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Abstract This paper concerned with the problem of
observer-based adaptive fuzzy quantized tracking dynamic
surface control (DSC) is investigated for the uncertain
multi-input and multi-output (MIMO) nonstrict-feedback
nonlinear systems, which contain unknown nonlinear
functions, input quantization, and unmeasured states. By
using fuzzy logic systems to identify the uncertain MIMO
nonstrict-feedback nonlinear systems, a fuzzy state obser-
ver is introduced to estimate the immeasurable states. By
transforming the hysteretic quantized input into a new
nonlinear decomposition, and utilizing the DSC backstep-
ping design method, a novel and less conservative fuzzy
adaptive quantized tracking control approach is developed.
It is shown that the proposed control scheme can guarantee
the stability of the closed-loop system, and also that the
system outputs can track the given desired trajectories. The
simulation results are provided to verify the effectiveness
of the proposed control strategy.
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1 Introduction

It is well known that, in the past decade, based on the
approximating capability of fuzzy logic systems or neural
networks, many adaptive fuzzy and NN state feedback
control design methods have been proposed for uncertain
nonlinear systems in the strict-feedback form [1-12]. The
authors in [1-8] presented several adaptive fuzzy or NN
control schemes for uncertain MIMO nonlinear systems in
strict-feedback form, in which the system model is differ-
ent from the statements in [9, 10]. Meanwhile, authors in
[11, 12] investigated adaptive fuzzy and NN decentralized
control design problem for uncertain large-scale nonlinear
systems in strict-feedback form. However, the above-
mentioned control schemes are all required that the full-
state information must be measurable. To relax the
restriction in [1-12], the observer-based adaptive fuzzy and
NN output-feedback control design problem has been
developed, and many interesting research results have also
been obtained [13-17], where the works in [13—-15] are for
a class of uncertain MIMO nonlinear systems and the
works in [16, 17] are for a class of uncertain nonlinear
interconnected systems.

It should be mentioned that all the aforementioned
results are feasible under presupposition that the consid-
ered systems have a strict-feedback form or pure-feedback
form. Therefore, they cannot be employed in controlling
the uncertain nonlinear systems with nonstrict-feedback
form. Recently, the control problem of the nonstrict-feed-
back systems has attracted a great deal of attention, for
example in [18-23]. To overcome the difficulty in the
traditional adaptive backstepping control design, by uti-
lizing the monotonously increasing property of the
bounding functions, authors in [18, 19] developed the
variables separation technique, and subsequently proposed
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two adaptive fuzzy control design methods for single-input
and single-output (SISO) and MIMO nonstrict-feedback
nonlinear systems, respectively. Then in [20-22], authors
proposed different control methods for SISO and MIMO
nonstrict-feedback nonlinear systems with input nonlin-
earity. More recently, the observer-based adaptive NN
output-feedback control schemes have been developed in
[23, 24] for the SISO nonstrict-feedback nonlinear systems,
and the immeasurable state problem of SISO nonstrict-
feedback systems has been solved, but the situation of
MIMO nonstrict-feedback nonlinear systems is not con-
sidered. And also the above-mentioned results are based on
the assumption that the unknown functions must satisfy the
monotonously increasing property of the bounding func-
tions, which are not suitable for many practical engineering
systems. Although the authors in [25] proposed an obser-
ver-based adaptive fuzzy control design method for SISO
nonlinear system in nonstrict-feedback form, the proposed
control method cannot be applied to control the MIMO
nonstrict-feedback nonlinear systems considered in this
paper. In addition, the controlled nonstrict-feedback non-
linear systems considered in [18-25] did not contain the
input quantization.

As stated in [26-28], since many practical engineering
systems contain the quantized control input, such as
hydraulic systems, hybrid systems, and automotive net-
worked control systems, it is necessary to investigate the
control design problem for quantized systems. The work in
[28] first proposed a control design method for nonlinear
systems with the input quantization. By using backstepping
design technique, the authors in [29] proposed the adaptive
quantized control method for a class of SISO uncertain
nonlinear systems in strict-feedback form. It should be
pointed out that [28, 29] only considered the nonlinear
uncertainties, and also the nonlinear functions are required
to be known or can be linearly parameterized. To eliminate
the above limitations, the authors in [30] presented a novel
fuzzy adaptive controller for a class of stochastic nonlinear
systems, and the authors in [31] extended the results in [30]
to a class of uncertain switched nonlinear systems with
unmeasured states. Although the results on the adaptive
quantized control design have achieved some progress, the
controlled plants in the above-mentioned results are strict-
feedback nonlinear systems, and they cannot solve the
control design problem for the nonlinear systems in non-
strict-feedback form.

