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Abstract This paper concerned with the problem of

observer-based adaptive fuzzy quantized tracking dynamic

surface control (DSC) is investigated for the uncertain

multi-input and multi-output (MIMO) nonstrict-feedback

nonlinear systems, which contain unknown nonlinear

functions, input quantization, and unmeasured states. By

using fuzzy logic systems to identify the uncertain MIMO

nonstrict-feedback nonlinear systems, a fuzzy state obser-

ver is introduced to estimate the immeasurable states. By

transforming the hysteretic quantized input into a new

nonlinear decomposition, and utilizing the DSC backstep-

ping design method, a novel and less conservative fuzzy

adaptive quantized tracking control approach is developed.

It is shown that the proposed control scheme can guarantee

the stability of the closed-loop system, and also that the

system outputs can track the given desired trajectories. The

simulation results are provided to verify the effectiveness

of the proposed control strategy.

Keywords MIMO nonstrict-feedback systems � Adaptive

quantized control � Input quantization � Fuzzy control

1 Introduction

It is well known that, in the past decade, based on the

approximating capability of fuzzy logic systems or neural

networks, many adaptive fuzzy and NN state feedback

control design methods have been proposed for uncertain

nonlinear systems in the strict-feedback form [1–12]. The

authors in [1–8] presented several adaptive fuzzy or NN

control schemes for uncertain MIMO nonlinear systems in

strict-feedback form, in which the system model is differ-

ent from the statements in [9, 10]. Meanwhile, authors in

[11, 12] investigated adaptive fuzzy and NN decentralized

control design problem for uncertain large-scale nonlinear

systems in strict-feedback form. However, the above-

mentioned control schemes are all required that the full-

state information must be measurable. To relax the

restriction in [1–12], the observer-based adaptive fuzzy and

NN output-feedback control design problem has been

developed, and many interesting research results have also

been obtained [13–17], where the works in [13–15] are for

a class of uncertain MIMO nonlinear systems and the

works in [16, 17] are for a class of uncertain nonlinear

interconnected systems.

It should be mentioned that all the aforementioned

results are feasible under presupposition that the consid-

ered systems have a strict-feedback form or pure-feedback

form. Therefore, they cannot be employed in controlling

the uncertain nonlinear systems with nonstrict-feedback

form. Recently, the control problem of the nonstrict-feed-

back systems has attracted a great deal of attention, for

example in [18–23]. To overcome the difficulty in the

traditional adaptive backstepping control design, by uti-

lizing the monotonously increasing property of the

bounding functions, authors in [18, 19] developed the

variables separation technique, and subsequently proposed
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two adaptive fuzzy control design methods for single-input

and single-output (SISO) and MIMO nonstrict-feedback

nonlinear systems, respectively. Then in [20–22], authors

proposed different control methods for SISO and MIMO

nonstrict-feedback nonlinear systems with input nonlin-

earity. More recently, the observer-based adaptive NN

output-feedback control schemes have been developed in

[23, 24] for the SISO nonstrict-feedback nonlinear systems,

and the immeasurable state problem of SISO nonstrict-

feedback systems has been solved, but the situation of

MIMO nonstrict-feedback nonlinear systems is not con-

sidered. And also the above-mentioned results are based on

the assumption that the unknown functions must satisfy the

monotonously increasing property of the bounding func-

tions, which are not suitable for many practical engineering

systems. Although the authors in [25] proposed an obser-

ver-based adaptive fuzzy control design method for SISO

nonlinear system in nonstrict-feedback form, the proposed

control method cannot be applied to control the MIMO

nonstrict-feedback nonlinear systems considered in this

paper. In addition, the controlled nonstrict-feedback non-

linear systems considered in [18–25] did not contain the

input quantization.

As stated in [26–28], since many practical engineering

systems contain the quantized control input, such as

hydraulic systems, hybrid systems, and automotive net-

worked control systems, it is necessary to investigate the

control design problem for quantized systems. The work in

[28] first proposed a control design method for nonlinear

systems with the input quantization. By using backstepping

design technique, the authors in [29] proposed the adaptive

quantized control method for a class of SISO uncertain

nonlinear systems in strict-feedback form. It should be

pointed out that [28, 29] only considered the nonlinear

uncertainties, and also the nonlinear functions are required

to be known or can be linearly parameterized. To eliminate

the above limitations, the authors in [30] presented a novel

fuzzy adaptive controller for a class of stochastic nonlinear

systems, and the authors in [31] extended the results in [30]

to a class of uncertain switched nonlinear systems with

unmeasured states. Although the results on the adaptive

quantized control design have achieved some progress, the

controlled plants in the above-mentioned results are strict-

feedback nonlinear systems, and they cannot solve the

control design problem for the nonlinear systems in non-

strict-feedback form.

Based on the above presentations, an observer-based

adaptive fuzzy control problem is studied in this paper for

MIMO nonstrict-feedback nonlinear systems. The consid-

ered uncertain MIMO nonstrict-feedback systems contain

unmeasurable states, unknown nonlinearities, and input

quantization. By utilizing fuzzy logic systems to identify

the unknown nonlinear functions, a fuzzy state observer is

constructed to obtain the unmeasurable states. By trans-

forming the hysteretic quantized input into a new nonlinear

decomposition and based on DSC control design, an

observer-based adaptive fuzzy quantized control method is

presented. It is proved that the closed-loop system is

stable in the sense of Lyapunov function stability theory.

Compared to the previous works, the following contribu-

tions are worth to be emphasized as follows.

1. The adaptive fuzzy control scheme proposed in this

paper has solved the unmeasured states and quantized

input problems for MIMO nonstrict-feedback systems.

Although the references [26–31] also investigated the

input quantization design problem, they all required

that the states must be available for measurement.

Moreover, the controlled plants are SISO strict-feed-

back nonlinear systems, not the MIMO nonstrict-

feedback systems under consideration in this study.

