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Abstract In this article, the Cattaneo–Christov heat flux

model is implemented to study non-Fourier heat and mass

transfer in the magnetohydrodynamic flow of an upper-

convected Maxwell fluid over a permeable stretching sheet

under a transverse constant magnetic field. Thermal radi-

ation and chemical reaction effects are also considered.

The nonlinear partial differential conservation equations

for mass, momentum, energy and species conservation are

transformed with appropriate similarity variables into a

system of coupled, highly nonlinear ordinary differential

equations with appropriate boundary conditions. Numerical

solutions have been presented for the influence of elasticity

parameter (a), magnetic parameter (M2), suction/injection

parameter ðkÞ; Prandtl number (Pr), conduction–radiation

parameter (Rd), sheet stretching parameter (A), Schmidt

number (Sc), chemical reaction parameter ccð Þ, modified

Deborah number with respect to relaxation time of heat

flux (i.e., non-Fourier Deborah number) on velocity com-

ponents, temperature and concentration profiles using the

successive Taylor series linearization method (STSLM)

utilizing Chebyshev interpolating polynomials and Gauss–

Lobatto collocation. The effects of selected parameters on

skin friction coefficient, Nusselt number and Sherwood

number are also presented with the help of tables. Verifi-

cation of the STSLM solutions is achieved with existing

published results demonstrating close agreement. Further

validation of skin friction coefficient, Nusselt number and

Sherwood number values computed with STSLM is

included using Mathematica software shooting quadrature.

Keywords Heat and mass transfer �
Magnetohydrodynamics � UC Maxwell viscoelastic fluid �
Heat flux � Radiative flux � STSLM numerical solution

1 Introduction

Heat transfer is an important area of research due to its

numerous applications in different industrial and engi-

neering processes. These include cooling of nuclear reac-

tors, thermoplastic fabrication, heat pumps, materials

processing, cooling of electronic devices, biophysical heat

conduction process in tissues, rocket thermal ablation and

energy production. The Fourier law of heat conduction [1]

has been the classical approach for thermal conduction heat

transfer simulation. The main drawback of this model,

however, is that it reduces the heat conservation formula-

tion to a parabolic energy equation which shows that the

medium under observation experiences an initial distur-

bance. In order to overcome this difficulty, Cattaneo [2]

introduced a relaxation time term in Fourier’s law of heat

conduction. Christov [3] presented a frame indifferent

formulation for the Maxwell–Cattaneo model with finite-

speed heat conduction. Ostoja-Starzewski [4] described

mathematically the Maxwell–Cattaneo equation with the

help of a material time derivative for heat flux. Tibullo and

Zampoli [5] investigated the uniqueness and stability of

solutions obtained by the Cattaneo–Christov heat flux
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model for incompressible fluid. Straughan [6] numerically

examined incompressible thermal convection flows using

the Cattaneo–Christov model. He found that thermal

relaxation coefficient is more significant if the Cattaneo

number is very high and the convection phenomena

transform from stationary convection to oscillatory con-

vection having narrower cells. A study of thermal insta-

bility incorporating fluid inertia using heat flux model

through a Brinkman porous medium was conducted by

Haddad [7]. Ciarletta and Straughan [8] addressed the

structural uniqueness and stability of Cattaneo–Christov

heat flux equations. They show that the solution to a

backward in time problem relies on continuously on a

relaxation time. Al-Qahtani and Yilbas [9] presented a

closed form solution for Cattaneo and stress equation by

means of the Laplace transform method. Papanicolaou

et al. [10] examined the effects of thermal relaxation in the

Cattaneo–Maxwell equations using horizontal and vertical

gradients. Recently, Han et al. [11] studied the boundary

layer flow of Maxwell fluids from a stretching sheet with

the Cattaneo–Christov heat flux model. Mustafa [12]

investigated analytically and numerically the non-Fourier

convection in rotating Maxwell fluid flow. He presented

both analytical and numerical solution and showed that

both the results are in excellent agreement. Bissell [13]

examined oscillatory convection flow using Cattaneo–

Christov heat flux model in place of parabolic of parabolic

Fourier law to enhance the possibility of oscillatory con-

vection in a classic Bernard problem. Nadeem et al. [14]

studied numerically the heat transfer in boundary layer

flow of an Oldroyd-B nanofluid model toward a stretching

sheet with a non-Fourier thermal flux model. They

observed that the Brownian motion parameter enhances the

Nusselt number and Sherwood number.