Based on the above presentations, an observer-based
adaptive fuzzy control problem is studied in this paper for
MIMO nonstrict-feedback nonlinear systems. The consid-
ered uncertain MIMO nonstrict-feedback systems contain
unmeasurable states, unknown nonlinearities, and input
quantization. By utilizing fuzzy logic systems to identify
the unknown nonlinear functions, a fuzzy state observer is
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constructed to obtain the unmeasurable states. By trans-
forming the hysteretic quantized input into a new nonlinear
decomposition and based on DSC control design, an
observer-based adaptive fuzzy quantized control method is
presented. It is proved that the closed-loop system is
stable in the sense of Lyapunov function stability theory.
Compared to the previous works, the following contribu-
tions are worth to be emphasized as follows.

1. The adaptive fuzzy control scheme proposed in this
paper has solved the unmeasured states and quantized
input problems for MIMO nonstrict-feedback systems.
Although the references [26-31] also investigated the
input quantization design problem, they all required
that the states must be available for measurement.
Moreover, the controlled plants are SISO strict-feed-
back nonlinear systems, not the MIMO nonstrict-
feedback systems under consideration in this study.

2. The proposed adaptive quantized fuzzy control design

method only utilizes the property of fuzzy basis
functions, instead of the restrictive assumption in the
literature [18-24] that the unknown functions must
satisfy the monotonously increasing property of the
bounding functions. Therefore, this paper has reduced
the conservatism of the control schemes in [18-24].

3. The proposed control scheme has overcome the

problem of “explosion of complexity” by introducing
into DSC technique into the fuzzy adaptive quantized
control design. Therefore, the control structure of this
paper is much simpler than those of the previous
literature [18-30].

The rest of the paper is organized as follows: the
problem formulations and preliminaries are present in
Sect. 2. Adaptive quantized control design is given in
Sect. 3. In Sect. 4, the simulation study is shown with the
aim to validate the effectiveness of the proposed method.
Section 5 contains the conclusion.

2 Problem formulation and preliminaries

2.1 System descriptions

Consider the uncertain MIMO nonstrict-feedback systems:
xjsif :ﬁvi/‘ (X) + Xji+1 + dfvii(t)’
Xj,m,» :ﬁ,mj (X, ﬂj_1) + f]j(”j) + dj-,mj(t)

Yi = X1

lj:l7...7mj—l,

(1)

where u; € R and y = [y1, y2, ..., y,]* € R" are the input
and output for the first jth subsystem, respectively, with u;
= [uy, ..., uj,l]T € R, and qi(u;) € N is the output of
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the hysteresis xj,,jf]T € RY,
G=1, ., my), is the state vector of the first
i; differential equations of the jth subsystem; d;; (1) is the
external disturbance bounded by an unknown constant d:;

Jii?
d;i (1) <d;;; fi;;(-) is an unknown smooth nonlinear

function. X = [xl, oo ]T

quantizer, Xji; = [xj,h sy

., n, lj= 1,

i.e.,

X1 with X = [x51, . . ., Xjm,

In this paper, a hysteresis quantizer method is adopted to
avoid the chattering problem. g;(#;) denotes a quantized
input signal. Similar to [28-30], the quantized input in this

paper is described as:

w
uijsgn(u;), if < |uy| <wij;<0, or
: T+o 1"
ul] ’u/|< _5,M/>0
j
uid'(l+5j)sgn(14_,-), if M;J<‘Mj‘§l_;‘/5_7uj<()7 or
j
A
)2 wl145)
q;(u;) 176_)1}_f5j7uj>0
0, if 0<|u/’< b,uj<0 or
Yo
| 20
qj(u;(t7)), othercase

(2)
and J; =

with parameters up; > 0 and 0 < p < 1. g{(u;) is in the

— (=D
where u; = p=' "

1-p;
1+pj

set U= {0, + Ui j + MIJ(l — 51)}
bound of the dead zone for g;(u;). The map of the hysteretic
quantizer gi(u;) for u; > 0 is shown in Fig. 1.

up; with integer i =1, 2, ...