2. The proposed adaptive quantized fuzzy control design

method only utilizes the property of fuzzy basis

functions, instead of the restrictive assumption in the

literature [18–24] that the unknown functions must

satisfy the monotonously increasing property of the

bounding functions. Therefore, this paper has reduced

the conservatism of the control schemes in [18–24].

3. The proposed control scheme has overcome the

problem of ‘‘explosion of complexity’’ by introducing

into DSC technique into the fuzzy adaptive quantized

control design. Therefore, the control structure of this

paper is much simpler than those of the previous

literature [18–30].

The rest of the paper is organized as follows: the

problem formulations and preliminaries are present in

Sect. 2. Adaptive quantized control design is given in

Sect. 3. In Sect. 4, the simulation study is shown with the

aim to validate the effectiveness of the proposed method.

Section 5 contains the conclusion.

2 Problem formulation and preliminaries

2.1 System descriptions

Consider the uncertain MIMO nonstrict-feedback systems:

_xj;ij ¼ fj;ijðXÞ þ xj;ijþ1 þ dj;ijðtÞ; ij ¼ 1; . . .;mj � 1;

_xj;mj
¼ fj;mj

ðX; uj�1Þ þ qjðujÞ þ dj;mj
ðtÞ

yj ¼ xj;1

8
><

>:

ð1Þ

where uj 2 R and y = [y1, y2, …, yn]
T 2 Rn are the input

and output for the first jth subsystem, respectively, with uj-1
= [u1, …, uj-1]T 2 Rj-1, and qj(uj) 2 < is the output of
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the hysteresis quantizer; xj;ij ¼ ½xj;1; . . .; xj;ij �
T 2 Rij ,

(j = 1, …, n, ij = 1, …, mj), is the state vector of the first

ij differential equations of the jth subsystem; dj;ijðtÞ is the

external disturbance bounded by an unknown constant d�j;ij ,

i.e., dj;ijðtÞ
�
�

�
�� d�j;ij ; fj;ijð�Þ is an unknown smooth nonlinear

function. X = [x1
T, …, xn

T]T with xj ¼ ½xj;1; . . .; xj;mj
�T.

In this paper, a hysteresis quantizer method is adopted to

avoid the chattering problem. qj(uj) denotes a quantized

input signal. Similar to [28–30], the quantized input in this

paper is described as:

qjðujÞ¼
D

ui;jsgnðujÞ; if
ui;rðtÞ
1þdj

\ uj
�
�
�
��ui;j; _uj\0; or

ui;j\ uj
�
�
�
�� ui;j

1�dj
; _uj[0

ui;jð1þdjÞsgnðujÞ; if ui;j\ uj
�
�
�
�� ui;j

1�dj
; _uj\0; or

ui;j

1�dj
� uj
�
�
�
�� ui;jð1þdjÞ

1�dj
; _uj[0

0; if 0� uj
�
�
�
�\

umin

1þdj
; _uj\0; or

umin

1þdj
� uj
�
�
�
��umin; _uj[0

qjðujðt�ÞÞ; othercase

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

where uj = q(1-i)u0,j with integer i = 1, 2, … and dj ¼
1�qj
1þqj

with parameters u0,j[ 0 and 0\ q\ 1. qj(uj) is in the

set U = {0, ± ui,j, ± ui,j(1 - dj)}. umin ¼ u0;j

1þdj
is the

bound of the dead zone for qj(uj). The map of the hysteretic

quantizer qj(uj) for uj[ 0 is shown in Fig. 1.

Remark 1 The parameter qj can be seen as a measure of

quantization density. If qj is smaller, then the quantizer will

become coarser. Note that when qj ? 0, dj ? 1, then

qj(uj) will have fewer quantization levels as uj ranges over

that interval. The control action for the hysteretic quantizer

(2) should be satisfied in terms of existence and uniqueness

of solution of the closed-loop systems. The parameter qj in

(2) is not given a prior since that system (1) is uncertain.

Instead, it can be chosen by using a guideline to guarantee

that the closed-loop system is stable.

In order to propose a suitable control scheme, we decom-

pose the hysteretic quantizer qj(uj) into the following form:

qjðujÞ ¼ DjðujÞuj þ sjðtÞ ð3Þ

whereDj(uj) and sj(t) denote nonlinear functions. In view of the

nonlinearity Dj(uj) and sj(t), the following lemma is needed.

Lemma 1 [29, 30] The nonlinearities Dj(uj) and sj(t)

satisfy

1 � dj �Dj uj
� �

� 1 þ dj; sj tð Þ
�
�

�
�� umin ð4Þ

Proof From Fig. 1 and sector bound property, for |uj| -

C umin, one has

1 � dj � sjðujÞ� 1 þ dj ð5Þ

where sjðujÞ ¼ qjðujÞ
uj

.

For |uj| B ujmin, qj(uj) = 0 from the definition (3), we have

0 ¼ DjðujÞuj þ sjðtÞ ð6Þ

Define

DjðujÞ ¼
sjðujÞ; uj

�
�
�
�[ umin

1; uj
�
�
�
�� umin

(

ð7Þ

and

sjðtÞ ¼
0; uj

�
�
�
�[ umin

�uj; uj
�
�
�
�� umin

(

ð8Þ

Then, qj(uj) = Dj(uj)uj ? sj(t) holds, where Dj(uj) and

sj(t) satisfy (4), respectively. The proof is completed.

Control objective: The control objective of this paper is to

develop the suitable adaptive quantized control inputs uj
for systems (1), so that all the variables are bounded, and

the systems output yj(t) can track the desired trajectories

yj,r(t), regardless of the unknown function fj;ijðXÞ; unmea-

sured states xi, and quantized input signal qj(uj),

j = 1, …, n, ij = 1, …, mj.