In recent year’s, boundary layer flows of both Newto-

nian and non-Newtonian fluids have stimulated consider-

able attention in engineering science research owing to

growing applications in metallurgical processing, chemical

engineering transport phenomena (paints, gels, foodstuffs),

extrusion of molten polymers, fabrication of wrapping foils

and plastic sheets. Species, heat and momentum transfer

play a prominent role in such processes. Polymeric sheets

may be elongated in certain directions to enhance

mechanical properties via doping with other materials and

also thermal loading [15]. Non-Newtonian fluids arise in an

extensive spectrum of chemical engineering systems

including lubricants, medical linctus suspensions, deter-

gents, foams, biotechnological liquids and so on. Rosali

et al. [16] studied the stagnation point flow with a heat

transfer toward a porous stretching/shrinking sheet. They

found that the dual solution exist for shrinking case. Qasim

[17] examined simultaneously the effects of heat and mass

transfer on non-Newtonian Jeffreys viscoelastic fluid flow

in the presence of heat source/sink. Mukhopadhyay [18]

investigated the magnetized boundary layer flow with heat

transfer through an exponentially stretching sheet in a

thermally stratified medium. He observed that in the

presence of thermal stratification effect, heat transfer rate

rises, whereas the magnitude of the velocity profile

diminishes for higher values of magnetic parameter. Khalili

et al. [19] studied the unsteady stagnation point nanofluid

flow with heat transfer through a stretching/shrinking sheet

embedded in a porous medium under the effects of a

magnetic field. They found that the dual solution domain

rises due to an increment in magnetic parameter, perme-

ability parameter and velocity ration while it remains

constant for different values of solid volume fraction of

nanoparticles. Further, they found that the permeability

parameter has a more influence on a flow and heat transfer

of nanofluid as compared to magnetic parameter. Later,

Khalili et al. [20] considered the MHD effects on stagna-

tion point nanofluid flow on a porous stretching/shrinking

permeable plate. They considered three types of nanopar-

ticles such as copper, alumina and titania with water as a

base fluid. Further, they found that the skin friction coef-

ficient and Nusselt number rise in all the three cases for

higher values of nanoparticle volume fraction. Bhatti et al.

[21] studied numerically the Maxwell fluid flow through a

shrinking porous sheet using the successive linearization

method.

In various high-temperature materials processing oper-

ations, thermal radiation heat transfer also plays an

important role. The constitution of manufactured materials

can be effectively manipulated with radiative flux. Thermal

radiation is also significant in various other areas including

rocket plume combustion, nuclear power plants, furnace

operations, and reentry aero-thermodynamics. Seddeek and

Abdelmeguid [22] studied the simultaneous effects of

thermal radiation and thermal diffusivity on stretching

surface flow with variable heat flux. Mukhopadhyay and

Layek [23] investigated the impact of variable fluid vis-

cosity and thermal radiation on free convection flow from a

porous stretching sheet. They found that the suction

parameter opposes the skin friction coefficient and enhan-

ces the heat transfer rate. However, for blowing case, the

behavior is opposite. Moreover, they also observed that due

to injection/suction fluid velocity increases/decreases at a

particular point. Due to rise in thermal radiation parameter,

temperature profile diminishes. Pal [24] analyzed the

simultaneous effects of heat and mass transfer with thermal

radiation and buoyancy force from a stretching surface.

Mukhopadhyay [25] studied the unsteady mixed convec-

tion flow with heat transfer and thermal radiation through a

porous media. Uddin et al. [26] simulated computationally

the nonlinear magnetized slip flow from a stretching sheet

with thermal radiative flux using with Maple quadrature.
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Mabood et al. [27] numerically analyzed the boundary

layer convection flow of nanofluid from a nonlinear

stretching sheet. Daniel and Daniel [28] examined the

thermal radiation effects on buoyancy-driven magnetic

stagnation point flow through porous media. Bhatti and

Rashidi [29] considered the simultaneous effects of thermal

radiation and Soret thermo-diffusion on non-Newtonian

viscoelastic nanofluid transport from a shrinking/stretching

sheet. Recently, Akbar and Khan [30] explored the effects

of thermal radiation and variable thermal conductivity on

nanofluid stretching sheet flow with convective boundary

conditions.

Magnetohydrodynamics (MHD) free convection flow is

also an important area in modern engineering sciences.

Recent developments in materials synthesis, electromag-

netic flow control, magnetic levitation in metallurgy and

electro-conductive polymers have stimulated significant

interest in magneto-convective flow simulations. The res-

urge in renewable energy devices employing electromag-

netic pumps and hydromagnetic generators has also

mobilized substantial efforts in MHD heat transfer analy-

sis. Makinde [31] investigated the combined influence of

transverse magnetic field and thermal radiation on mixed

convection flow with higher order chemical reaction

through vertical porous media. Makinde [32] also analyzed

studied magneto-convective heat and mass transfer from a

moving vertical plate with surface convective boundary

conditions. Ellahi and Hameed [33] studied numerically

magnetohydrodynamic convection flow with nonlinear

wall slip conditions. Akbar et al. [34] examined radiative

flux effects on MHD stagnation point nanofluid flow from a

stretching surface. Bég et al. [35] employed the PSPICE

network simulation code to study the non-isothermal

hydromagnetic boundary layer flow from a porous cone

with pressure work and wall mass flux effects. Gaffar et al.