U i .
Umnin :r"gj is the

Remark 1 The parameter p; can be seen as a measure of
quantization density. If p; is smaller, then the quantizer will
become coarser. Note that when p; — 0, ; — 1, then
q;(u;) will have fewer quantization levels as u; ranges over
that interval. The control action for the hysteret1c quantizer
(2) should be satisfied in terms of existence and uniqueness
of solution of the closed-loop systems. The parameter p; in

A
q,(u;) slope =1+,
e /4> slope=1-0
u, J (1 + 5]) » P /
u, (g z
u,; s, u;
1-

Fig. 1 Map of g;(u;) for u; >0

(2) is not given a prior since that system (1) is uncertain.
Instead, it can be chosen by using a guideline to guarantee
that the closed-loop system is stable.

In order to propose a suitable control scheme, we decom-
pose the hysteretic quantizer g;(u,) into the following form:

q;(w;) = Dj(u)u; + s;(1) (3)
where Dj(u;) and s;(f) denote nonlinear functions. In view of the

nonlinearity D(u;) and s(#), the following lemma is needed.

Lemma 1 [29, 30] The nonlinearities D;(u;) and s,(t)
satisfy

1 =9 <l)(L‘J)<1"‘5J7 |SI |<”mm (4)

Proof From Fig. 1 and sector bound property, for lu, -
> Umin, ONE has
=0 <sj(u) <1+ (5)

qj\uj) (“/)

where s;(u;) =%,
]

For lu)l < jmin, q(u;) = 0 from the definition (3), we have

0 = Dj(u;)u; + s;(t) (6)
Define
si(), || > tmin

Dj(uj) = 7

J( J) {1, |uj’§umin ( )
and
5(1) = 0, |uj‘ > Umin 8)
! —Uuj, |uj|§umin

Then, g;(u;) = Dj(u)u; + si(t) holds, where D;(u;) and
si(t) satisfy (4), respectively. The proof is completed.

Control objective: The control objective of this paper is to
develop the suitable adaptive quantized control inputs u;
for systems (1), so that all the variables are bounded, and
the systems output y,(f) can track the desired trajectories
y;.A1), regardless of the unknown function f;; (X), unmea-
sured states x; and quantized input signal g;(u),
j=1..ni=1,..m.

Assumption 1 ([18-21]) The desired trajectories y; ()
are continuous and have the following property

Hj,O = {(yi;”)}j‘ﬁyj.,r) : y]2r + yj2r + yjz,r < EJ;O}

where = =50 is a pOSlthG constant.

2.2 Fuzzy logic systems
A fuzzy logic system consists of four parts: the knowledge

base, the fuzzifier, the fuzzy inference engine working on
fuzzy rules, and the defuzzifier. The knowledge base for
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FLS comprises a collection of fuzzy if-then rules, which
can be described as follows:

R;: if x; is F, and x, is F5 and ...and, x,, is F?,, then y is
Gl, [=1,2,...,N. where x = (x, ..., )c,,)T and yare the
FLS input and output, respectively. Fuzzy sets Fiand G
are associated with the fuzzy functions 1! and fg,

respectively. N is the rules number.
According to the singleton function, center average
defuzzification, the FLS becomes

B 2?1:1 Il M (x:)
A ) ®)

where y; = maxyeg pii (¥).
Let the fuzzy basis functions are
[T e (i)

) = T )] (10

Denoting 0" = (3,,3,, -+, ¥y) = (01,02,---,0y) and
ox) = (p1(x), ..., qu(x))T, then FLS (10) can be rewritten
as
() = 0"p(x) (11)

Lemma 2 ([32]) Let f(x) be a continuous function defined
on a compact set 2. Then, for any constant ¢ > 0, there
exists a fuzzy 1ogic system (11) such as

sup[f (x)] <e (12)

3 Adaptive quantized control design

In the following section, a fuzzy state observer will be
designed first, then an adaptive fuzzy quantized tracking
control method will be developed by utilizing the DSC
backstepping design method, and the stability of the control
system will be proved.