Assumption 1 ([18–21]) The desired trajectories yj,r(t)

are continuous and have the following property

Pj;0 ¼ fðyj;r; _yj;r; €yj;rÞ : y2
j;r þ _y2

j;r þ €y2
j;r �Nj;0g

where Nj,0 is a positive constant.

2.2 Fuzzy logic systems

A fuzzy logic system consists of four parts: the knowledge

base, the fuzzifier, the fuzzy inference engine working on

fuzzy rules, and the defuzzifier. The knowledge base forFig. 1 Map of qj(uj) for uj[ 0
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FLS comprises a collection of fuzzy if–then rules, which

can be described as follows:

Ri: if x1 is F1
l , and x2 is F2

l and …and, xn is Fn
l , then y is

Gl, l = 1, 2, …, N. where x = (x1, …, xn)
T and yare the

FLS input and output, respectively. Fuzzy sets Fi
l and Gl

are associated with the fuzzy functions lFl
i

and lGl ,

respectively. N is the rules number.

According to the singleton function, center average

defuzzification, the FLS becomes

yðxÞ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
ðxiÞ

PN
l¼1 ½

Qn
i¼1 lFl

i
ðxiÞ�

ð9Þ

where �yl ¼ maxy2R lGlðyÞ.
Let the fuzzy basis functions are

ulðxÞ ¼
Qn

i¼1 lFl
i
ðxiÞ

PN
i¼1 ½

Qn
i¼1 lFl

i
ðxiÞ�

: ð10Þ

Denoting hT ¼ ð�y1; �y2; � � � ; �yNÞ ¼ ðh1; h2; � � � ; hNÞ and

u(x) = (u1(x), …, uN(x))T, then FLS (10) can be rewritten

as

yðxÞ ¼ hTuðxÞ ð11Þ

Lemma 2 ([32]) Let f(x) be a continuous function defined

on a compact set X. Then, for any constant e[ 0, there

exists a fuzzy logic system (11) such as

sup
x2X

f ðxÞ � hTuðxÞ
�
�

�
�� e ð12Þ

3 Adaptive quantized control design

In the following section, a fuzzy state observer will be

designed first, then an adaptive fuzzy quantized tracking

control method will be developed by utilizing the DSC

backstepping design method, and the stability of the control

system will be proved.

Assume that the FLSs are as follows:

f̂j;ijðX̂ hj;ij
�
� Þ ¼ hT

j;ij
uj;ijðX̂Þ; ij ¼ 1; 2; . . .;mj � 1

f̂j;mj
ðX̂; uj�1 hj;mj

�
� Þ ¼ hT

j;mj
uj;mj

ðX̂; uj�1Þ; j ¼ 1; 2; . . .; n

ð13Þ

Then, the optimal approximated parameter vectors h�j;ij
and h�j;mj

are defined as

h�j;ij ¼ arg min
hj;ij2Xj;ij

½ sup
ðX̂Þ2Uj;ij

f̂j;ijðX̂ hj;ij
�
� Þ� fj;ijðXÞ

�
�
�

�
�
��

h�j;mj
¼ arg min

hj;mj2Xj;mj

½ sup
ðX̂;uj�1Þ2Uj;mj

f̂j;mj
ðX̂;uj�1 hj;mj

�
� Þ

�
�
� �fj;mj

ðX;uj�1Þ
�
��

where Xj;ij , Uj;ij , Xj;mj
, and Uj;mj

are compact regions for

hj;ij , X̂, hj;mj
, and ðX̂; uj�1Þ, respectively.

Use the FLSs f̂j;ijðX̂ hj;ij
�
� Þ and f̂j;mj

ðX̂; uj�1 hj;mj

�
� Þ to

approximate the nonlinear functions in systems (1), and let

the approximation errors ej;ij as

ej;ij ¼ fj;ijðXÞ � f̂j;ijðX̂ h�j;ij

�
�
� Þ

ej;mj
¼ fj;mj

ðX; uj�1Þ � f̂j;mj
ðX̂; uj�1 h�j;mj

�
�
� Þ

where ej;ij is bounded by the unknown constant e�j;ij , i.e.,

ej;ij
�
�
�
�� e�j;ij j = 1, …, n, ij = 1, …, mj.

Rewrite (1) as

_xj¼A0xjþ
Xmj�1

ij¼1
Bj;ij fj;ijðXÞþBj;mj

½fj;mj
ðX;uj�1ÞþqjðujÞ�þdjðtÞ

yj¼Cjxj

8
<

:

ð14Þ

where Aj ¼
0

..

.
I

0 0 � � � 0

2

4

3

5; Bmj
¼ ½0 � � � 1�T,

Bj;ij ¼ ½0 � � � 0 1|fflfflfflffl{zfflfflfflffl}
ij

� � � 0�T, djðtÞ ¼ ½ dj;1 � � � dj;mj �T,

Cj = [1���0].

Similar to the state observer in [15, 16], in this paper, we

design the following state observer

_̂xj ¼ Ajx̂j þ Kjyj þ
Xmj�1

ij¼1

Bj;ij f̂j;ijðX̂ hj;ij
�
� Þ

þ Bj;mj
f̂j;mj

ðX̂; uj�1 hj;mj

�
� Þ þ Bj;mj

qjðujÞ
ŷj ¼ Cjx̂j

ð15Þ

where Aj ¼
�kj;1

..

.
I

�kj;mj
0 � � � 0

2

6
4

3

7
5; Kj ¼ ½kj;1 � � � kj;mj

�T,

and X̂ is designed to estimate the state vector X.