[36] used a finite difference scheme to analyze the non-

isothermal hydromagnetic flow of a tangent hyperbolic

fluid from a vertical porous cone. Noor et al. [37] discussed

the thermal radiation and heat absorption effects using a

non-Newtonian fluid model through a vertical stretching

sheet. They simultaneously used the shooting method with

homotopy Pade solutions. Moreover, they found that the

heat flux rises due to the increment in heat absorption and

thermal radiation parameter. Halim et al. [38] considered

the Maxwell fluid model with active and passive control

flow in the presence of nanoparticles. They have also

applied the shooting method to obtain the solution of the

nonlinear equations. They found that the temperature pro-

file in passive control model is lower as compared to the

active control model. Moreover, they observed that Nusselt

number, skin friction coefficient and Sherwood number

diminish due to the increment in hydrodynamic slip

parameter. Further, they noticed that the stagnation point

parameter provides excellent heat transfer performance of

nanofluid in the presence of both passive and active control

models. Sheikholeslami and Bhatti [39] studied the influ-

ence of Coulomb force on forced convective heat transfer

using Fe3O4–ethylene glycol nanofluid using control vol-

ume-based finite element method.

Relatively few studies of magnetohydrodynamic non-

Newtonian convective heat and mass transfer have

appeared utilizing a non-Fourier formulation for thermal

conduction. In the present article, the objective is therefore

to study the hydromagnetic forced convection heat and

mass transfer in boundary layer flow of an upper-convected

Maxwell fluid from a horizontal permeable stretching

surface with the non-Fourier Cattaneo–Christov heat flux

model. Additionally the collective effects of thermal radi-

ation flux and chemical reaction are taken into account.

This flow problem is relevant to polymeric materials pro-

cessing operations in which thermal loading may be of the

non-Fourier type [39–42]. The governing flow problem is

modeled with the help of similarity transformation vari-

ables. The successive Taylor series linearization method

(STSLM) [43–45] is used to solve the dimensionless

boundary value problem. The physical influence of the

emerging parameters on velocity, temperature and con-

centration profiles is elaborated with the aid of graphs. A

numerical verification of the STSLM computations is also

presented with an alternative numerical method as well as

with existing published results. This paper is formulated in

the following way. Section 1 relates the detailed back-

ground and introduction, and mathematical formulation of

the problem is given in Sect. 2. Section 3 describes the

numerical solution of the problem. Section 4 discusses

validation with shooting quadrature and published litera-

ture. Section 5 contains numerical and graphical results of

the problem.

2 Mathematical formulation

Consider the steady forced convective magnetohydrody-

namic heat and mass transfer in boundary layer flow of an

electrically-conducting, reactive non-Newtonian polymeric

fluid (of the upper-convected Maxwell type) with thermal

radiative flux, from a porous permeable stretching sheet at

y[ 0, as depicted in Fig. 1.

An external constant magnetic field, Bo, is applied in the

transverse direction (y). The influence of induced magnetic

is assumed to be negligible here due to small magnetic

Reynolds number. The flow occurs on the origin of the

stretching sheet due to the presence of two forces with

opposite signs and equal values. The governing equations

for the transport in the boundary layer may be written as

[5, 6, 29]
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The thermal boundary layer equation using Cattaneo–

Christov heat flux model in the presence of thermal radi-

ation can be written in the following form [9, 12]:
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The species conservation boundary layer equation takes

the form:

�u
o �C

o�x
þ �v

o �C

o�y
¼ D

o2 �C

o�y2
� k1

�C � �C1ð Þ: ð4Þ

where �u and �v are the velocity components in the �x and �y

direction, respectively, K is the relaxation time, B0 is the

applied magnetic field, m is the kinematic viscosity, q is the

density of the fluid, r is the electrical conductivity of the

fluid, q is the heat flux, K1 is the relaxation time of heat

flux, �T is the temperature, k is the thermal conductivity of

the fluid, �V is the velocity vector, respectively. Equa-

tion (3) can be reduced to Fourier’s law by taking K1 ¼ 0:

In Eq. (3), the nonlinear radiative heat flux term may be

rewritten as [21–26]:

�Qr ¼ � 4�r
3k0

o�T4

o�y
¼ � 16�r�T3

3k0
o�T

o�y
: ð5Þ

The boundary conditions at the wall and in the free

stream are imposed as follows:

�u ¼ a�x; �v ¼ � �Vs; �T ¼ �Tw; �C ¼ �Cw at �y ¼ 0; ð6Þ

�u ! 1; �T ¼ �T1; �C ¼ �C1 at �y ! 1: ð7Þ

In the above equations, a is constant, and �Vs [ 0½ � cor-

responds to a suction velocity, whereas �Vs \0½ � is associ-

ated with a blowing (injection) velocity at the wall, cp is the

specific heat, k
0
is the mean absorption coefficient,k1 is the

chemical reaction parameter, �r is the Stefan–Boltzmann

constant and D is the coefficient of mass (species)

diffusivity.