Assume that the FLSs are as follows:

Fi(X]05) = 07, 0;, (X), i = 1,2,...,m; — 1

It
F/0 T (¥ D =1,2,...n

]lj

T
= OJvm/ (pj~,mi (X7 Ej7
(13)

Then, the optimal approximated parameter vectors 0;}1
and 0, are defined as

07, =arg min | sup

(X0, X ‘
Jij 054 €Q; * )er,, ’ Jiti Jlf( )]

J’/

0;,,, =arg min [ sup

O0m €Q; j,m,-(f(aﬂjﬂwjmf-)*ﬁﬁ"’f(x’zf’l)u
Jjmj €425, m; (Xu )eUf,,n,»

where Q;;, Ui, Qjm;, and Uj,, are compact regions for

0, X, 0;m;» and (X7 u; ), respectively.
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Use the FLSs ﬁ’i],(}?‘ﬂjjéi) and ]jmj X,g_,‘_l\em,.) to

approximate the nonlinear functions in systems (1), and let
the approximation errors ¢;;, as

& = Fi,(X) — £, (X|07;)
_]ilmj(‘)aﬂl*

8j m; = ﬂ-,m/ (X7 Zjfl) 1 '0;111/)

where ¢;; is bounded by the unknown constant ¢

}Sj,lj| >~ N;] = 1, cees
Rewrite (1) as

. mj—1
{ X =Aox;+ Z,-j/:l Bjifiy(X) + By, [fim, (X, ;1) + ()] +dj (1)
Y =Cx;

j,, ie.,

n, =1, .., m.

. (14)

where A; = : I . By=1[0 - 1],
0 0 0

By =10---01---0]", dj(1) = [dj, dim, ",

¢, = [1--0].

Similar to the state observer in [15, 16], in this paper, we
design the following state observer

m;j—1

= Ajx; + y/"’Z

m,];m X»MJ 1|H]mj + jmj%(uj)
ij:C.ixj

;ij <X|9j»ij)

i1
where A; = : I , Ki= [kix-kim
~kim, O -+ O
and X is designed to estimate the state vector X.
Let the vector K; to satisfy matrix A; be a strict Hurwitz
matrix. Then, choose a matrix Q; = Q, > 0, there will be a
matrix P; = P > 0 satisfying

AP+ PA; = —0Q; (16)

]T

s

The observer error vector e; is designed as

T ~
¢ = lej1 €, eim] =X — % (17)
Then, from (14) and (16), we can obtain
mj—1

¢ =Ajei+ Y Bl (X|07,) = £, (X[0;5) + & + d;(0)]

ij:l

+Blmj[]3m/(X7 Aj— 1| f;m/( ) Ui |6j-,mj)]

= Ajej + ZBJ l/ngl @i + & +di(t) (18)

where ¢ = [gj1, .. .,3]7mj] and (9] = 9]«,!} 0
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We choose the Lyapunov function candidate V{, for (18)
as Vo= iVio =2 ji€; Pjej, and then from (15) and
(18), the time derivative of VO follows that

. 1 1
Vo< ZI: [pj,o!|e,-]|2 +;jz 0. 0;; +L,~,0} (19)
= ij

— 1 — (g;+ Dmy||Pj|I%, Anin
elgenvalue of matrix Q;

Zzlfl dj*zz,
In the followmg, the process of controller design has

been divided into m; steps, and each step is based on the
following change of coordinates:

Where p]O - imm(Q]) -
(Q]) is the smallest

21 =Y = Vi Gy = % — i (20)
Lii, = Vji — %ii—1, (21)

where z;;,(j = 1,...,n; i; =2,...,m;) is error surface, J;
is a state variable which will be defined later,o;;, | are
intermediate control functions, and ;; is called the output
error of the first-order filter.

Step 1 Since xj, = Xj» + ej, we can easily obtain the
time derivative of z;, as
G = g2+ Lo + %1 + 0101 (81) + 077 0, (X)
— 073011 (R1) + 07,01 1 (£1) + €2 — ¥, + &1 + i
(22)
where 0;; = 0y = 0j1
candidate as

W=Zm
Z(,w gits ‘0T9,1+2 @]%)

. Choose the Lyapunov function

(23)

where y;; >0 and §;; > 0 are design parameters, and

0 = =0}, — 0, 0}, = ‘ 07,1 » @i is the estimate
*
of ;.