Let the vector Kj to satisfy matrix Aj be a strict Hurwitz

matrix. Then, choose a matrix Qj = Qj
T[ 0, there will be a

matrix Pj = Pj
T[ 0 satisfying

AT
j Pj þ PjAj ¼ �Qj ð16Þ

The observer error vector ej is designed as

ej ¼ ½ej;1; ej;2; � � � ; ej;mj
�T ¼ xj � x̂j ð17Þ

Then, from (14) and (16), we can obtain

_ej ¼ Ajej þ
Xmj�1

ij¼1

Bj;ij ½fj;ijðX̂
�
�h�j;ijÞ � f̂j;ijðX̂ hj;ij

�
� Þ þ ej þ djðtÞ�

þ Bj;mj
½fj;mj

ðX̂; uj�1

�
�h�j;mj

Þ � f̂j;mj
ðX̂; uj�1 hj;mj

�
� Þ�

¼ Ajej þ
Xmj

ij¼1

Bj;ij
~hT
j;ij
uj;ij þ ej þ djðtÞ ð18Þ

where ej ¼ ½ej;1;; . . .; ej;mj
�T and ~hj;ij ¼ h�j;ij � hj;ij .
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We choose the Lyapunov function candidate V0 for (18)

as V0 =
P

j=1
n Vj,0 =

P
j=1
n ej

TPjej, and then from (15) and

(18), the time derivative of V0 follows that

_V0 �
Xn

j¼1

�

� pj;0 ej
�
�
�
�2 þ 1

rj

Xmj

ij¼1

~hT
j;ij
~hj;ij þ Lj;0

�

ð19Þ

where pj,0 = kmin(Qj) - rj - 1 - (rj ? 1)mjkPjk2, kmin

(Qj) is the smallest eigenvalue of matrix Qj,

Lj;0 ¼ Pj

�
�
�
�2

e�j

�
�
�

�
�
�

2

þ
Pmj

ij¼1 d
�2
j;ij

.

In the following, the process of controller design has

been divided into mj steps, and each step is based on the

following change of coordinates:

zj;1 ¼ yj � yj;r; zj;ij ¼ x̂j;ij � #j;ij ð20Þ

vj;ij ¼ #j;ij � aj;ij�1; ð21Þ

where zj;ij(j ¼ 1; . . .; n; ij ¼ 2; . . .;mj) is error surface, #j;ij

is a state variable which will be defined later,aj;ij�1 are

intermediate control functions, and vj;ij is called the output

error of the first-order filter.

Step 1 Since xj;2 ¼ x̂j;2 þ ej;2, we can easily obtain the

time derivative of zj,1 as

_zj;1 ¼ zj;2 þ vj;2 þ aj;1 þ hT
1;ku1;kðx̂1Þ þ h�Tj;1uj;1ðX̂Þ

� h�T
1;ku1;kðx̂1Þ þ ~hT

1;ku1;kðx̂1Þ þ ej;2 � _yj;r þ ej;1 þ dj;1

ð22Þ

where ~hj;1 ¼ h�j;1 � hj;1. Choose the Lyapunov function

candidate as

V1 ¼
Xn

j¼1

Vj;1

¼
Xn

j¼1

	

Vj;0 þ
1

2
z2
j;1 þ

1

2cj;1
~hT
j;1
~hj;1 þ

1

2rj;1
~H2
j;1




ð23Þ

where cj,1[ 0 and dj,1[ 0 are design parameters, and

~Hj;ij ¼ H�
j;ij

�Hj;ij , H�
j;ij

¼ h�j;ij

�
�
�

�
�
�

2

, Hj;ij is the estimate

of H�
j;ij

.

From (22) and (23), the time derivative of V1 satisfies

_V1 � _V0 þ
Xn

j¼1

	

zj;1ðzj;2 þ vj;2 þ aj;1 þ hT
j;1uj;1ðx̂j;1Þ

þ h�T
j;1uj;1ðX̂Þ � h�T

j;1uj;1ðx̂j;1Þ
þ ~hT

j;1uj;1ðx̂j;1Þ þ ej;2 � _yj;r

þ ej;1 þ dj;1Þ þ
1

cj;1
~hT
j;1
_~hj;1 þ

1

rj;1
~HT
j;1

_~Hj;1




ð24Þ

By using the completing squares, we have

zj;1ðej;2 þ ej;1 þ dj;1Þ�
3

2
z2
j;1 þ

1

2
ej
�
�
�
�2þ 1

2
e�2
j;1 þ

1

2
d�2
j;1

ð25Þ

zj;1ðh�T
j;1uj;1ðX̂Þ � h�T

j;1uj;1ðx̂j;1ÞÞ�
rj
2
z2
j;1H

�
j;1 þ

2

rj
ð26Þ

where rj[ 0 is a design parameter.

Substituting (25)–(26) and _V0 into (24), it yields

_V1 �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 þ zj;1

	
3

2
zj;1 þ vj;2 þ aj;1 þ

rj
2
zj;1Hj;1 � _yj;r

þ hTj;1uj;1ðx̂j;1ÞÞ þ ~hT
j;1ðzj;1uj;1ðx̂1Þ �

1

cj;1
_hj;1




þ ~HT
j;1

	
rj
2
z2
j;1 �

1

rj;1
_Hj;1




þ 1

rj

Xmj

k¼1

~hT
j;k
~hj;k þ Lj;1

�

ð27Þ

where pj;1 ¼ pj;0 � 1
2
, Lj;1 ¼ Lj;0 þ 1

2
e�2
j;1 þ 1

2
d�2
j;1 þ 2

rj
.

Design the intermediate control function aj,1 and the

parameter adaptation functions hj,1 and Hj,1 as

aj;1 ¼ �bj;1zj;1 �
3

2
zj;1 þ _yj;r �

rj
2
zj;1Hj;1 � hT

j;1uj;1ðx̂1Þ ð28Þ

_hj;1 ¼ cj;1zj;1uj;1ðX̂Þ � sj;1hj;1 ð29Þ

_Hj;1 ¼ rj;1
rj
2
z2
j;1 � �sj;1Hj;1 ð30Þ

where bj,1[ 0, sj,1[ 0, and �sj;1 [ 0 are design parameters.