Introducing the similarity transformation variable n with

the help of stream function, we have [9, 12]:

y ¼ n

ffiffiffi
m
a

r
; w ¼ x

ffiffiffiffiffi
am

p
f nð Þ; h nð Þ ¼

�T � �T1
�Tw � �T1

;

/ nð Þ ¼
�C � �C1
�Cw � �C1

:

ð8Þ

The dimensional stream function is defined via the

Cauchy–Riemann equations as:

�u ¼ ow
o�y

; �v ¼ � ow
o�x

: ð9Þ

Implementing the transformations defined in Eq. (8) into

the momentum, thermal and species (concentration)

boundary layer equations, i.e., Eqs. (2–4), the following

system of ordinary differential equations emerges:

f 000 � f 02 �M2f 0 þ 1 þ aM2
� �

ff 00 � a f 000f 2 � 2f 00f 0f
� �

¼ 0;

ð10Þ
1

Pr
þ 4

3
Rd

� �
h00 þ fh0 � c h0f 0f þ h00f 2

� �
¼ 0; ð11Þ

1

Sc
/0 � cc/ ¼ f 0/� f/0: ð12Þ

Their corresponding transformed boundary conditions

are:

f ¼ k; f 0 ¼ A; h ¼ 1;/ ¼ 1 at n ¼ 0; ð13Þ

f 0 ! 0; h ! 1; / ¼ 0 at n ! 1: ð14Þ

In the above equations, a ¼ Ka is the elasticity param-

eter, M2 = rB0
2/aq is the magnetic parameter, k ¼ �Vsffiffiffiffi

ma
p is

the suction/injection parameter, Pr ¼ m
�a is the Prandtl

number, Rd ¼ 4�r �T3

qcpk0
is the conduction–radiation parameter,

A ¼ b
a

is the stretching parameter, Sc ¼ m
D

is the Schmidt

number, cc is the chemical reaction parameter and c ¼ K1a

is the modified Deborah number with respect to relaxation

time of heat flux (i.e., non-Fourier Deborah number). The

physical quantities of interest, i.e., engineering design

parameters of relevance to materials processing are skin

friction coefficient, local Nusselt number and Sherwood

number. These are defined in dimensionless form as [29]:

Fig. 1 Physical model for reactive radiative magnetized stretching

heat and mass transfer
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Cfx ¼ f 00 0ð Þ; Nux ¼ � 1 þ 4

3
Rd

� �
h0 0ð Þ; Shx ¼ �/0 0ð Þ:

ð15Þ

3 STSLM numerical solutions

The nonlinear boundary value problem defined by the

reduced momentum, energy and thermal boundary layer

equations together with the boundary conditions, i.e.,

Eqs. (10–14), may be solved by a variety of computational

techniques. In the present study, we elect to use the pow-

erful successive Taylor series linearization method

(STSLM) employing Chebyshev interpolating polynomials

and Gauss–Lobatto collocation. In order to apply STSLM,

let us define

f nð Þ ¼ fI nð Þ þ
XI�1

N¼0

fN nð Þ; I ¼ 1; 2; 3; . . .; ð16Þ

where fI are unknown functions which are obtained by

iteratively solving the linearized version of the governing

equation and assuming that fI 0�N� I � 1ð Þ are known

from previous iterations. Our algorithm starts with an ini-

tial approximation, f0, which satisfy the given boundary

conditions in Eq. (13) according to STSLM. Equation (10)

can be written in the following form

L f ; f 0; f 00; f 000ð Þ þ N f ; f 0; f 00; f 000ð Þ ¼ 0; ð17Þ

where L and N are linear nonlinear part.