From (22) and (23), the time derivative of V satisfies
Vi<sVot+ (Zj,l (2 + 22 + %0+ 07,90;1 (1)
j=1
+ 9*1(/’] 1( A) Q;T(pj,l ()ej-,l)
+ 9/_1€Dj,1(xj,1) + €j2 = Vir
+g1+d1)+

0} 19/ | é]T] éj.,l) (24)
T,

By using the completing squares, we have

Z]l(e]2+?jl+djl) HEJH +2 ]1 d*z

2701
(25)

_2J1

* % * ~ * 2
21 (0;19;1(X) — 0,191 (1)) < 01 +— (26)
}

2 G
where ¢; > 0 is a design parameter.
Substituting (25)—(26) and V, into (24), it yields
. n 3
Vi< Z { _I’.f«,l’|‘~’./”2+zj,l (2211 + %2 + % +2 711@/1 = Vir
j=1

1
+0,0106652)) + 01 (50,0 00) — )
Js

- 1. R
+ @;1 (Ejzjz,l — _7@]'»1) + *Z szgj.k + Lj,l}
Tj1 0j 13
(27)

where ;1 = pjo =3 Ly = Lio + 351 + 347 +
Design the intermediate control function ot;l and the

parameter adaptation functions 0;; and ®;; as

3 . g -
%1 = —Bjaza =551+, — Ejzj,l@j,l —0},0;,(%) (28)
9111 = Vj,lzj,lq)j.l()z) — 7101 (29)
0;1 = r], 2 31— 116 (30)

where f5;; > 0, 7;; > 0, and 7;; > 0 are design parameters.
Substituting (28)—(30) into (27), it follows that

ms§j{ﬂmmW—@Jl+m4ﬁ- LT 0,0
j=1

le jl+ ZQT ]k"!_ }
G1)

Given the newly defined state variable ¥;,, and let o;
pass through a first-order filter with a constant (;,, we have

G2Via + 02 = o1, 9;2(0) = 21(0) (32)
Define yj» = ¥;» — @, and it yields 19J2 ; and
. Xj2
Tio = 19]2—&/1———+Hj2 (33)
vJZ

where the continuous function H;,(-) consists of z;, -
Zj2, Xj,2’yj,i’7yj,r7yj,r’ ®j,1 and Hj,l with the fOHOWng

expression
Hia(") = Bjagja + 241 + ZJ 101+ 2 > /2101
07,0¢; 1 (%.1) .
b O () -, (34)

6xj,1
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Step i; (2 < i; < m; — ) Similar to Step 1, we have
Zj.ij = Zj; + Zjij+1 + k; i€j1 1 0 + 9/ i Pj, z/( ) ng.ij
(35)

Given the newly defined state variable 1J;; 11, and let o;;
pass through a first-order filter with time constant ¢;; ., we

have
i1 Vit + djir = %, 95,41(0) = 254, (0) (36)
_ . . 9 o Ljjj+1
Let 741 = Vi1 — %, and it yields 0;;41 = o
and
. X i1
o _ . o »Lj
Y1 = Vi1 — %y = ————+ Hjj (37)
Cjij+1

where the continuous function Hj;,(-) consists of

Zilsw e o Gy Xj2s -5 Xjirts Yiors Yirs Vjrs @1y - -+, @, and
01,...,0;; with the following expression
Hjj1 () = Biidii + 013 +2

T A
@x

ZJ o + ZJ ij @jvij

2

2 Zjsi;
)—Cj +9/l(pjlj(jl)+k]le]1+

=5l "'] ij

(38)

Choose the Lyapunov function candidate V;; as

n n 1 =
V=3 W =3 (Vo 45+ 5l
J= j=1
| R 1

O+ 39
i 2r34 Y 2% > (%)

where 7;; >0 and r;; are design parameters. We can
easily obtain the time derivative of V;; as
. n o~
V’/ :Vi/'71 + Z {Zj,i, [cxjj/ - 6]
=1

Ti,(/)jl]( )+0/1(sz( ) 0/1,(/)/1,(]11)

+ HjTJ Pji; (Xj‘i )+ , i Pji; (x] )+ i1 TR — U]

+AL6]T110]IJ+ ! @ @,,/er,,]lej}
s
(40)
where 0;; = =0;; —0;;. In the view of the derivations in
Step 1, it yields
Zj,t,(@ﬁ%,i,v(}z) - 0T i P, 1,( ) ej*,T,% if()_zj,if))
< %zﬁij +%éjfl.jéj7,, L2 +3zjl o5, (1)

where ¢ is a design parameter.
Substituting (41) into (40) yields

@ Springer

<> { = pialleill” + 2 (o, + Kigera — By, + 0], i @i (X))

1
+§Zjlj ZJ’/ J’J

ij—1
gj 2 1

Z ﬂj kZ] k
;)

. 1 7
+ 0] i (Zj:l}(pjjj()fcjj]) - Vi 0] I]) + @j l/( jlj - o
Jolj ot

i—1 _
T T
+Z"‘0T O+ Zofk /k+2”‘07k ik
< = X k1
+
+— ZO /k+zyjk+l( -

+ Z Gk Kjar1 T L, }

k=1

+H]k+l)