Substituting (28)–(30) into (27), it follows that

_V1 �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 � bj;1z

2
j;1 þ zj;1vj;2 þ

sj;1
cj;1

~hT
j;1hj;1

þ �sj;1
rj;1

~HT
j;1Hj;1 þ

1

rj

Xmj

k¼1

~hTj;k
~hj;k þ Lj;1

�

ð31Þ

Given the newly defined state variable #j,2, and let aj,1
pass through a first-order filter with a constant fj,2, we have

1j;2 _#j;2 þ #j;2 ¼ aj;1; #j;2ð0Þ ¼ aj;1ð0Þ ð32Þ

Define vj,2 = #j,2 - aj,1, and it yields _#j;2 ¼ � vj;2
1j;2

and

_vj;2 ¼ _#j;2 � _aj;1 ¼ �
vj;2
1j;2

þ Hj;2 ð33Þ

where the continuous function Hj,2(�) consists of zj,1, -

zj,2, vj,2,yj;r; _yj;r; €yj;r, Hj,1 and hj,1 with the following

expression

Hj;2ð�Þ ¼ bj;1 _zj;1 þ 2 _zj;1 þ
rj
2
_zj;1Hj;1 þ

rj
2
zj;1 _Hj;1

þ
hT
j;1ouj;1ðx̂j;1Þ

ox̂j;1
_̂xj;1 þ _hT

j;1uj;1ðx̂1Þ � €yj;r ð34Þ
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Step ij (2 B ij B mj - 1) Similar to Step 1, we have

_zj;ij ¼ zj;ij þ vj;ijþ1 þ kj;ij ej;1 þ aj;ij þ hT
j;ij
uj;ijðX̂Þ � _#j;ij

ð35Þ

Given the newly defined state variable #j;ijþ1, and let aj;ij
pass through a first-order filter with time constant 1j;ijþ1, we

have

1j;ijþ1
_#j;ijþ1 þ #j;ijþ1 ¼ aj;ij ; #j;ijþ1ð0Þ ¼ aj;ijð0Þ ð36Þ

Let vj;ijþ1 ¼ #j;ijþ1 � aj;ij , and it yields _#j;ijþ1 ¼ �
vj;ijþ1

1j;ijþ1

and

_vj;ijþ1 ¼ _#j;ijþ1 � _aj;ij ¼ �
vj;ijþ1

1j;ijþ1

þ Hj;ijþ1 ð37Þ

where the continuous function Hj;ijþ1ð�Þ consists of

zj;1; . . .; zj;ij ; vj;2; . . .; vj;��ilþ1, yj;r; _yj;r, €yj;r, Hj;1; . . .;Hj;ij , and

hj;1; . . .; hj;ij with the following expression

Hj;ijþ1ð�Þ ¼ bj;ij _zj;ij þ rj _zj;ij þ
rj
2
_zj;ijHj;ij þ

rj
2
zj;ij

_Hj;ij

þ
hT
j;il
ouj;ijðx̂j;ijÞ
ox̂j;ij

_̂xj;ij þ _hTj;ijuj;ijðx̂j;ijÞ þ kj;ij _ej;1 þ
vj;ij
1j;ij

ð38Þ

Choose the Lyapunov function candidate Vij as

Vij ¼
Xn

j¼1

Vj;ij ¼
Xn

j¼1

	

Vj;ij�1 þ
1

2
z2
j;ij

þ 1

2cj;ij
~hT
j;ij
~hj;ij

þ 1

2rj;ij

~H2
j;ij

þ 1

2
v2
j;ij




ð39Þ

where cj;ij [ 0 and rj;ij are design parameters. We can

easily obtain the time derivative of Vj;ij as

_Vij ¼ _Vij�1 þ
Xn

j¼1

�

zj;ij ½aj;ij � ~hT
j;ij
uj;ijðX̂Þ þ h�T

j;ij
uj;ijðX̂Þ � h�T

j;ij
uj;ijðx̂j;ijÞ

þ ~hT
j;ij
uj;ijðx̂j;ijÞ þ hT

j;ij
uj;ijðx̂j;ijÞ þ vj;ijþ1 þ kj;ij ej;1 � _#j;ij �

þ 1

cj;ij
~hT
j;ij

_~hj;ij þ
1

rj;ij

~HT
j;ij

_~Hj;ij þ vj;ij _vj;ij

�

ð40Þ

where ~hj;ij ¼ h�j;ij � hj;ij . In the view of the derivations in

Step 1, it yields

zj;ijðh�T
j;ij
uj;ijðX̂Þ � ~hT

j;ij
uj;ijðX̂Þ � h�T

j;ij
uj;ijðx̂j;ijÞÞ

� 1

2
z2
j;ij

þ 1

2
~hT
j;ij
~hj;ij þ

2

rj
þ rj

2
z2
j;ij
H�

j;ij

ð41Þ

where rj is a design parameter.

Substituting (41) into (40) yields

‘Vij �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 þ zj;ijðaj;ij þ kj;ij ej;1 � _#j;ij þ hT

j;ij
uj;ijðx̂j;ijÞ

þ 1

2
zj;ij þ

rj
2
zj;ijHj;ijÞ �

Xij�1

k¼1

bj;kz
2
j;k

þ ~hT
j;ij

	

zj;ijuj;ijðx̂j;ijÞ �
1

cj;ij
_hj;ij




þ ~HT
j;ij
ðrj

2
z2
j;ij

� 1

rj;ij

_Hj;ijÞ

þ
Xij�1

k¼1

sj;k
cj;k

~hT
j;khj;k þ

1

2

Xij

k¼2

~hT
j;k
~hj;k þ

Xij�1

k¼1

�sj;k
rj;k

~HT
j;kHj;k

þ 1

rj

Xmj

k¼1

~hT
j;k
~hj;k þ

Xii�1

k¼1

vj;kþ1

	

�
vj;kþ1

1j;kþ1

þ Hj;kþ1




þ
Xij

k¼1

zj;kvj;kþ1 þ Lj;ij

�

ð42Þ

where Lj;ij ¼ Lj;ij�1 þ 2
rj

.