L f ; f 0; f 00; f 000ð Þ ¼ f 000 �M2f 0; ð18Þ

N f ; f 0; f 00; f 000ð Þ ¼ 1 þ aM2
� �

f 00f � a f 000f 2 � 2ff 0f 00
� �

� f
02:

ð19Þ

Using Eqs. (10) and (16), we have

f 000I þ A0;I�1f
000
I þ A1;i�1f

00
I þ A2;i�1f

0
I þ A3;i�1fI �M2f 0I

¼ RI�1 nð Þ:
ð20Þ

The corresponding boundary conditions become:

fI 0ð Þ ¼ 0; f 0I 0ð Þ ¼ 0; f 0I 1ð Þ ¼ 0; ð21Þ

where A0;I�1;A1;I�1;A2;I�1;A3;I�1 and RI-1 can be find

using routine calculations. The initial guess is chosen in the

following form, which satisfies all the corresponding

boundary conditions, i.e.,

f0 nð Þ ¼ k� A e�n � 1
� �

: ð22Þ

With the help of the initial approximation, Eq. (20) can

be solve iteratively to obtain the subsequent solution for

fN N� 1ð Þ: The ith-order approximation solutions for f(n)

can be written as:

f nð Þ �
XI

N¼0

fN nð Þ: ð23Þ

The right-hand side of Eq. (20) for i = 1, 2, 3,… and

furthermore the coefficient of each parameter can be

obtained from the previous iterations. We have applied the

Chebyshev spectral collocation method to obtain the

solution for Eq. (20). This method involves approximating

the unknown functions using Chebyshev interpolating

polynomials defined on the interval [-1, 1] by:

CK gð Þ ¼ cos K cos�1 nð Þ
	 


: ð24Þ

For the application of this method, the physical infinite

region is transformed into the finite region, i.e., 0;1½ Þ !
�1; 1½ � with the help of a domain truncation method, while

the solution is obtained in the interval [0, l] instead of

[0, ?). This leads to the following mapping:

n
l
¼ gþ 1

2
; �1� g� 1; ð25Þ

Here l is a scaling parameter which helps to invoke the

boundary conditions defined on infinity. To define the

Chebyshev nodes in [-1, 1], we have applied Gauss–Lo-

batto collocation points. The variable fI is analyzed using

an interpolating polynomial at each collocation point with

the help of truncated Chebyshev series in the following

form:

fI gð Þ ¼
Xi

K¼0

fI gKð ÞCK gJð Þ; J ¼ 0; 1. . .i; ð26Þ

where CK is the Kth Chebyshev polynomial. At the col-

location points, the derivatives of the variables can be

written as:

dpfI

dnp
¼

Xi

K¼0

Dp
KJfI gKð Þ; J ¼ 0; 1. . .i; ð27Þ

where p is the order of differential matrix and D ¼ 2
l
D in

which D is a Chebyshev spectral differentiation matrix.

Using Eqs. (26) and (27) in Eqs. (20) and (21), we have:

AI�1GI ¼ /I�1: ð28Þ

Subject to

fI gið Þ ¼ 0;
Xi

K¼0

DiKfI gKð Þ ¼ 0;
Xi

K¼0

D0KfI gKð Þ ¼ 0;

ð29Þ

where
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AI�1 ¼ I þ A0;I�1

	 

D3 þ A1;I�1D

2 þ A2;I�1 �M2I
	 


D
þ A3;I�1;

ð30Þ

GI ¼ fI g0ð Þ; fI g1ð Þ; . . .fI gið Þ½ �t; ð31Þ

/I�1 ¼ /I�1 g0ð Þ;/I�1 g1ð Þ; . . ./I�1 gið Þ½ �t: ð32Þ

In the above equations, t is transpose, AK,I-1

(K = 0, 1, 2, 3) is a diagonal matrix of size iþ 1ð Þ �
iþ 1ð Þ and I is identity matrix of size (i ? 1) 9 (i ? 1).

The boundary condition fI(gi) = 0 is employed by remov-

ing the last column and last row of AI-1 and by deleting the

last rows of GI and /I-1. Then the boundary conditions in

Eq. (29) are imposed to the last and first row of AI-1. The

last and first rows of /I-1 and GI are set to zero. The

solution for fI(g1), fI(g2), …, fI(gi-1) is iteratively obtained

after solving:

GI ¼ A�1
I�1/I�1: ð33Þ

Once the solutions are obtained, we can apply directly

the Chebyshev pseudo-spectral method to Eq. (11) and

Eqs. (12–13), leading to:

BH ¼ S: ð34Þ

With the relevant boundary conditions

h gið Þ ¼ / gið Þ ¼ 1; h g0ð Þ ¼ / g0ð Þ ¼ 0: ð35Þ

Here B is the linear differential equation, H is a column

vector and S is a vector of zeros. The corresponding

boundary conditions in Eq. (35) are replaced in the first and

last rows of S and B, respectively.