(42)

where Lj‘i,' = ij/_] +g%
Design the following intermediate control function o,
and the adaptation function 0;; as

1 o
% = B % — 5% ~ Eij,ij Oy, — kjieja
6] ij q)],lj( ],zj) + 79 Jij (43)
Oy = 2 05.) 0 )
: o )
O3 = 1147 Gy ~ 51Ol (45)

where :Bj,i,- >0, 7;, >0, and 7;;, > 0 are design parame-
ters. Substituting (43)—(45) into (42) yields

i< 3 { ol =3 hdes A0

=1 ik
m; i ’f]
+;jk:1 01k0,7k+;rj or.e
== 7jk+1
220]k01k+z/1k+1( ™ l"'H]k+l>

I
+ ) zatiper + Lig } (46)

k=1

Step m; In this step, the quantized control input u; will
appear. Similar to the step i;, we can obtain the time
derivative of z;,, as follows:

ijmi :qj(uj) + k17"1fej-1 + 0} jm; Pjm; (X’E]—l) - 19]3’"/

= Gyt + 5;(1) + kjm i1 + 01, @10 (Ko 151) = Uy,
(47)
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Consider the overall Lyapunov function as

1 1 1,
=32 =3 (Vi i+ 3

=

(48)
where  y;, >0 is the design parameter and
01 my = 9* — O -

By usmg (3), (47), and (48), one has
V ijfl + Z{Zj mj

i (uy)uj + (1) + Kjmejn — Ujmy

1 .
+ 0/ m; (Pj m; (X7 Ejfl)] +— v, O;ij 0] m; + Xj,m, Xj,m,»}

jm;

(49)
where éj,mj =0;,, —0;

Jsmj
From (4), and in the view of the derivations in Step i, it

yields
V< z{ ol - Zﬂ,k D))
=1
3
+ 5 Zj,m; + kj,m,vejI 19/ m; + 0 j.m; ?;j. m; (X7 )]

2
- A 1 .
+ Hj,m,» Zj«,qu)j,mj (Xv ﬂjfl) - fej,mi
Vim;

mj—1 mi—1 _
+2;{"T0k+ Ze ]k+zr"
k=1

m,—l

220/Tk Jk+zyjk+l(

+ Z ZkXjk+1 T L‘,m/}

k=1

7, k+1

+ij+1>

(50)

where Lim; = Ljm-1 + (% + %ufnin.
Design the controller u; and the adaptation function 0},
as follows:

1 3
AR ( ~ Pimim = 5%y = kimy e
J
- Q;I:mj (/)j,mj (Xa ﬂj—l ) + ﬁ]mj) (51)
Hj.,mj = Vi Zim; Pjm; (Xﬂ ijl) = Tjm; Hj-,mj (52)

where 7;,,, > 0 and f8;,, > 0 are design constants.
Note that, from (4) and (51), and by completing the
square, we can obtain

Dj(uj)u; < — B;, mZjm; = Z.m; = Kjm;€j,1 (53)
T ) .
- 6] m; (p]'.mj (X7 E]71) + ﬂj,mj

Lo g

2 ' m; ],m/

07, 0 <

Jm;

Lo g (54)

2 Lm; = L,m;

Substituting (53)—(54) into (50) yields

V23 malal =+ 1S T

Tjk it it §
“‘E:I 9 Jk+2§ H/kj,
m;—1 ¥
k+1
*E:ijlijJFE:/fij( S +I_I]k+l)
+

mj—l
k
+Z Lk @,Tk@,k+L,m,} (55)
k=
Let
n 1 mj
— T 2
Zjk :{ (ej,zj,k, 0 Oj ks Xj,k) : Z |:ej Pe; +§ijk
j=1 k=1
mj—1

where D; is a known positive constant.