Design the following intermediate control function aj;ij ,
and the adaptation function hj;ij as

aj;ij ¼ �bj;ij zj;ij �
1

2
zj;ij �

rj
2
zj;ijHj;ij � kj;il ej;1

� hT
j;ij
uj;ijðx̂j;ijÞ þ _#j;ij ð43Þ

_hj;ij ¼ cj;ij zj;ijuj;ijðx̂j;ijÞ � sj;ijhj;ij ð44Þ

_Hj;ij ¼ rj;ij
rj
2
z2
j;ij

� �sj;1Hj;ij ð45Þ

where bj;ij [ 0, sj;ij [ 0, and �sj;ij [ 0 are design parame-

ters. Substituting (43)–(45) into (42) yields

_Vij �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 �

Xil

k¼1

bj;kz
2
j;k þ

Xil

k¼1

sj;k
cj;k

~hT
j;khj;k

þ 1

rj

Xmj

k¼1

~hT
j;k
~hj;k þ

Xij

k¼1

�sj;k
rj;k

~HT
j;kHj;k

þ 1

2

Xil

k¼2

~hT
j;k
~hj;k þ

Xil�1

k¼1

vj;kþ1

	

�
vj;kþ1

1j;kþ1

þ Hj;kþ1




þ
Xil

k¼1

zj;kvj;kþ1 þ Lj;ij

�

ð46Þ

Step mj In this step, the quantized control input uj will

appear. Similar to the step ij, we can obtain the time

derivative of zj;mj
as follows:

_zj;mj
¼ qjðujÞ þ kj;mj

ej;1 þ hT
j;mj

uj;mj
ðX̂; uj�1Þ � _#j;mj

¼GjðujÞuj þ sjðtÞ þ kj;mj
ej;1 þ hT

j;mj
uj;mj

ðX̂; uj�1Þ � _#j;mj

ð47Þ
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Consider the overall Lyapunov function as

V ¼
Xn

j¼1

Vj;mj
¼
Xn

j¼1

Vj;mj�1 þ
1

2
z2
j;mj

þ 1

2cj;mj

~hT
j;mj

~hj;mj
þ 1

2
v2
j;mj

 !

ð48Þ

where cj;mj
[ 0 is the design parameter and

~hj;mj
¼ h�j;mj

� hj;mj
.

By using (3), (47), and (48), one has

_V ¼ _Vmj�1 þ
Xn

j¼1

fzj;mj
½DjðujÞuj þ sjðtÞ þ kj;mj

ej;1 � _#j;mj

þ hT
j;mj

uj;mj
ðX̂; uj�1Þ� þ

1

cj;mj

~hT
j;mj

_~hj;mj
þ vj;mj

_vj;mj
g

ð49Þ

where ~hj;mj
¼ h�j;mj

� hj;mj
.

From (4), and in the view of the derivations in Step ij, it

yields

_V �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 �

Xmj�1

k¼1

bj;kz
2
j;k þ zj;mj

½DjðujÞuj

þ 3

2
zj;mj

þ kj;mj
ej;1 � _#j;mj

þ hT
j;mj

uj;mj
ðX̂; uj�1Þ�

þ ~hT
j;mj

	

zj;mj
uj;mj

ðX̂; uj�1Þ �
1

cj;mj

_hj;mj




þ
Xmj�1

k¼1

sj;k
cj;k

~hT
j;khj;k þ

1

rj

Xmj

k¼1

~hT
j;k
~hj;k þ

Xmj�1

k¼1

�sj;k
rj;k

~HT
j;kHj;k

þ 1

2

Xmj�1

k¼2

~hT
j;k
~hj;k þ

Xmj�2

k¼1

vj;kþ1

	

�
vj;kþ1

1j;kþ1

þ Hj;kþ1




þ
Xil

k¼1

zj;kvj;kþ1 þ Lj;mj

�

ð50Þ

where Lj;mj
¼ Lj;mj�1 þ 2

rj
þ 1

2
u2

min.

Design the controller uj and the adaptation function hj;mj

as follows:

uj ¼
1

1 � dj

	

� bj;mj
zj;mj

� 3

2
zj;mj

� kj;mj
ej;1

� hT
j;mj

uj;mj
ðX̂; uj�1Þ þ _#j;mj




ð51Þ

_hj;mj
¼ cj;mj

zj;mj
uj;mj

ðX̂; uj�1Þ � sj;mj
hj;mj

ð52Þ

where sj;mj
[ 0 and bj;mj

[ 0 are design constants.

Note that, from (4) and (51), and by completing the

square, we can obtain

DjðujÞuj � � bj;mj
zj;mj

� zj;mj
� kj;mj

ej;1

� hT
j;mj

uj;mj
ðX̂; uj�1Þ þ _#j;mj

ð53Þ

~hTj;mj
hj;mj

� � 1

2
~hT
j;mj

~hj;mj
þ 1

2
h�T
i;mj

h�i;mj
ð54Þ

Substituting (53)–(54) into (50) yields

_V �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 �

Xmj

k¼1

bj;kz
2
j;k þ

1

rj

Xmj

k¼1

~hT
j;k
~hj;k

þ
Xmj

k¼1

sj;k
cj;k

~hT
j;khj;k þ

1

2

Xmj

k¼2

~hT
j;k
~hj;k

þ
Xmj

k¼1

zj;kvj;kþ1 þ
Xmj�1

k¼1

vj;kþ1

	

�
vj;kþ1

1j;kþ1

þ Hj;kþ1




þ
Xmj�1

k¼1

�sj;k
rj;k

~HT
j;kHj;k þ Lj;mj

�

ð55Þ

Let

Nj;k ¼
�	

ej; zj;k; hj;k;Hj;k; vj;k




:
Xn

j¼1

�

eT
j Pej þ

1

2

Xmj

k¼1

z2
j;k

þ
Xmj

k¼1

1

2cj;k
~hT
j;k
~hj;k þ

Xmj�1

k¼1

1

2rj;k
~H2
j;k

þ 1

2

Xmj

k¼2

v2
j;k

�

�Dj;k

�

;

where Dj,k is a known positive constant.