4 Validation of STSLM solutions

To verify the accuracy of the successive Taylor series

linearization method (STSLM), a numerical comparison is

presented with shooting method using the symbolic com-

putational software Mathematica. The value of l in STSLM

is considered to be l = 15, and the number of collocation

points is i = 60. These values are found to be appropriate

for the present flow and are in excellent agreement with the

results obtained by shooting method. STSLM is computa-

tionally more accurate and efficient as compared to other

similar methods since it gives more accurate results when a

governing problem is directly solved. Table 1 shows the

numerical results of skin friction coefficient and Nusselt

number for a range of parameter values for both STSLM

and shooting method, and very good agreement is

achieved. Confidence in the STSLM solutions is therefore

justifiably high. Table 2 shows the numerical comparison

of skin friction coefficient with existing published studies

[46–49], i.e., Abel et al. [46], Megahed [47], Sadeghy et al.

[48] and Mukhopadhyay [49] by taking M = a = k = 0 as

a special case of our study.

5 Numerical results and discussion

In this section, numerical results are presented in Figs. 2, 3,

4, 5, 6, 7, 8, 9 and 10, in order to study the influence of the

key physical parameters, i.e., magnetic parameter (M),

elasticity parameter (a), suction/injection parameter (k),

stretching parameter (A), Prandtl number (Pr), conduction–

radiation parameter (Rd) and non-Fourier Deborah number

(c) on the heat, momentum and species characteristics in

the regime.

Figure 2a, b depicts the variation of elasticity parameter

(a) on both velocity components, i.e., u component and v

component. These figures elucidate that greater elasticity

parameter að Þ causes a marked reduction in the velocity

profiles, i.e., stronger elastic effects decelerate the boundary

layer flow and increase momentum boundary layer thick-

ness. a is directly proportional to the relaxation time (K) of

the polymer (viscoelastic fluid). An elasticoviscous material

such as the upper-convected Maxwell (UCM) fluid has a

fading memory; it retains information of recent deformation.

With greater relaxation time, the elastic effects dominate

rather than the viscous effects. This results in retardation in

the flow with higher values of a. The case of a = 0 corre-

sponds to purely viscous flow (vanishing elastic effect), and

clearly for this case, the velocity components are maximized,

i.e., there is flow acceleration. We further note that the u-

velocity component decays monotonically from the wall into

the free stream, whereas the v component grows from the

wall to the free stream, irrespective of the value of the

elasticity parameter.

Figure 3a, b illustrates the impact of magnetic body

force parameter (M) on both velocity components, i.e.,

u component and v component. The transverse magnetic

field (imposed in the y-direction, i.e., n-direction) generates

an impeding Lorentz magnetohydrodynamic body force

along the x-direction. Magnetic body force terms arise

twice in the momentum conservation Eq. (12), i.e., -M2f
0

and (aM2)ff
00
. This creates a significant resistance to the

boundary layer flow and induces a deceleration in both u-

and v-velocity component. The case of M = 0 corresponds

to electrically nonconducting polymer flow in which

magnetohydrodynamic effects vanish. Physically, as M in-

creases, the Lorentz force also increases and this produces

significant control of the boundary layer flow and sub-

stantial retardation which may be exploited in materials

processing operations. The trends in the computations are

also qualitatively similar to the results obtained by Aliza-

deh-Pahlavan et al. [50]. Again there is a consistent decay

in the u-velocity component with increasing transverse
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coordinate (n), whereas the v-velocity component grows

with increasing transverse coordinate (n). Effectively

momentum boundary layer thickness is increased with

stronger magnetic parameter (M) values.

Figure 4a, b elucidates the behavior of suction/injection

parameter (k) on both u component and v component of

velocity. Figure 4a indicates that an enhancement in suc-

tion (k[ 0) causes a marked reduction in the u component

Table 1 Numerical comparison

of STSLM and shooting method

for skin friction, Nusselt number

and Sherwood number for

different parametric values

STSLM Shooting method

Cfx Nux Shx Cfx Nux Shx

M

0.5 -0.97774 0.52425 1.53471 -0.97774 0.52425 1.53471

1 -1.26542 0.35126 1.48605 -1.26542 0.35126 1.48605

1.5 -1.64096 0.19140 1.42749 -1.64096 0.19140 1.42749

a

0.5 -0.97357 0.48426 1.52839 -0.97357 0.48426 1.52839

1 -0.96262 0.43875 1.52160 -0.96262 0.43875 1.52160

1.5 -0.94637 0.39867 1.51583 -0.94637 0.39867 1.51583

k

-0.4 -0.92921 0.48116 1.44940 -0.92921 0.48116 1.44940

0 -1.14520 0.78738 1.82200 -1.14520 0.78738 1.82200

0.3 -1.35238 1.35044 2.15506 -1.35238 1.35044 2.15506

A

0.5 -0.36251 0.21555 1.19382 -0.36251 0.20567 1.19382

0.8 -0.70663 0.40449 1.40675 -0.64386 0.34924 1.40675

0.9 -0.83827 0.46505 1.47193 -0.83827 0.43176 1.47193

Pr

4.5 0.59139 0.59139

5.5 0.62167 0.62167

6.8 0.65119 0.65119

Rd

0.4 0.50585 0.50585

0.6 0.49786 0.49786

0.8 0.49445 0.49445

c

0.3 0.49398 0.49398

0.5 0.51373 0.51373

0.7 0.53524 0.53524

cc
0 1.19097 1.19097

0.6 1.59344 1.59344

1.2 1.90672 1.90672

Sc

1.2 1.20272 1.20272

1.6 1.38239 1.38239

2.0 1.53471 1.53471

Table 2 Numerical comparison of skin friction coefficient with existing published results M = a = 0