Since Z;; is a compact set and Hj; is a continuous
function, there exists a positive constant M; ;. such that
|H; 1l < My on 5;;. Consequently, we have

1

1
|Xj,k+1H.i»k+1 2/1 17T 5 2 /k+1 (56)

By completing the square for each parameter estimate:

1 1
Galjhr1 S Eij,kH T3 2k (57)
Tjk 5T ik AT § Tk || n
Lk T g, < — Jk g 9-,k+—] 0 58
yj,k J:kTs zyj,k J.k7T Z’V_j,k J.k ( )
Ti k % 2
= @]Tk@L < _—2 @]Tk@/k+2 H@j,k (59)
Tjk

Then, (55) can be written as

. n 7y 1
V< Z{ —Pj.,1||€j||2 — Z (ﬁj,k - E)Zﬁk

k=1
3 ol -3 (32 -2 )i
= \ 2%k g e

mj—1
s e £
S VL - 1)
<2/jl gj P ; Cjk+1 A
,17 mjfl
k T o
+Z J @/k Jk+L]mr ZZ Jk-H} (60)
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Choose Di1 > O,ﬂﬁk —% >0, k=1, ..., m, 4 Simulation study

—=1>0,(k=1,...,m—1) and £~ —1 >0, and . i . ) . )

Skt Tk 0 In this section, we provide a simulation example with the

define ‘ aim to evaluate the control performance of the proposed
C=min 1<j<n {281, (1 <k<my), Tjp  — 4;;* , c,,fﬂ —  control strategy.

1<k<m
2.1

G- -

27(1§k§’nj_1)’ ZTj.k-P/~l/2r:in(R/)} and D_ZJZI (Lj’mf+
i—1

3l M)

Then, (60) can be further rewritten as

V< —-CV+D (61)

Integrating (61) over [0, T], we can easily obtain that

D

0<V(T) < (V(O) — §>e—” +5 (62)

which means that all the signals in the closed-loop
systems are bounded,

V(O +2) /s (P),  and

\/2V(0) +22

Moreover, the observer and the tracking errors can converge
to a small neighborhood of the origin by suitably choosing the
following parameters f; ; , kj,i;,Tj,i;s1.i;+7j.i;» Tjiip» and ;.

such as  lim_.o |lg] <

lim, ’Zj,,v/. ‘ <

The aforementioned design and analysis procedures are
summarized in the following theorem.

Theorem 1 For MIMO nonstrict-feedback nonlinear
systems (1), under Assumption 1, the controller (51), and
state observer (16), together with the intermediate controls
(28), (43), and the adaptation functions (29-30), (44-45)
and (52), guarantee that all variables in the closed-loop
systems are bounded. Furthermore, the observer and the
tracking errors can converge to a small neighborhood of
the origin by appropriate choosing the design parameters.

From the previous discussions, the control design pro-
cedures and the guideline of the parameter selections are
given as follows:

Step 1:  specify the vector L; such that matrix A; is a
strict Hurwitz matrix, positive definite matri-
ces Q; and by solving the Lyapunov Eq. (16),
positive definite matrices P; are obtained.
select appropriately design parameters such
that f3;; >0, 7;; >0 and 7;; >0, and the
determine intermediate control functions
0;,1(28), 0;;,(43), and the parameters adapta-
tion laws 0;,(29), ©;,(30), 0;;(44), and
0;;,45), i; =1, .., m; — 1.

select appropriately design  parameters
ﬁj-,m,- >0, tjm >0 and 7;,, > 0, actual con-

Step 2:

Step 3:

troller u;, and adaptive update law 0, m;, ©; ..

@ Springer

Example We consider the following MIMO nonstrict-
feedback system:

X =xi2 +fi1(X) +di(2)

X2 =qi(ur) + fi2(X) +di2(1) (63)
Y1 =X11
Xo1 =x22 +fo1(X) + da1(2)
X220 =qa(u2) + oo (X, u1) + dan(2) (64)
Y2 =X21
where JiaX) = xq sin 2(X1,2) + sin (xp,1) cos (x22),-
2
2 oe 12 . .
f1,2(X> = lilerfl + X1 SlIl()Cz’l)Czyg), dlyl(l) =02 Sll’l(l‘),

dio(t) =02 cos (1), fo1(X) =2+ 0.1sin(xy;)cos

(022),  fooX, uy) = 0.2x5 X7 + cOS (x21%32),  do) =
2 "‘%2

0.5 sin (1), das(t) = le‘fxz . The reference signals are
) 2,1

y1.(t) = sin (0.5¢) and y, () = sin (0.47). Choose the
parameters in hysteresis quantizer (2) as J; = 0.5,
62 = 01, and Ujmin = 0.8 (] = 1, 2)

Choose the fuzzy membership functions as
Xj1—3 1)? 6 e
,UFJ!JZGXp{—%]’ ,Upj!zzexp[—%]
j= 1’2;12 17”'95.