Since Nj,k is a compact set and Hj,k?1 is a continuous

function, there exists a positive constant Mj,k?1 such that

|Hj,k?1| B Mj,k?1 on Nj,k. Consequently, we have

vj;kþ1Hj;kþ1

�
�

�
�� 1

2
v2
j;kþ1 þ

1

2
M2

j;kþ1 ð56Þ

By completing the square for each parameter estimate:

zj;kvj;kþ1 �
1

2
v2
j;kþ1 þ

1

2
z2
j;k ð57Þ

sj;k
cj;k

~hT
j;khj;k � � sj;k

2cj;k
~hT
j;k
~hj;k þ

sj;k
2cj;k

h�j;k

�
�
�

�
�
�

2

ð58Þ

�sj;k
rj;k

~HT
j;kHj;k � � �sj;k

2rj;k
~HT
j;k

~Hj;k þ
�sj;k

2rj;k
H�

j;k

�
�
�

�
�
�

2

ð59Þ

Then, (55) can be written as

_V �
Xn

j¼1

�

� pj;1 ej
�
�
�
�2 �

Xmj

k¼1

	

bj;k �
1

2




z2
j;k

þ
Xmj

k¼1

sj;k
2cj;k

h�j;k

�
�
�

�
�
�

2

�
Xmj

k¼2

	
sj;k

2cj;k
� 2

rj




~hT
j;k
~hj;k

�
	

sj;1
2cj;1

� 1

rj



~hT
j;1
~hj;1 �

Xmj�1

k¼1

	
1

1j;kþ1

� 1




v2
j;kþ1

þ
Xmj�1

k¼1

�sj;k
rj;k

~HT
j;kHj;k þ Lj;mj

þ 1

2

Xmj�1

k¼1

M2
j;kþ1

�

ð60Þ
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Choose pj,1[ 0,bj;k � 1
2
[ 0, (k = 1, …, mj),-

, 1
1j;kþ1

� 1[ 0, (k = 1, …, mj - 1) and
sj;k

2cj;k
� 1

rj
[ 0, and

define

C ¼ min 1� j� n
1� k�mj

f2bj;k; ð1� k�mjÞ; sj;k � 4cj;k
rj

; 2
1j;kþ1

�

2; ð1� k�mj � 1Þ;
sj;1�

2cj;1
rj

;

2�sj;k ;pj;1=kminðPjÞg
and D ¼

Pn
j¼1 ðLj;mj

þ

1
2

Pmj�1

k¼1 M2
j;kþ1Þ.

Then, (60) can be further rewritten as

_V � � CV þ D ð61Þ

Integrating (61) over [0, T], we can easily obtain that

0�VðTÞ�
	

Vð0Þ � D

C




e�CT þ D

C
ð62Þ

which means that all the signals in the closed-loop

systems are bounded, such as limt!1 ej
�
�
�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVð0Þ þ D
C
Þ
�
kmaxðPjÞ

q

, and limt!1 zj;ij

�
�
�

�
�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Vð0Þ þ 2 D
C

q

.

Moreover, the observer and the tracking errors can converge

to a small neighborhood of the origin by suitably choosing the

following parameters bj;ij , kj;ij ,sj;ij ,rj;ij ,cj;ij , �sj;ij , and rj.

The aforementioned design and analysis procedures are

summarized in the following theorem.

Theorem 1 For MIMO nonstrict-feedback nonlinear

systems (1), under Assumption 1, the controller (51), and

state observer (16), together with the intermediate controls

(28), (43), and the adaptation functions (29–30), (44–45)

and (52), guarantee that all variables in the closed-loop

systems are bounded. Furthermore, the observer and the

tracking errors can converge to a small neighborhood of

the origin by appropriate choosing the design parameters.

From the previous discussions, the control design pro-

cedures and the guideline of the parameter selections are

given as follows:

Step 1: specify the vector Lj such that matrix Aj is a

strict Hurwitz matrix, positive definite matri-

ces Qj and by solving the Lyapunov Eq. (16),

positive definite matrices Pj are obtained.

Step 2: select appropriately design parameters such

that bj;ij [ 0, sj;ij [ 0 and �sj;ij [ 0, and the

determine intermediate control functions

aj,1(28), aj;ij(43), and the parameters adapta-

tion laws hj,1(29), Hj,1(30), hj;ij(44), and

Hj;ij(45), ij = 1, …, mj - 1.

Step 3: select appropriately design parameters

bj;mj
[ 0, sj;mj

[ 0 and �sj;mj
[ 0, actual con-

troller uj, and adaptive update law hj,kmj, Hj;mj
.

4 Simulation study

In this section, we provide a simulation example with the

aim to evaluate the control performance of the proposed

control strategy.

Example We consider the following MIMO nonstrict-

feedback system:

_x1;1 ¼ x1;2 þ f1;1ðXÞ þ d1;1ðtÞ
_x1;2 ¼ q1ðu1Þ þ f1;2ðXÞ þ d1;2ðtÞ
y1 ¼ x1;1

8
><

>:
ð63Þ

_x2;1 ¼ x2;2 þ f2;1ðXÞ þ d2;1ðtÞ
_x2;2 ¼ q2ðu2Þ þ f2;2ðX; u1Þ þ d2;2ðtÞ
y2 ¼ x2;1

8
><

>:
ð64Þ

where f1,1(X) = x1,1 sin 2(x1,2) ? sin (x2,1) cos (x2,2),-

f1;2ðXÞ ¼
x2

1;1e
�x2

1;2

1þx2
1;1

þ x1;1 sinðx2;1x2;2Þ, d1;1ðtÞ ¼ 0:2 sinðtÞ,
d1,2(t) = 0.2 cos (t), f2;1ðXÞ ¼ x2;1

1þx2
1;1

þ 0:1 sinðx2;1Þ cos

ðx2;2Þ, f2,2(X, u1) = 0.2x2,1x1,2
2 ? cos (x2,1x2,2

2 ), d2,1 =

0.5 sin (t), d2;2ðtÞ ¼
x2

2;1e
�x2

2;2

1þx2
2;1

. The reference signals are

y1,r(t) = sin (0.5t) and y2,r(t) = sin (0.4t). Choose the

parameters in hysteresis quantizer (2) as d1 = 0.5,

d2 = 0.1, and ujmin = 0.8 (j = 1, 2).