Abel et al. [46] Megahed [47] Sadeghy et al. [48] Mukhopadhyay [49] Present results

Cfx -0.999962 -0.999978 -1.000000 -0.999996 -1.000000
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of velocity. Greater suction induces stronger adherence of

the boundary layer to the wall in the stretching sheet

regime. This decelerates the flow and increases momentum

boundary layer thickness. Conversely increasing injection

effect (k\0) induces the opposite effect. Blowing (injec-

tion) of fluid through the porous wall enhances momentum

transfer which accelerates the u-velocity component

strongly and decreases momentum (hydrodynamic)

Fig. 2 Effect of elasticity parameter a on velocity profile. a u com-

ponent, b v component

Fig. 3 Effect of magnetic parameter M on velocity profile. a u com-

ponent, b v component

Fig. 4 Effect of suction/injection parameter k on velocity profile.

a u component, b v component

Fig. 5 Effect of Prandtl number Pr on temperature profile

Fig. 6 Effect of radiation parameter Rd on temperature profile
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boundary layer thickness. These results agree with the

patterns computed in other studies, e.g., Mukhopadhyay

[25] and Uddin et al. [26]. Figure 3b indicates that the

opposite response is computed for the effects of suction/

injection parameter on v component of velocity. Greater

injection (k\0) clearly retards the v-component velocity

(increases momentum boundary layer thickness), whereas

greater suction ([0), significantly accelerates the v-com-

ponent (decreases momentum boundary layer thickness).

Furthermore whereas u component is consistently zero at

the wall (irrespective of injection or suction at the wall),

the v component is generally nonzero at the wall. The wall

value of v-component velocity is greatest with strongest

suction.

Figures 5, 6, 7 and 8 show the behavior of temperature

profile with respective variation in Prandtl number Pr,

radiation parameter Rd, non-Fourier Deborah number c and

Hartmann number M. Figure 5 shows that an increment in

Prandtl number Pr progressively decreases the temperature

profile and therefore reduces thermal boundary layer

thickness. The higher Prandtl number values studied, i.e.,

Pr[ 1 are representative of polymeric non-Newtonian

fluids. The Prandtl number defines the ratio between

momentum diffusivity and thermal diffusivity. Higher

values of Prandtl number are associated with lower thermal

diffusivity. Furthermore Prandtl number is inversely pro-

portional to thermal conductivity. Polymers possess lower

thermal conductivities and therefore higher Prandtl num-

bers than, for example, liquid metals. The decrease in

thermal conductivity with greater Prandtl number results in

a strong decrease in temperatures in the boundary layer.

Figure 6 shows that with increase in conduction–radia-

tion parameter (Rd) consistently enhances temperature

magnitudes and thereby elevates thermal boundary layer

thickness. Physically, when the radiation parameter Rd is

high, the radiative flux energizes the polymeric flow which

adds thermal energy to the regime. This boosts the tem-

peratures in the boundary layer. For low values of Rd,

thermal conduction heat transfer is more dominant com-

pared with thermal radiation, and this results in decreased

temperatures.

Figure 7 shows that when the magnetic parameter

(M) increases, temperature magnitudes are strongly

enhanced. The supplementary work expended in dragging

the polymer against the action of the magnetic field

(Fig. 3a, b) is dissipated as thermal energy, i.e., heat. This

energizes the boundary layer and also leads to an increase

in thermal boundary layer thickness. We further note that

the smooth profiles in the free stream in the plot (and

indeed also in all other figures) indicate that a sufficiently

high value for infinity is imposed in the STSLM solutions.