According to [31], the FLS can be constructed as

5
fi1(X]05.10) = Z 016951 (X)
=1

5
FioXoun|0:200) = 024004 (X,150),5 = 1,2
k=1

Setting the parameters k; ; = 4, ko, = 4, k;» = 3, and
k> = 3, the state observer is constructed as

X1 = %12 +f1,1()2|91,1) +4(x1 —X1,1)

%12 =qi(u) +f1’2(X|91.2) +4(x1 —X11) (65)
Vi =2X11

Ko = %20 +fA2,1(X|91,1) +3(x21 — X2,1)

%20 = qa(u2) + oo (X, uy 022) +3(x21 — £2,1) (66)
Vo = X2

Choose the design parameters in the controllers u; (51),
the intermediate controls «;; (28) the adaptive laws 0,
(29) and 0, (52) as
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Bia=Ph=1 Pra=Fa=4 i =7i2=721=
V22 = 0.1, nip=ra2=rni1=n2= 0.5, T11 = T12 =

T21 = T22 = 05, fl"] = ’f172 = f27] = f272 =0.5.

The initial values of the
chosen as x;,;(0) =0.1,
x22(0) = 0.1,%,,(0) = 0.1,
and the others initial values

variables x;; (i, j = 1, 2) are
x12(0) = 0.1, x,(0) = 0.1,
X12(0) =0.1, %,(0)=0.1,
are zeros.

o5t M

By applying the proposed adaptive quantized fuzzy
control approach to systems (63)—(64), the simulation
results are shown in Figs. 2, 3, 4, 5, 6, 7, and 8, where
Figs. 2 and 3 show the trajectories of the systems output y;
and tracking signal y; ., respectively; Figs. 4 and 5 show the
trajectories of x;; and their estimates %;, respectively;
Fig. 6 shows the trajectories of the observer errors ¢;,; and
Figs. 7 and 8 show the control input u; and the quantized
input signal gi(u)), j =1, 2.

value

10 20 30 40 50 60 70 80 90 100
Seconds

Fig. 2 Curves of y, (blue) and y, , (red)

15 : , . : . . . . .

value

10 20 30 40 50 60 70 80 90 100
Seconds

Fig. 3 Curves of x;; (blue) and X, (red)

value
o

: . M H H : :
0 10 20 30 40 5 60 70 80 90 100
Seconds

Fig. 4 Curves of y, (blue) and y, , (red)

TR b

0 20 30 40 50 60 70 80 90 100
Seconds

Fig. 5 Curves of x| (blue) and X, (red)

value

) I S S SN S S N S
0 10 20 30 40 50 60 70 80 90 100
Seconds

Fig. 6 Curves of e; , (blue) and e, (red)
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value

Seconds

Fig. 7 Curves of u; (blue) and q(u;) (red)

value

Seconds

Fig. 8 Curves of u, (blue) and g,(u,) (red)

Figures 2, 3, 4, 5, 6, 7, and 8 show that the proposed
control approach can guarantee the stability of the MIMO
nonstrict-feedback systems, and the boundedness of the
tracking and observer errors regardless of the existence of
uncertain nonlinearities, unmeasurable states, and hys-
teretic quantized input.

Remark 2 1t is worth noting that the authors in [26-31]
investigated the input quantization control problem for a
class of SISO nonlinear systems. However, the work in
[26-31] did not consider the problem of states immeasur-
able and “explosion of complexity”. Therefore, they can-
not be applied to control the MIMO nonstrict-feedback
nonlinear systems (63)—(64) for example.

@ Springer

5 Conclusions

A new fuzzy-based adaptive quantized DSC control
method has been proposed for uncertain MIMO nonstrict-
feedback nonlinear systems with input quantization. The
hysteretic quantized input has been decomposed by using
two bounded nonlinear functions, and the fuzzy logic
systems and a fuzzy state observer have been adopted to
identify the uncertain nonlinear functions and to estimate
the unmeasurable states, respectively. The investigated
adaptive fuzzy quantized control scheme not only guaran-
tees the stability of the MIMO nonstrict-feedback systems,
and the boundedness of the tracking and observer errors,
but also solves the problem of hysteretic quantized input.
Future researches will be concentrated on a fuzzy adaptive
quantized optimal control design for nonstrict-feedback
nonlinear systems. Further research will concentrate on
adaptive fuzzy control for MIMO nonlinear affine or
nonaffine systems with time-varying and input delay based
on this paper and the results of [33-37].
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