Choose the fuzzy membership functions as

lFl
j;i
¼ exp

�

� ðx̂j;1�3þlÞ2

16

�

, lFl
j;2
¼ exp

�

� ðx̂j;2�6þ2lÞ2

4

�

j = 1, 2; l = 1, …, 5.

According to [31], the FLS can be constructed as

f̂j;1ðX̂ hj;1;k
�
� Þ ¼

X5

k¼1

hj;1;kuj;1;kðX̂Þ

f̂j;2ðX̂; uj;1 hj;2;k
�
� Þ ¼

X5

k¼1

hj;2;kuj;2;kðX̂; uj;1Þ; j ¼ 1; 2

Setting the parameters k1,1 = 4, k2,1 = 4, k1,2 = 3, and

k2,2 = 3, the state observer is constructed as

_̂x1;1 ¼ x̂1;2 þ f̂1;1ðX̂ h1;1

�
� Þ þ 4ðx1;1 � x̂1;1Þ

_̂x1;2 ¼ q1ðu1Þ þ f̂1;2ðX̂ h1;2

�
� Þ þ 4ðx1;1 � x̂1;1Þ

ŷ1 ¼ x̂;1;1

8
>><

>>:

ð65Þ

_̂x2;1 ¼ x̂2;2 þ f̂2;1ðX̂ h1;1

�
� Þ þ 3ðx2;1 � x̂2;1Þ

_̂x2;2 ¼ q2ðu2Þ þ f̂2;2ðX̂; u1 h2;2

�
� Þ þ 3ðx2;1 � x̂2;1Þ

ŷ2 ¼ x̂2;1

8
>><

>>:

ð66Þ

Choose the design parameters in the controllers uj (51),

the intermediate controls aj,1 (28) the adaptive laws hj,1
(29) and hj,2 (52) as
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b1,1 = b2,1 = 1, b1,2 = b2,2 = 4, c1,1 = c1,2 = c2,1 =

c2,2 = 0.1, r1,1 = r1,2 = r2,1 = r2,2 = 0.5, s1,1 = s1,2 =

s2,1 = s2,2 = 0.5, �s1;1 ¼ �s1;2 ¼ �s2;1 ¼ �s2;2 ¼ 0:5.

The initial values of the variables xi,j (i, j = 1, 2) are

chosen as x1,1(0) = 0.1, x1,2(0) = 0.1, x2,1(0) = 0.1,

x2,2(0) = 0.1,x̂1;1ð0Þ ¼ 0:1, x̂1;2ð0Þ ¼ 0:1, x̂2;1ð0Þ ¼ 0:1,

and the others initial values are zeros.

By applying the proposed adaptive quantized fuzzy

control approach to systems (63)–(64), the simulation

results are shown in Figs. 2, 3, 4, 5, 6, 7, and 8, where

Figs. 2 and 3 show the trajectories of the systems output yj
and tracking signal yj,r, respectively; Figs. 4 and 5 show the

trajectories of xj,1 and their estimates x̂j;1, respectively;

Fig. 6 shows the trajectories of the observer errors ej,2; and

Figs. 7 and 8 show the control input uj and the quantized

input signal qj(uj), j = 1, 2.

Fig. 2 Curves of y1 (blue) and y1,r (red)

Fig. 3 Curves of x1,1 (blue) and x̂1;1 (red)

Fig. 4 Curves of y1 (blue) and y2,r (red)

Fig. 5 Curves of x2,1 (blue) and x̂2;1 (red)

Fig. 6 Curves of e1,2 (blue) and e2,2 (red)
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Figures 2, 3, 4, 5, 6, 7, and 8 show that the proposed

control approach can guarantee the stability of the MIMO

nonstrict-feedback systems, and the boundedness of the

tracking and observer errors regardless of the existence of

uncertain nonlinearities, unmeasurable states, and hys-

teretic quantized input.

Remark 2 It is worth noting that the authors in [26–31]

investigated the input quantization control problem for a

class of SISO nonlinear systems. However, the work in

[26–31] did not consider the problem of states immeasur-

able and ‘‘explosion of complexity’’. Therefore, they can-

not be applied to control the MIMO nonstrict-feedback

nonlinear systems (63)–(64) for example.

5 Conclusions

A new fuzzy-based adaptive quantized DSC control

method has been proposed for uncertain MIMO nonstrict-

feedback nonlinear systems with input quantization. The

hysteretic quantized input has been decomposed by using

two bounded nonlinear functions, and the fuzzy logic

systems and a fuzzy state observer have been adopted to

identify the uncertain nonlinear functions and to estimate

the unmeasurable states, respectively. The investigated

adaptive fuzzy quantized control scheme not only guaran-

tees the stability of the MIMO nonstrict-feedback systems,

and the boundedness of the tracking and observer errors,

but also solves the problem of hysteretic quantized input.

Future researches will be concentrated on a fuzzy adaptive

quantized optimal control design for nonstrict-feedback

nonlinear systems. Further research will concentrate on

adaptive fuzzy control for MIMO nonlinear affine or

nonaffine systems with time-varying and input delay based

on this paper and the results of [33–37].
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