11 (MW) 173.6844415 295.9887427 276.3542302

Ps12 (MW) 194.0661898 296.7075639 286.8509457

Ps13 (MW) 196.0262765 394.5579307 351.0504

Ps14 (MW) 186.0605753 394.5579307 346.1671317

Ps15 (MW) 229.7251196 394.5579307 367.5632823

Ps16 (MW) 268.7190231 394.5579307 386.6704321

Ps17 (MW) 285.1172317 421.2699216 394.7055833

Ps18 (MW) 327.2881577 421.2699216 415.3695108

Ps19 (MW) 339.1840995 463.3969137 446.6986891

Ps20 (MW) 340.9184334 463.3969137 447.5487986

Ps21 (MW) 400.4456321 466.77106 476.7176762

Ps22 (MW) 331.1034731 466.77106 442.7395591

Ps23 (MW) 315.5877954 466.77106 435.1361993

Ps24 (MW) 306.4064802 466.77106 430.6376298

Ps25 (MW) 362.7246052 466.77106 458.2338338

Ps26 (MW) 331.7683512 466.77106 443.0647432

Ps27 (MW) 119.3841058 110.6349608 134.9967919

Ps28 (MW) 107.1727912 110.6349608 129.013211

Ps29 (MW) 53.50256196 110.6349608 102.7158613

Ps30 (MW) 135.8759898 82.94105742 97

Ps31 (MW) 157.4549128 153.4467493 174.0534244

Ps32 (MW) 155.1604129 153.4467493 172.928325

Ps33 (MW) 153.1323907 153.4467493 171.934534

Ps34 (MW) 221.233994 169.0703263 200

Ps35 (MW) 174.2553217 169.0703263 187.384766

Ps36 (MW) 215.1853029 169.0703263 200

Ps37 (MW) 60.20898716 86.09979762 85.60153412

Ps38 (MW) 131.7594186 86.09979762 110

Ps39 (MW) 117.3141014 86.09979762 110

Ps40 (MW) 306.6807263 463.3969137 430.7718759

Cost ($) 993,176,931.4 3661678.233 2,777,718.62
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Fig. 4 Behavior of the fitness function evaluation (a) and absolute error of thermal generation for 100 intervals in (b)

Fig. 5 Comparative analysis of the computational budget for case study I to case study IV
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Table 6 Comparative study in DE, SQP and DE-SQP in terms of fitness achieved

Case study Solver Min Max Mean STD Var Mode

1 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 1.2374E-12 1.2374E-12 5.3856E-12 6.0890E-28 3.7076E-55 1.2374E-12

DE-SQP 0.0000E?00 1.1058E-11 1.2374E-12 2.4940E-12 6.2200E-24 0.0000E?00

2 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 8.8948E-16 8.8948E-16 1.3097E-13 0.0000E?00 0.0000E?00 8.8948E-16

DE-SQP 0.0000E?00 2.4514E-13 8.8948E-16 9.2651E-14 8.5842E-27 0.0000E?00

3 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 8.7560E-14 2.2660E-12 2.1721E-12 3.0447E-13 9.2704E-26 2.2656E-12

DE-SQP 7.7525E-17 7.6447E-13 4.3402E-13 1.8722E-13 3.5052E-26 7.7525E-17

4 DE 3.3162E?06 6.0206E?06 4.4814E?06 5.3298E?05 2.8407E?11 3.3162E?06

SQP 3.3087E-24 3.3087E-24 5.1161E-12 0.0000E?00 0.0000E?00 3.3087E-24

DE-SQP 1.6466E-15 8.3930E-12 3.3087E-24 2.6583E-12 7.0667E-24 1.6466E-15

Table 7 Comparative study in DE, SQP and DE-SQP in terms of load error

Case study Solver Min Max Mean STD Var Mode

1 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 1.1124E-06 1.1124E-06 1.1124E-06 0.0000E?00 0.0000E?00 1.1124E-06

DE-SQP 0.0000E?00 3.3253E-06 2.1843E-06 7.8786E-07 6.2072E-13 0.0000E?00

2 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 2.9824E-08 2.9824E-08 2.9824E-08 0.0000E?00 0.0000E?00 2.9824E-08

DE-SQP 0.0000E?00 4.9512E-07 3.0860E-07 1.8998E-07 3.6094E-14 0.0000E?00

3 DE 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

SQP 2.9591E-07 1.5053E-06 1.4660E-06 1.5232E-07 2.3201E-14 1.5052E-06

DE-SQP 8.8048E-09 8.7434E-07 6.2598E-07 2.0640E-07 4.2599E-14 8.8048E-09

4 DE 1.8210E?03 2.4537E?03 2.1133E?03 1.2490E?02 1.5601E?04 1.8210E?03

SQP 1.8190E-12 1.8190E-12 1.8190E-12 0.0000E?00 0.0000E?00 1.8190E-12

DE-SQP 4.0578E-08 2.8971E-06 2.1071E-06 8.2651E-07 6.8311E-13 4.0578E-08

Table 8 Comparative study in

DE, SQP and DE-SQP in terms

of computational complexity

Case study Solver Min Max Mean STD Var Mode

1 DE 25.7830 57.6757 33.5441 4.4063 19.4158 25.7830

SQP 0.0337 2.1092 0.0672 0.2065 0.0426 0.0337

DE-SQP 25.7974 57.8232 33.5714 4.4207 19.416 25.7974

2 DE 5.0349 9.1769 6.8964 0.8990 0.8082 5.0349

SQP 0.0409 0.1612 0.0514 0.0137 0.0002 0.0409

DE-SQP 5.0569 9.2737 6.9402 0.912 0.8084 5.0772

3 DE 32.4815 51.7848 40.5578 3.6145 13.0643 32.4815

SQP 0.0610 0.2841 0.0938 0.0343 0.0012 0.0610

DE-SQP 32.54 52.0225 40.6578 3.6476 13.0654 32.54

4 DE 472.1110 604.7093 507.3392 39.0906 1528.0744 472.1110

SQP 0.4338 0.7292 0.4999 0.0569 0.0032 0.4338

DE-SQP 472.6688 606.6227 508.2392 39.3652 1528.15 472.6688
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5 Conclusions

Based on the simulation, the following findings can be

extracted:

• The stochastic optimizer based on chaotic differential

evolution, sequential quadratic programming a viable

local search and their hybrid scheme provides an

alternate platform to optimize hydrothermal coordina-

tion problem.

• The fitness value obtained by the DE-SQP outperforms

than that of DE and SQP schemes independently;

similarly, the cost per MW for DE-SQP is lower as

compared with other optimizers.

• The fitness value achieved lies in the range from 10-11

to 10-13, 10-12 to 10-15, 10-12 to 10-16 and 10-20 to

10-25 for case study 1–4, respectively.

• The convergence of the proposed scheme is validated

through Monte Carlo simulations; it has been observed

from the graphs that the convergence percentage for

DE-DQP, SQP and DE is 100, 90 and 95, respectively.

• The computational complexity of the DE-SQP is

slightly higher than DE and SQP, while this effect

can be overshadow at the cost of supremacy in mean

absolute error of the DE-SQP.

• Another advantage of the proposed scheme is simplic-

ity in concept, ease in implementation, low computa-

tional complexity, good convergence and an

acceptable range of accuracy in the solution.
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