Figure 8 shows that for higher values of non-Fourier

Deborah number (c), there is a marked decrease in tem-

peratures throughout the boundary layer and an associated

reduction in thermal boundary layer thickness. The modi-

fied Deborah number c embodies the supplementary effect

Fig. 7 Effect of magnetic parameter M on temperature profile

Fig. 8 Effect of Deborah number c on temperature profile

Fig. 9 Effect of chemical reaction cc on concentration profile

Fig. 10 Effect of Schmidt number Sc on concentration profile
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due to heat flux relaxation time which is captured in the

non-Fourier model and is absent in the classical Fourier

model. The non-Fourier Cattaneo–Christov heat flux

model can be reduced to simple Fourier law of heat con-

duction by taking c = 0. Fluids with shorter heat flux

relaxation time are associated with higher temperatures,

while the fluid with longer heat flux is associated with

lower temperature. With increasing Deborah number (c), a

longer heat flux is achieved which causes a higher rate of

heat transfer from the fluid to the wall and therefore a

lower temperature within the fluid, i.e., heat is depleted

from the fluid. This also results in a decrement in thermal

boundary layer thickness.

Figures 9 and 10 show the response in concentration

profile with chemical reaction parameter (cc) and Schmidt

number (Sc). Figure 9 demonstrates that increasing

chemical reaction parameter (cc) causes a marked reduction

in the concentration profile. The reaction term in the

dimensionless concentration boundary layer Eq. (14), i.e.,

-cc/ is based on a first-order irreversible chemical reac-

tion which takes place both in the bulk of the fluid (ho-

mogeneous) as well as at the wall which is assumed to be

catalytic to chemical reaction. Although chemical reactions

generally fall into one of two categories, i.e., homogenous

or heterogenous, the former is of interest in the present

study. Homogenous chemical reactions take place uni-

formly throughout a given phase and exert a similar

influence to an internal source of heat generation. We

consider the destructive type of homogenous chemical

reaction. Increasing the chemical reaction parameter (cc)
produces a decrease in velocity. The momentum boundary

layer thickness is therefore increased substantially with

greater chemical reaction effect. It is noticed that concen-

tration distributions decrease when the chemical reaction

increases. Physically, for a destructive case, chemical

reaction takes place and progressively destroys the original

species diffusing in the polymeric viscoelastic fluid. This,

in turn, suppresses molecular diffusion of the remaining

species which leads to a fall in concentration magnitudes

and a decrease in concentration boundary layer thickness.

Figure 10 reveals that an increment in Schmidt number

(Sc) decreases the concentration magnitudes strongly, i.e.,

reduces / values. The Schmidt number embodies the ratio

of the momentum to the mass diffusivity, i.e., Sc = v/

D. The Schmidt number therefore quantifies the relative

effectiveness of momentum and mass transport by diffu-

sion in the hydrodynamic (velocity) and concentration

(species) boundary layers. For Sc[ 1, momentum diffu-

sion rate exceeds the species diffusion rate. The opposite

applies for Sc\ 1. For Sc = 1, both momentum and

concentration (species) boundary layers will have the same

thickness, and diffusivity rates will be equal. It is observed

that as the Schmidt number increases, species

(concentration) profiles gradually decrease. Smaller values

of Scare equivalent to increasing the chemical molecular

diffusivity and vice versa for larger values of Sc. Con-

centration boundary layer thickness is therefore signifi-

cantly reduced with greater Schmidt number. Figure 11

reveals the effects of Deborah number on Nusselt number

profile.

6 Conclusions

In this article, a mathematical model has been developed

to investigate the influence of chemical reaction, thermal

radiation and wall mass flux on magnetohydrodynamic

heat and mass transfer in the flow of an upper-convected

Maxwell fluid from a permeable stretching sheet under

the effects of constant magnetic field. The non-Fourier

Cattaneo–Christov heat flux model has been imple-

mented (the Cattaneo–Christov heat flux model can be

reduced to the classical Fourier law of heat conduction

when Deborah number c = 0). Numerical solutions are

presented for the transformed, dimensionless boundary

value problem with appropriate wall and free stream

conditions, using the successive Taylor series lineariza-

tion method (STSLM) which utilizes both Chebyshev

interpolating polynomials and Gauss–Lobatto colloca-

tion. Validation of STSLM computations has also been

included using a Mathematica-based shooting algorithm

and also published results from the literature. The major

conclusions from the present computations may be

summarized as follows:

1. Both (u,v) velocity components diminish due to the

increment in elasticity parameter.

2. Both (u,v) velocity components are decreased with an

increase in magnetic parameter.

3. When the suction/injection parameter increases, then

the velocity of the fluid decreases markedly along

u component of velocity, whereas the converse

behavior is computed for the v component of velocity.

Fig. 11 Effect of Deborah number c on Nusselt number
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4. Higher values of radiation and magnetic parameter

induce a significant increase in temperature profile and

thermal boundary layer thickness.

5. Thermal boundary layer thickness and temperature

magnitudes decrease for large values of non-Fourier

Deborah number and Prandtl number.

6. Concentration magnitudes are suppressed with large

values of Schmidt number and chemical reaction

parameter.

The present study has ignored magnetic induction

effects which are invoked at higher magnetic Reynolds

number. These are currently being investigated.
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